
Variance predicts salience in central sensory processing

Ann M. Hermundstad1,2, John J. Briguglio1, Mary M. Conte3, Jonathan D. Victor3, Vijay
Balasubramanian1,2,4 and Gašper Tkačik5
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Abstract

Information processing in the sensory periphery is shaped by natural stimulus statistics. In the

periphery, a transmission bottleneck constrains performance; thus e�cient coding implies that natural

signal components with a predictably wider range should be compressed. In a di↵erent regime – when

sampling limitations constrain performance – e�cient coding implies that more resources should be allo-

cated to informative features that are more variable. We propose that this regime is relevant for sensory

cortex when it extracts complex features from limited numbers of sensory samples. To test this predic-

tion, we use central visual processing as a model: we show that visual sensitivity for local multi-point

spatial correlations, described by dozens of independently-measured parameters, can be quantitatively

predicted from the structure of natural images. This suggests that e�cient coding applies centrally,

where it extends to higher-order sensory features and operates in a regime in which sensitivity increases

with feature variability.

INTRODUCTION

Sensory receptor neurons encode signals from the environment, which are then transformed by successive
neural layers to support diverse and computationally complex cognitive tasks. A normative understanding
of these computations begins in the periphery, where the e�cient coding principle – the notion that a
sensory system is tuned to the statistics of its natural inputs – has been shown to be a powerful organizing
framework [1, 2]. Perhaps the best-known example is that of redundancy removal via predictive coding
and spatiotemporal decorrelation. In insects, this is carried out by neural processing [3, 4]; in vertebrates,
fixational eye movements – which precede the first step of neural processing [5–7] – play a major role [8]. This
approach was later extended to describe population coding, retinal mosaic structure [1,8–14], adaptation of
neural responses [15–17], and early auditory processing [18]. Taken together, normative theories based on
e�cient coding have been successful in explaining aspects of processing in the sensory periphery that are
tuned to simple statistical features of the natural world.

Can we extend such theories beyond the sensory periphery to describe cortical sensitivity to complex
sensory features? Normative theories have been successful in predicting the response properties of single
cells, including receptive fields in V1 [19–25] and spectro-temporal receptive fields in primary auditory
cortex [26,27], as well as distributions of tuning curves across individual cells in a population [28,29]. Some
complex features, however, might not be represented by the tuning properties of individual cells in any direct
way, but rather emerge from the collective behavior of many cells. Instead of trying to predict individual cell
properties, we therefore focus on the sensitivity of the complete neural population. Is there an organizing
principle that determines how resources within the population are allocated to representing such complex
features?
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When the presence of complex features is predictable (i.e., can be accurately guessed from simpler features
along with priors about the environment), mechanisms are best devoted elsewhere (see Discussion, [30]).
In contrast, sensory features that are highly variable and not predictable from simpler ones can serve to
determine their causes (e.g., to distinguish among materials or objects), a first step in guiding decisions. We
will show that these ideas predict a specific organizing principle for aggregate sensitivities arising in cortex:
the perceptual salience of complex sensory signals increases with the variability, or unpredictability, of the
corresponding signals over the ensemble of natural stimuli.

To test this hypothesis, we focus on early stages of central visual processing. Here, early visual cortex (V1
and V2) is charged with extracting edges, shapes, and other complex correlations of light between multiple
points in space [31–33]. We compare the spatial variation of local patterns of light across natural images with
human sensitivity to manipulations of the same patterns in synthetic images. This allows us to determine
how sensitivity is distributed across many di↵erent features, rather than simply determining the most salient
ones. (We will say that a feature is more salient if it is more easily discriminated from white noise.) To
this end, we parametrize the space of local multi-point correlations in images in terms of a complete set of
coordinates, and we measure the probability distribution of coordinate values sampled over a large ensemble
of natural scenes. We then use a psychophysical discrimination task to measure human sensitivity to the same
correlations in synthetic images, where the correlations can be isolated and manipulated in a mathematically
rigorous fashion by varying the corresponding coordinates [34–37]. Comparing the measurements, we show
that human sensitivity to these multi-point elements of visual form is tuned to their variation in the natural
world. Our result supports a broad hypothesis: cortex invests preferentially in mechanisms that encode
unpredictable sensory features that are more variable, and thus more informative about the world. Namely,
variance is salience.

