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Purpose of review

Standard neurorehabilitation approaches have limited impact on motor recovery in

patients with severe brain injuries. Consideration of the contributions of impaired

arousal offers a novel approach to understand and enhance recovery.

Recent findings

Animal and human neuroimaging studies are elucidating the neuroanatomical bases of

arousal and of arousal regulation, the process by which the cerebrum mobilizes

resources. Studies of patients with disorders of consciousness have revealed that

recovery of these processes is associated with marked improvements in motor

performance. Recent studies have also demonstrated that patients with less severe

brain injuries also have impaired arousal, manifesting as diminished sustained attention,

fatigue, and apathy. In these less severely injured patients, it is difficult to connect

disorders of arousal with motor recovery because of a lack of measures of arousal that

are independent of motor function.

Summary

Arousal impairment is common after brain injury and likely plays a significant role in

recovery of motor function. A more detailed understanding of this connection will help to

develop new therapeutic strategies applicable for a wide range of patients. This requires

new tools that continuously and objectively measure arousal in patients with brain injury,

to correlate with detailed measures of motor performance and recovery.
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Introduction

Only a small percentage of the variance of motor recovery

from stroke, and likely traumatic brain injury (TBI),

is explainable by rehabilitation interventions; the remain-

der falls under the category of ‘spontaneous’ recovery

[1,2]. In the setting of focal stroke, animal model and

human imaging studies provide evidence that recovery of

movement is associated with peri-lesional brain regions

taking over for lost functions [3,4]. On the other hand, in

the setting of larger injuries produced by large-vessel

strokes or TBI, this local neuroplasticity may play less of

a role. In these situations, we propose that a major driver

of motor recovery is restitution of brain networks sup-

porting arousal and production of goal-directed behavior.

Below, we briefly review the neuroanatomical basis

of level of arousal and the initiation and maintenance

of goal-directed behavior. We then review evidence from

a variety of brain injury types for the connection of

functioning of these networks and recovery of motor

function and learning. This connection is strongest in
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cases of severe brain injury with disorders of conscious-

ness, but there is also evidence for a role of arousal

in patients with milder diffuse or focal injuries. Finally,

we discuss the steps that can be taken in future work to

clarify the role of arousal in recovery of motor function

in patients without disorders of consciousness to support

the development of appropriate interventions.
Background
Goal-directed movements require, in addition to the

typically discussed sensory and motor systems, an ade-

quate level of arousal, and a mobilization of distributed

neuronal networks to initiate and sustain the behavior.

Arousal level refers to an overall state function of

brain activity, and in the intact brain ranges from stage

three non-REM sleep, where strong stimuli are required

to elicit a response, to states of high vigilance within

wakefulness, where subtle stimuli can be detected and

acted upon [5,6]. Within the awake state, level of arousal

is often termed alertness, and can be measured by speed

of response to stimuli, and ability to continue responding
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Key points

� Goal-directed behavior requires an adequate

arousal level as well as ability to mobilize neuronal

resources, termed arousal regulation.

� Recovery of arousal and arousal regulation in patients

with disorders of consciousness can be associated

with marked recovery of motor performance.

� Disorders of arousal and production of goal-directed

behavior are common in patients with traumatic

brain injury and stroke.

� New approaches are needed to document disorders

of arousal and goal-directed behavior after brain

injury independent of motor dysfunction.
over a period of time (i.e. vigilance or sustained attention)

[7]. Initiation and maintenance of goal-directed behavior

involves the enhancement of arousal with focused

activation of corticothalamic networks involved in task

performance. This mobilization of resources [8] is one of

the brain’s ‘executive functions’ and is termed arousal

regulation [9].

Arousal level and regulation of arousal are supported by

a collection of highly interactive cortical, subcortical,

and brainstem areas. The core areas for arousal (i.e.

the ‘arousal system’) appear to be glutamatergic and

cholinergic neurons in the dorsal tegmentum of the

midbrain and pons [10,11]. In humans, these neuronal

populations broadly activate the cerebrum predomi-

nantly via the basal forebrain and central thalamus

(primarily intralaminar nuclei). The basal forebrain

and central thalamus subsequently activate the cortex

through cholinergic and glutamatergic projections,

respectively. The brainstem norepinephrine system also

enhances arousal via modulation of the cortex, basal

forebrain, and thalamic intralaminar nuclei [12,13].