RESULTS

As we recently showed, some informative local correlations of natural scenes are captured by the config-
urations of luminances seen through a “glider”, i.e., a window defined by a 2 ⇥ 2 square arrangement of
pixels [38]. We use this observation first as a framework for analyzing the local statistical structure of natu-
ral scenes, then to characterize psychophysical sensitivities via a set of synthetic visual texture stimuli, and
finally to compare the two.

Analyzing local image statistics in natural scenes

The analysis of natural scenes is schematized in Figure 1. We collect an ensemble of image patches from the
calibrated Penn natural image database (PIDB) [39]. We preprocess the image patches as shown in Figure
1A. This involves first averaging pixel luminances over a square region of N ⇥N pixels, which converts an
image of size L

1

⇥ L
2

pixels into an image of reduced size L
1

/N ⇥ L
2

/N pixels. Images are then divided
into R⇥R square patches of these downsampled pixels and whitened (see Methods, Image preprocessing, for
further details). Since the preprocessing depends on a choice of two parameters, the block-average factor N
and patch size R, we report results for multiple image analyses performed using the identical preprocessing
pipeline but for various choices of N and R. After preprocessing, we binarize each patch to have equal
numbers of black and white pixels (black = -1, white = +1). We characterize each patch by the histogram
of 16 binary colorings (22⇥2) seen through a square 2 ⇥ 2 pixel glider (Figure 1B). Translation invariance
imposes constraints on this histogram, reducing the number of degrees of freedom to 10 [36]. These degrees
of freedom can be mapped to a set of image statistic coordinates that separates correlations based on their
order: (i) one first-order coordinate, �, describes overall luminance, (ii) four second-order coordinates, {�|,
��, �

/

, �\}, describe two-point correlations between pixels arranged vertically, horizontally, or diagonally,
(iii) four third-order coordinates, {✓

x

, ✓
p

, ✓
q

, ✓
y

}, describe three-point correlations between pixels arranged
into x-shapes of di↵erent orientations, and (iv) one fourth-order coordinate, ↵, describes the single four-
point correlation between all four pixels in the glider (Figure 1C). The binarization step of the preprocessing
pipeline forces � to zero, leaving 9 coordinates. Each image patch is thus characterized by a vector of
coordinate values {�|,��,�

/

,�\, ✓p, ✓q, ✓y, ✓x,↵}, i.e., a point within the multidimensional space of image
statistics. Accumulating these points across patches yields a multidimensional probability distribution that
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characterizes the local correlations in natural scenes (schematized in Figure 1D). A total of 724 images (up
to 249780 patches, depending on the choice of N and R), was used to construct this distribution.
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Figure 1: Extracting image statistics from natural scenes. A We first block-average each image over N ⇥ N pixel
squares, then divide it into patches of size R⇥R pixels, then whiten the ensemble of patches by removing the average pairwise
structure, and finally binarize each patch about its median intensity value (see Methods, Image preprocessing). B From each
binary patch, we measure the occurrence probability of the 16 possible colorings as seen through a two-by-two pixel glider
(red). Translation invariance imposes constraints between the probabilities that reduce the number of degrees of freedom to
10. C A convenient coordinate basis for these 10 degrees of freedom can be described in terms of correlations between pixels
as seen through the glider. These consist of one first-order coordinate (�), four second-order coordinates (�|,��,�

/

,�\), four
third-order coordinates (✓

x

, ✓

p

, ✓

q

, ✓

y

), and one fourth-order coordinate (↵). Since the images are binary, with black = -1
and white = +1, these correlations are sums and di↵erences of the 16 probabilities that form the histogram in panel B [36].
D Each patch is assigned a vector of coordinate values that describes the histogram shown in B. This coordinate vector
defines a specific location in the multidimensional space of image statistics. The ensemble of patches is then described by
the probability distribution of coordinate values. We compute the degree of variation (standard deviation) along di↵erent
directions within this distribution (inset). E Along single coordinate axes, we find that the degree of variation is rank-ordered
as {�|,��} > {�

/

,�\} > ↵ > {✓
x

, ✓

p

, ✓

q

, ✓

y

}, shown separately for di↵erent choices of the block-average factor N and patch
size R used during image preprocessing.

To summarize this distribution, we compute the degree of variation (standard deviation) along each
coordinate axis (Figure 1E). As is shown, the degree of variation along di↵erent coordinate axes exhibits a
characteristic rank-ordering, given by {�|,��} > {�

/

,�\} > ↵ > {✓
x

, ✓
p

, ✓
q

, ✓
y

}; that is, the most variable
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correlations are pairwise correlations in the cardinal directions, followed by pairwise correlations in the
oblique directions, followed by fourth-order correlations. Interestingly, third-order correlations are the least
variable across image patches. An analogous analysis performed on white noise yields a flat distribution with
considerably smaller standard deviation values (See Methods, Analysis variants for Penn Natural Image
Database, and Figure 1–figure supplement 3 for comparison), and performing the analysis on a colored
Gaussian noise (e.g. 1/fk spectrum) would also yield a flat distribution because of the whitening stage in the
image preprocessing pipeline. These (and subsequent) findings are preserved across di↵erent choices of image
analysis parameters (shown in Figure 1E for block-average factors N = 2, 4 and patch sizes R = 32, 48, 64;
see Methods, Analysis variants for Penn Natural Image Database, and Figure 3–figure supplement 5A for a
larger set of parameters) and also across other collections of natural images (see Methods, Comparison with
van Hateren Database, and Figure 3–figure supplement 5B for a parallel analysis of the van Hateren image
dataset [21], which gives similar results).

Characterizing visual sensitivity to local image statistics

To characterize perceptual sensitivity to di↵erent statistics, we isolated them in synthetic visual images
and used a figure/ground segmentation task (Figure 2B). We used a four-alternative forced-choice task in
which stimuli consisted of a textured target and a binary noise background (or vice-versa). Each stimulus
was presented for 120ms and was followed by a noise mask. Subjects were then asked to identify the spatial
location (top, bottom, left, or right) of the target. Experiments were carried out for synthetic stimuli in which
the target or background was defined by first varying image statistic coordinates independently (Figure 2A
shows examples of gamuts from which stimuli are built). Along each coordinate axis, threshold (1/sensitivity)
was defined as the coordinate value required to support a criterion level of performance (Figure 2C, inset).
We then performed further experiments in which the target or background was defined by simultaneously
varying pairs of coordinates. For measurements involving each coordinate pair (to which we will refer as a
“coordinate plane”), we traced out an isodiscrimination contour (Figure 2C) that describes the threshold
values not only along the cardinal directions, but also along oblique directions. Measurements were collected
for four individual subjects in each of 11 distinct coordinate planes (representing all distinct coordinate pairs
up to 4-fold rotational symmetry; see Methods, Psychophysical methods, for further details). Each subject
performed 4320 judgements per plane, for a total of 47520 trials per subject.

Figure 2D shows perceptual sensitivities measured along each coordinate axis. For each of four subjects, a
similar pattern emerges for sensitivities as was observed for variation in natural image statistics: sensitivities
are rank-ordered as {�|,��} > {�

/

,�\} > ↵ > {✓
p

, ✓
q

, ✓
y

, ✓
x

}.
Note that the di↵erence between the sensitivities in the horizontal and vertical directions (�� and �|)

versus the diagonal directions (�\ and �
/

) is not simply an “oblique e↵ect”, i.e., a greater sensitivity to
cardinally- versus obliquely-oriented contours [40]. Horizontal and vertical pairwise correlations di↵er from
the diagonal pairwise correlations in more than just orientation: pixels involved in horizontal and vertical
pairwise correlations share an edge, while pixels involved in diagonal pairwise correlations only share a
corner. Correspondingly, the di↵erence in sensitivities for horizontal and vertical correlations versus diagonal
correlations is approximately 50%, which is much larger than the size of the classical oblique e↵ect (10-
20%) [40].

Natural scenes predict human sensitivity along single coordinates

Figures 1E and 2D show a rank-order correspondence between natural image statistics and perceptual sensi-
tivities. This qualitative comparison can be converted to a quantitative one (Figure 3A), as a single scaling
parameter aligns the standard deviation of natural image statistics with the corresponding perceptual sen-
sitivities. In this procedure, each of the six image analyses is scaled by a single multiplicative factor that
minimizes the squared error between the set of standard deviations and the set of subject-averaged sensitiv-
ities (see Methods, Image preprocessing, and Figure 3–figure supplement 1 for additional details regarding
scaling). The agreement is very good, with the mismatch between image analyses and human psychophysics
comparable to the variability from one image analysis to another, or from one human subject to another.