Other arousal system components include brainstem

dopaminergic, and hypothalamic histaminergic and

orexin/hypocretin-producing neurons [14–17].

Arousal regulation is primarily implicated in healthy

individuals during tasks requiring enhancement of

alertness or sustained attention. It is primarily supported

by activity in the medial frontal and anterior cingulate

cortices, though also relies on the broadly activating

neurons of the intralaminar thalamus [18–21]. Further

organization of goal-directed behaviors is supported by

broadly distributed activity across frontal and parietal

systems [22]. Loop connections between the frontal

and parietal cortices, basal ganglia, and thalamus (both

specific and nonspecific nuclei) are also important to

focus and support both arousal regulation and organiz-

ation of behavior [23–25].

In healthy individuals, arousal and arousal regulation play

a major role in motor performance and motor learning.

Low arousal states, such as those often produced by sleep

deprivation, are well known to impair motor performance

and learning [26]. Sleep deprivation is associated with

decreased metabolism on FDG PET (fluorodeoxy-

glucose positron emission tomography) across the frontal

lobe, basal ganglia, and thalamic regions that support

goal-directed behavior [27,28]. These same regions are

also the first to reduce with sleep onset [29], and the

last to recover after awakening, associated with an

impairment of motor responsiveness known as ‘sleep

inertia’ [30]. A recent study using local-field potential

recording in rats provides evidence that the decreased

hypometabolism measured during sleep deprivation

represents intermittent pauses in firing of cortical
Copyright © Lippincott Williams & Wilkins. Unaut
neurons [31��]. The authors suggested that these cortical

areas are entering a local sleep state despite an overall

appearance of wakefulness, and that this local sleep state

can impair motor performance.

Processes that increase arousal, such as motivation,

reward, pain, stimulant medications, and anxiety,

improve motor performance and learning to a point,

though too high levels of stimulation impair behavior

and learning [32,33]. These processes likely improve

behavior by enhancing cortical signal-to-noise ratios;

but too high levels of arousal can enhance response to

all stimuli, preventing detection of salient ones [34].
The effect of brain injury on arousal and
production of goal-directed behavior
Diffuse and focal brain injuries can impair goal-directed

behavior by directly injuring or disconnecting the

networks of brain areas involved in arousal and arousal

regulation. The connection between these injuries and

recovery of motor performance and learning is clearest

in patients with global impairments in brain function,

known as disorders of consciousness. For patients

with less severe diffuse injuries or focal injuries, there

is evidence of deficits in arousal and arousal regulation,

but less so for a connection with motor recovery.

The disorders of consciousness arising from structural

brain injury include coma, vegetative state, and the

minimally conscious state [35]. Three canonical patho-

physiologies are widespread neuronal death and/or

disconnection from global hypoxia; diffuse axonal injury

(DAI) from TBI; and focal destruction of the upper

brainstem and thalamus often from top of the basilar

stroke. These anatomic pathologies all involve dysfunc-

tion of corticothalamic activity from either direct loss

of neurons, or overwhelming impairment of arousal

system activation. In these conditions, recovery of

voluntary movement is by definition associated with

recovery of arousal (i.e. recovery of consciousness) [36].
horized reproduction of this article is prohibited.
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The inverse is not true as deficits of corticospinal [37]

or higher order motor systems [38,39��,40��] can prohibit

detection of consciousness processing. Evidence for the

causal link from improved arousal to motor recovery

includes patients with rapid improvements in arousal

due to zolpidem [41] and central thalamic deep brain

stimulation (DBS) [42], who had marked improvements

in movement ability. Recovery of consciousness is also

associated with return of motor learning. One extreme

example is a patient who recovered consciousness after

19 years in the minimally conscious state, and over the

subsequent year transitioned from no lower extremity

movement to being able to use his lower extremities to

elevate his lower back to help in personal care [43].

A relevant, but less common disorder of consciousness is

akinetic mutism [44,45]. Here, the behavioral appearance

is that of low-level minimally conscious state, but the

injury is restricted to the same areas involved in

arousal regulation (medial frontal cortices or connected

subcortical nuclei), without loss or disconnection of the

brainstem or basal forebrain [46]. One of the hallmarks of

the syndrome of akinetic mutism is the occasional

appearance of high-level organized behaviors in response

to specific stimuli [47]; these marked variations in goal-

directed behavior suggest that there are alternate paths to

enhance arousal regulation network activity. A recently

proposed model [48] suggests that specific variations in

the activation of different cell types within the arousal

regulation network can alter widespread corticothalamic

activity, and thereby explain fluctuations in goal-directed

behavior in akinetic mutism and similar syndromes.

This model accounts for the role of dopaminergic agents

[49–51], zolpidem [41,52], central thalamic DBS [42],

and other potential agents that would act on these

neuronal subsystems.

In patients with diffuse brain injuries but without

disorders of consciousness, deficits in arousal and arousal

regulation are common. Excessive daytime sleepiness is

relatively common in patients with TBI, even 6 months

after injury, [53] and affects ability to sustain attention

[54]. These patients also demonstrate daily fluctuations

in arousal, that can lead to significant variations in

behavior [55,56]. Theories for mechanisms of impaired

arousal and arousal regulation include loss of cholinergic

neurons [57] and impaired cortical connectivity [58��],

possibly from residual axonal injury [59�]. The connec-

tion between recovery of arousal and of motor function

in this population is not well understood, though is

important, as motor recovery can be prolonged and

incomplete [60].

In patients with focal brain injury such as from stroke, the

clearest cases of impaired arousal are in those with focal

injuries to the upper brainstem and thalamus, who may
opyright © Lippincott Williams & Wilkins. Unauth
either have a disorder of consciousness (discussed above)

or may appear alert, but demonstrate impaired attention

and slowed responsiveness [61]. Strokes of the medial

frontal lobe or basal ganglia, areas involved in arousal

regulation, may result in a milder form of akinetic mutism

called abulia [47]. There is also evidence that the

syndrome of left-sided neglect can be due to damage

to areas involved in arousal regulation, resulting in loss of

right greater than left arousal tone, rather than a specific

loss of attentional network functioning [62]. These

syndromes are clearly relevant to overall function after

stroke, but their role in motor recovery still needs to

be determined.

In patients with focal stroke but without damage to

arousal systems or regions involved in arousal regulation,

there is still a significant prevalence of disorders of arousal

and production of goal-directed behavior, presenting as

fatigue and apathy. Both fatigue and apathy are defined

by patient description of a lack of drive to perform goal-

directed behaviors, with motivation retained in fatigue,

but lost in apathy. Both syndromes have been documen-

ted poststroke independent of depression [63,64] and

correlate with prolonged disability [65,66]. The connec-

tion between fatigue and apathy and the patterns of

underlying brain injuries are still poorly defined [67],

though one study did find a higher prevalence with

brainstem strokes [68]. The lack of a clear pathophysio-

logic basis is likely due to a combination of small sample

sizes in observational studies, multiple other contributing

factors (e.g. premorbid depression, infection, medi-

cations, sleep disorders, and medical comorbidities),

and definition of conditions by use of questionnaires

rather than physiological biomarkers. Going forward, it

is important to develop objective markers of apathy and

fatigue to determine their role in motor recovery and

to develop treatment approaches aimed at underlying

mechanisms.