We quantify the correspondence between image analyses and psychophysical analyses by computing the
scalar product between the normalized vector of standard deviations (extracted separately from each image
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Figure 2: Measuring human sensitivity to image statistics. A Synthetic binary images can be created that contain
specified values of individual image statistic coordinates (as shown here) or specified values of pairs of coordinates [36]. B
To measure human sensitivity to image statistics, we generate synthetic textures with prescribed coordinate values but no
additional statistical structure, and we use these synthetic textures in a figure/ground segmentation task (see [36] and Methods,

Psychophysical methods). C For measurements along coordinate axes, test stimuli are built out of homogeneous samples drawn
from the gamuts shown in A (e.g. the target shown in B was generated from the portion of the gamut indicated by the red
arrow in A; see Methods, Psychophysical methods, and [35–37]). We assess the discriminability of these stimuli from white
noise by measuring the threshold value of a coordinate required to achieve performance halfway between chance and perfect
(inset). A similar approach is used to measure sensitivity in oblique directions; here, two coordinate values are specified to
create the test stimuli. The threshold values along the axes and in oblique directions define an isodiscrimination contour
(red dashed ellipse, main panel) in pairwise coordinate planes. D Along individual coordinate axes, we find that sensitivities
(1/thresholds) are rank-ordered as {�|,��} > {�

/

,�\} > ↵ > {✓
p

, ✓

q

, ✓

y

, ✓

x

}, shown separately for four individual subjects. A
single set of perceptual sensitivities is shown for (�|,��), (�

/

,�\), and (✓
x

, ✓

p

, ✓

q

, ✓

y

), since human subjects are equally sensitive
to rotationally-equivalent pairs of second-order coordinates and to all third-order coordinates [37].

analysis) and the normalized vector of subject-averaged sensitivities (extracted from the set of psychophysical
analyses). A value of 1 indicates perfect correspondence, and 0 indicates no correspondence. This value
ranges from .987 to .999 across image analyses and is consistently larger than the value measured under the
null hypothesis that the apparent correspondence between statistics and sensitivities is chance (p  .0003
for each image analysis; see Methods, Permutation tests, for details regarding statistical tests).

These findings support our hypothesis that human perceptual sensitivity measured along single coordi-
nate axes (assessed using synthetic binary textures) is predicted by the degree of variation along the same
coordinate axes in natural scenes.
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Figure 3: Variation in natural images predicts human perceptual sensitivity. A Scaled degree of variation (standard
deviation) in natural image statistics along second- (�), third- (✓), and fourth-order (↵) coordinate axes (blue circular markers)
are shown in comparison to human perceptual sensitivities measured along the same coordinate axes (red square markers).
Degree of variation in natural image statistics is separately shown for di↵erent choices of the block-average factor (N) and
patch size (R) used during image preprocessing. Perceptual sensitivities are separately shown for four individual subjects. As
in Figure 2C, a single set of perceptual sensitivities is shown for {�|,��}, {�

/

,�\}, and {✓
x

, ✓

p

, ✓

q

, ✓

y

}. B For each pair of
coordinates, we compare the precision matrix (blue ellipses) extracted from natural scenes (using N = 2, R = 32) to human
perceptual isodiscrimination contours (red ellipses). Coordinate planes are organized into a grid. The set of ellipses in each
pairwise plane is scaled to maximally fill each portion of the grid; agreement between the variation along single coordinate
axes and the corresponding human sensitivities (shown in A) guarantees that no information is lost by scaling. Across all 36
coordinate planes, there is a correspondence in the shape, size, and orientation of precision matrix contours and perceptual
isodiscrimination contours. C Quantitative comparison of a single image analysis (N = 2, R = 32) with the subject-averaged
psychophysical data. For single coordinates depicted in A, we report the standard deviation in natural image statistics (upper
row) and perceptual sensitivities (middle row). For sets of coordinate planes depicted in (b), we report the (average eccentricity,
angular tilt) of precision matrix contours from natural scenes (upper row) and isodiscrimination contours from psychophysical
measurements (middle row). The degree of correspondence between predictions derived from natural image data and the
psychophysical measurements can be conveniently summarized as a scalar product (see text), where 1 indicates a perfect
match. In all cases, the correspondence is very high (.938-.999) and is highly statistically significant (p  .0003 for both single
coordinates and pairwise coordinate planes; see Methods, Permutation tests, for details).

Natural scenes predict human sensitivity to joint variations of all pairs of coor-
dinates

The correspondence shown in Figure 3A considers each image statistic coordinate in isolation. However, it
is known that image statistics covary substantially in natural images (as diagrammed in Figure 1D) and also
that they interact perceptually (as diagrammed in Figure 2C). When pairs of natural image statistics covary,
thus sampling oblique directions not aligned with the coordinate axes in the space of image statistics, our
hypothesis predicts that human perceptual sensitivity is matched to both the degree and the direction of
that covariation (we are referring here to the orientation of a distribution in the coordinate plane of a pair
of image statistics, and not to an orientation in physical space). To test this idea, we proceeded as follows.

First, we fit the distribution of image statistics with a multidimensional Gaussian. When projected
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into pairwise coordinate planes, the isoprobability contours of this Gaussian capture the in-plane shape and
orientation of the covariation of the distribution. Along single coordinate axes, the variation in natural
image statistics predicts human perceptual sensitivities, as we have shown (Figure 3A). More generally,
we would predict that sensitivity should be be high along directions in which the distribution of natural
image statistics has high standard deviation, because in those directions, the position of a sample cannot
be guessed. Within coordinate planes, the quantitative statement of this idea is that the inverse covariance
matrix, or precision matrix, predicts perceptual isodiscrimination contours. Sensitivity is expected to be
low (and therefore threshold high) along directions in which the precision matrix has a high value and the
position of a sample can be guessed a priori.

Results in each coordinate plane are shown in Figure 3B. Across all subjects and all coordinate planes,
we find that the shape and orientation of perceptual isodiscrimination contours (red ellipses) are predicted
by the distribution of image statistics extracted from natural scenes (blue ellipses). As in Figure 3A, the
correspondence is very good, with mismatch that is comparable to the variability observed across image
analyses and across subjects.

To quantify the correspondence between natural image and psychophysical analyses, we describe each
ellipse by a single vector ~! that combines information about shape (eccentricity) and orientation (angular
tilt), and we compute the scalar product between the image analysis vector ~!

NI

and the subject-averaged
psychophysical vector ~!

PP

. This value, averaged across coordinate planes, ranges from .953 to .977 across
image analyses. We compared this correspondence to that obtained under the null hypotheses that (i) the
apparent correspondence between image statistic covariances and isodiscrimination contours is chance, or
(ii) the apparent covariances in image statistics are due to chance. The observed correspondence is much
greater than the value measured under either null hypothesis (p  .0003 for each image analysis under
both hypotheses; see Methods, Analysis of image statistics in pairwise coordinate planes, and Figure 3–
figure supplement 2 for comparisons of eccentricity and tilt, and Methods, Permutation tests, for statistical
tests).

These findings confirm that the shape and orientation of human isodiscrimination contours, measured
across all pairwise combinations of coordinates, can be quantitatively predicted from the covariation of
image statistics extracted from natural scenes. The observed correspondence is maintained within the full 9-
dimensional coordinate space (see Methods, Analysis of the full 9-dimensional distribution of image statistics,
and Figure 3–figure supplement 3 for principal component analyses), confirming that our hypothesis describes
human sensitivity in the full 9-dimensional space of local image statistics extracted from natural scenes.

DISCUSSION

How should neural mechanisms be distributed to represent a diverse set of informative sensory features? We
argued that, when performance requires inferences limited by sampling of the statistics of input features,
resources should be devoted in proportion to feature variability. A basic idea here is that features that take
a wider range of possible values are less predictable, and will better distinguish between contexts in the face
of input noise. We used this hypothesis to successfully predict human sensitivity to elements of visual form
arising from spatial multi-point correlations in images. This result is notable for several reasons. First, we
successfully predicted dozens of independent parameters that describe human perceptual sensitivity. The
only free parameter was a scale that converted between perceptual sensitivities and natural image statistics.
Moreover, predictions about the rank ordering of sensitivities (Figure 3A) and the shape and orientation of
isodiscrimination contours (Figure 3B) do not even require a scale factor. Second, the theoretical predictions
and their psychophysical test were derived from two very di↵erent sources. Psychophysical stimuli consisted
of mathematically-defined synthetic binary textures with precisely-controlled correlational structure that is
unlikely to occur outside of the laboratory. In contrast, the e�cient coding predictions were derived from
calibrated photographs of natural scenes in which many types of correlations are simultaneously present.
Third, predictions refer to multi-point (and not just pairwise) correlations, which are critical for defining local
features such as lines and edges [31, 32]. In contrast, previous normative theories have have mainly focused
on explaining the linear receptive fields of neurons in primary visual [19–25] and auditory cortex [26, 27],
or on deriving symmetry- and coverage-based mesoscopic models of cortical map formation in V1 [43–45].
Finally, the e�cient coding prediction of greater sensitivity to more variable multipoint correlations is closely
tied to the statistical structure of natural visual images. Specifically, this regime applies to highly variable
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Figure 4: Regimes of e�cient coding. A To analyze di↵erent regimes of e�cient coding, we consider a set of channels,
where the k