There is also evidence that exogenous factors that act on

arousal pathways may affect motor performance and

recovery from brain injury. Many medications that cor-

relate with slower recovery are known to inhibit arousal

level including alpha-2 adrenergic agonists (generally

inhibit norepinephrine release), GABA allosteric activa-

tors (benzodiazepines and barbiturates), and antiepilep-

tics including phenytoin [69–71]. Benzodiazepines have

even been shown to transiently reinstate motor deficits in

patients in the chronic stage poststroke [72]. Antidopa-

minergic agents such as haloperidol also slow recovery

from brain injury [69], with potential mechanisms includ-

ing inhibition of an implicit form of arousal regulation

[73] and of skill learning [74]. Conversely, medications

that enhance noradrenergic [75] and dopaminergic [74]

neurotransmitter levels have been shown in animal

studies to improve motor learning and recovery, though
orized reproduction of this article is prohibited.
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human trials have been inconsistent [76]. Sleep disorders

are another common factor after stroke and TBI [77,78]

and affect recovery. As with direct effects of brain injury

on arousal and initiation, most of the studies on exo-

genous factors are observational and use nonphysiological

outcome measures. An approach focused on mechanism

could reveal which patients’ recoveries are being

impaired by these factors, and which ones would most

benefit from interventions to enhance arousal.
An approach to determine the role of arousal
in recovery of motor function after structural
brain injury
The above review highlighted some of the anatomy

of highly interconnected brain networks supporting

arousal level and production of goal-directed behavior.

We reviewed clinical evidence linking specific patterns of

brain injuries, as well as common exogenous factors, that

affect the functioning of these networks. However, with

the exception of patients with disorders of consciousness,

the demonstrated connection between improved arousal

and motor recovery is weak. One reason is that the

behavioral definitions of arousal and arousal regulation

are either based on subjective patient reports or on

neuropsychological measures (e.g. vigilance tests) that

require movement as the output. By requiring patients to

move to respond, deficits in arousal and motor control are

confounded. Furthermore, most trials are retrospective,

limiting interpretation. To address these limitations

to allow for development of new therapeutic strategies,

we now offer a framework for future studies to allow for

a more direct association between these phenomena.

To objectively document recovery of goal-directed

behavior, measures should be objective and continuous

so they can track the daily fluctuations in arousal level.

Quantitative characterization of arousal using such

measures has proven highly successful in animal studies

[6]. Wireless wearable devices now offer a solution

to monitor patient behavior continuously and without

need for direct interaction with research staff. Triaxial

accelerometers have been used in the home and

rehabilitation setting for patients with stroke and brain

injury and can demonstrate overall level of activity [79],

as well as more specific actions such as walking speed

[80�]. Machine-learning algorithms allow for detection of

more complex behaviors such as reaching and grasping

[81�]. Once the level of goal-directed behavior can be

defined, it can be correlated with measures of arousal and

arousal regulation that do not require voluntary move-

ment including eye closures and electroencephalography

[82,83,84��,85].

Once the objective markers of arousal and goal-directed

behavior are available, they should be incorporated into
Copyright © Lippincott Williams & Wilkins. Unaut
observational and clinical trials focused on motor

recovery from brain injury. Motor outcome measures in

these trials should include both impairment and disability

measures, as it is important to determine whether

measures of arousal and arousal regulation correlate with

true recovery at a kinematic level or with compensation

behaviors. If such information can be included in clinical

trials, it may help reveal some of the unexplained

variance in recovery [2], so causative factors can be

discovered. Further, it also may help to explain the varied

responsiveness to adrenergic agents [75], as these drugs

may benefit those who have loss of movement from

impaired arousal, rather than loss of motor systems.
Conclusion
Sufficient arousal level and ability to regulate arousal

to mobilize neuronal resources are basic requirements

for all higher level behaviors. This is shown in our daily

lives with variations of motor performance across the

sleep–wake cycle and during states of sleep deprivation,

and also revealed by the global impairments in behavior

in patients with disorders of consciousness. Above,

we review evidence that the systems that support goal-

directed behavior are dysfunctional in a wide range of

brain-injured patients. Experience with patients with

disorders of consciousness has revealed that enhance-

ment of activity in systems underlying arousal and arousal

regulation can lead to marked improvements in motor

recovery. We suggest that a deeper study of the presence

and influence of arousal disorders in patients with less

severe brain injuries will reveal underlying sources of

delayed recovery, as well as identify new targets and

approaches to enhance recovery.
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