th channel carries an input signal with variability s

k

. Gaussian noise is added to the input. The result is passed
through a linear filter with gain |L

k

|, and then Gaussian noise is added to the filter output. We impose a constraint on the total
power output of all channels, i.e., a constraint on its total resources. With these assumptions, the set of gains that maximizes
the transmitted information can be determined (see Methods, Two regimes of e�cient coding, and [30, 41, 42]). This set of
gains depends on the relative strengths of input and output noise and on the severity of the power constraint, quantified here
by the dimensionless parameter ⇤ (right-hand panel). As ⇤ decreases from 1 to 0, the system moves from a regime in which
output noise is limiting to one in which input noise is limiting. B The e�cient coding model applied to the retina. Raw
luminances from natural images are corrupted with noise (e.g. shot noise resulting from photon incidence) and passed through
a linear filter. The resulting signal is carried by the optic nerve, which imposes a strong constraint on output capacity. In the
bandwidth limited case where output noise dominates over input noise (e.g., under high light conditions when photon noise is
not limiting), the optimal gain decreases as signal variability increases. Since channel input and channel gain vary reciprocally,
channel outputs are approximately equalized, resulting in a “whitening”, or decorrelation. C The e�cient coding model applied
to cortical processing. Informative image features resulting from early cortical processing, caricatured by our preprocessing
pipeline as applied to the retinal output, are sampled from a spatial region of the image. This sampling acts as a kind of input
noise, because it only provides limited count-based estimates for the true statistical properties of the image source. When
this input noise is limiting, the optimal gain increases as signal variability increases. Rather than whiten, the output signals
preserve the correlational structure of the input. Note that in both regimes B and C, there is a range of signals that are not
encoded at all. These are the signals that are not su�ciently informative to warrant an allocation of resources.

multipoint correlations that cannot be predicted from simpler ones. Some other multipoint correlations
(defined on configurations other than a 2⇥ 2 glider) are also highly variable, but they are predictable from
simpler correlations. For these multipoint correlations, visual sensitivity is very low [38], and e�cient coding
is not applicable in the form proposed here.

In sum, the surprising predictive power and the high statistical significance of our results provide strong
support for the proposed application of the e�cient coding hypothesis to cortical processing of complex
sensory features.
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Perceptual salience of multi-point correlations likely arises in cortex

Although we did not record cortical responses directly, several lines of evidence indicate that that the per-
ceptual thresholds we measured are determined by cortical processes. First, the stimuli had high contrast
(100%) and consisted of pixels that were readily visible (14 arcmin), so retinal limitations of contrast sen-
sitivity and resolution were eliminated. Second, the task requires pooling of information over wide areas
(100-200 pixels, i.e., a region whose diameter is 10 to 15 times the width of an image element; see Figure 7
in [46]). Retinal receptive fields are unlikely to do this, as the ratio of their spatial extent (surround size)
to their resolution (center size) is typically no more than 4:1 [47, 48]. Third, to account for the specificity
of sensitivity to three- and four-point correlations, a cascade of two linear-nonlinear stages is required [49];
retinal responses are quite well-captured by a single nonlinear stage [50], and cat retinal populations show
no sensitivity to the four-point correlations studied used here [51] while simultaneous cortical field potentials
do. Conversely, macaque visual cortical neurons [52], especially those in V2, manifest responses to three-
and four-point correlations [53].

Cortex faces a di↵erent class of challenges than the sensory periphery

Successive stages of sensory processing share the same broad goals: invest resources in encoding stimulus
features that are su�ciently informative, and suppress less-informative ones. In the periphery, this is ex-
emplified by the well-known suppression of very low spatial frequencies; in cortex, this is exemplified by
insensitivity to high-order correlations that are predictable from lower-order ones. Previous work has shown
that such higher-order correlations can be separated into two groups – informative and uninformative –
and only the informative ones are encoded [38]. We used this finding to select an informative subspace for
the present study, and we asked how resources should be e�ciently allocated amongst features within this
informative subspace.

A simple model of e�cient coding by neural populations is shown in Figure 4A (details in Methods, Two
regimes of e�cient coding). Here, to enable analytical calculations, we used linear filters of variable gain and
subject to Gaussian noise to model a population of neural channels encoding di↵erent features. The optimal
allocation of resources to maximize information transmitted by the population depends on the amount of
input noise, the amount of output noise, the input signal variability, and the total resources available to the
system, here quantified as a constraint on the total output power (i.e., sum of response variances) in the
neural population. The constrained output power and the output noise together determine the “bandwidth”
of the system – i.e., the expressive capacity of its outputs. Consider a neural population with input noise,
output noise, and a fixed amount of output power. We find that when input signal variability is su�ciently
large compared to the input noise, the gain of neurons should decrease with the variance of the input (regions
to the right of the peaks in the right-hand panel of Figure 4A). This is a regime where the output bandwidth
is low compared to the input range, and e�cient coding predicts that signals should be “whitened” by
equalizing the variance in di↵erent channels. Conversely, consider input signals with a smaller range, which
are thus more disrupted by input noise. In this case, the gain of neurons should increase with the variance
of the input (regions to the left of the peaks in the right-hand panel of Figure 4A). This is a regime where
the input noise dominates, and e�cient coding predicts that the system should invest more resources in
more variable, and hence more easily detectable, input signals. The relative sizes of input and output noise
(controlled by ⇤ in Figure 4A) determines the input ranges over which the two qualitatively di↵erent regimes
of e�cient coding apply.

To make these abstract considerations concrete, we first considered coding in the sensory periphery. A
common strategy employed in the periphery is “whitening,” where relatively fewer resources are devoted
(yielding lower gain) to features with more variation [19]. As an example, within the spatial frequency range
that the retina captures well, sensitivity is greater for high spatial frequencies than for low ones, i.e., sensitiv-
ity is inversely related to the degree of variation in natural scenes (the well-known 1/f2 power spectrum [19]).
Figure 4B illustrates how this strategy can emerge from the simple e�cient coding scheme discussed above
as applied to retinal processing. Spatiotemporal correlations of light undergo retinal filtering before passing
through the optic nerve bottleneck (a constraint on bandwidth). Such a constraint on bandwidth is equiva-
lently understood as a regime where output noise is relatively large compared to input noise. In this limit,
where output noise dominates over input noise, the optimal strategy is whitening (see [6] and Figure 4A).
Of course, real neural systems contend with both input and output noise; indeed recent work has shown
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that simply whitening to deal with output noise underestimates the optimal performance that the sensory
periphery can achieve [42].

An alternative regime arises when input noise limits performance. In this regime, relativelymore resources
are devoted to features with more variation. This regime was discussed in early work of van Hateren [30] and
was also recognized in [41, 42], although it has received much less attention than the “whitening” regime.
Our results suggest that this is the regime is relevant to cortex, where it predicts the relative allocation of
resources to higher-order image statistics. Figure 4C illustrates the simple e�cient coding scheme in this
context. We use our image preprocessing pipeline to mimic early visual processing, and we consider the
downstream coding of higher-order image features. Because these features must be sampled from a finite
patch of an image, they are subject to input noise arising from fluctuations in statistical estimation. When
such input noise is limiting, the ability to detect a signal from noise increases with the variability of that
signal. In this limit, e�cient coding predicts that resources should be allocated in proportion to feature
variability (Figure 4C). This captures the intuition that when signal reliability is in question, more reliable
signals warrant more resources. Furthermore, if two or more channels have covarying signals, resources
should be devoted in relation to the direction and degree of maximum covariance (see Methods, Two regimes
of e�cient coding, Figure 4–figure supplement 3, and Figure 4–figure supplement 4).

The di↵erence between these two e�cient coding regimes is a consequence of the form of noise – out-
put versus input noise – that is limiting. Our finding that cortex operates in a di↵erent regime than the
well-known peripheral whitening reflects the fact that di↵erent stages and kinds of processing can face dif-
ferent constraints. While information transmission by the visual periphery is limited by a bottleneck in the
optic nerve, cortex faces no such transmission constraint. Furthermore, while faithful encoding may be an
immediate goal of early visual processing, cortical circuits have to interpret image features from a complex
and crowded visual scene and perform statistical inference. For example, to discriminate between various
textures, the cortex cannot perform pixel-by-pixel comparisons, but must rely on the estimation of local
correlations instead. Because these correlations must be sampled from a finite patch of the visual scene, any
estimate will be limited by sampling fluctuations.

Sampling constraints versus resource constraints

Sampling fluctuations constitute a source of input noise, the magnitude of which depends on the size of the
sampled region. For natural images, this gives rise to a tradeo↵: small regions lead to large fluctuations in
the estimated statistics, while large regions blur over local details. This blurring may obscure the boundaries
between objects with di↵erent surface properties. While the brain must implement such sampling, the size,
scale, and potentially dynamic nature of the sampling region is not known. Interestingly, our predictions of
human sensitivities do not change substantially over a wide range of spatial scales and image patch sizes,
perhaps reflecting a scaling property of natural images [54]. An avenue for future research is to determine
whether there is an optimal region size, and if so, whether it could be estimated from images themselves.

Sampling limitations alone do not su�ce to account for the observed di↵erential sensitivity of the brain
to local image statistics. Were sampling limitations the only consideration, perceptual sensitivity would be
the same along each coordinate axis, and perceptual isodiscrimination contours would be circular in each
coordinate plane. This follows from an ideal observer calculation (see Appendix B of [36]). In contrast,
we find that human observers have a severalfold variability in sensitivity along di↵erent coordinate axes
(Figure 3A) and have isodiscrimination contours that are elongated in oblique directions (Figure 3B). The
e�cient coding principle can account for these findings by taking into consideration the fact that a real
observer has finite processing resources. In this context (finite resources and substantial input noise), the
e�cient coding principle predicts that resources are invested in relation to the range of signal values that
are typically present [30], as we find. Interestingly, resource limitations seem to play an important role in
the cortex despite the vast expansion in the number of neurons compared to the optic nerve. Presumably,
this reflects the large number of complex features that could be computed and the corresponding need for a
large overrepresentation of the stimulus space [55].
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Clues to neural mechanisms

While we find a close match between the variation in natural image statistics and human psychophysical
performance, some aspects of the distribution of natural image statistics do not match psychophysical data.

These di↵erences are not readily apparent when we examine the variances and covariances (Figure 3)
of the distribution of natural image statistics but emerge only when one considers its detailed shape (see
Methods, Asymmetries in distributions of natural image statistics). For example, the distribution of ↵-
coordinate values has longer tails in the positive versus negative direction (see Figure 3–figure supplement 9
and [38]). In contrast, human perceptual sensitivity is symmetric, or very nearly so (within ⇠ 20%), for
positive versus negative values of ↵ [35–37]. This suggests that limitations imposed by “neural hardware”
force the system to use heuristics instead of matching the natural image distribution exactly. For example,
an opponent mechanism responsible for detecting variations along, e.g, the ↵ coordinate, might be a useful
and easy (although imperfect) way to process the asymmetric distribution of four-point correlations found in
natural scenes. Such a mechanism could be matched to the variance of the natural image distribution along
the ↵ coordinate, but not to its skew or other odd moments. An opponent mechanism would necessarily
give rise to equal sensitivities to positive versus negative values of ↵, as observed in psychophysical results.
Further study of deviations from a perfect match to the distribution of natural image statistics might provide
additional insight into these or other possible neural mechanisms, and into the goals of the computations.
Independently, our results also raise an interesting theoretical question about the optimal representation of
non-gaussian, multidimensional signals under resource-limited conditions.

Outlook

Looking forward, we hypothesize that the principle of e�cient coding might apply to cortical processing at
higher levels. For example, more complex image features, such as shapes, are represented as conjunctions of
contour fragments [56], where each contour fragment is a local image object defined by particular multi-point
correlations. We might speculate that the joint statistics of contour fragments in natural scenes can predict,
through appropriate formulation of the same e�cient coding principle used here, the properties of neurons
in area IT [57,58] or the associated perceptual sensitivities of human observers.

Finally, although we have focused on perception of image statistics, we do this with the premise that this
process is in the service of inferring the materials and objects that created an image and ultimately, guiding
action. Thus, it is notable that we found a tight correspondence between visual perception and natural
scene statistics without considering a specific task or behavioral set. Indeed, the emergence of higher order
percepts without explicit task specification was the original hope of the e�cient coding framework as first
put forward by Barlow and Attneave [59–61]. Doubtless, these “top-down” factors also influence the visual
computations that underlie perception, and the nature and site of this influence are an important focus of
future research.

METHODS

Image preprocessing

UPenn Natural Image Database. A database of images was collected in the Okavango Delta, a savannah
habitat of Botswana [39]. Panoramic, eye-level shots were taken with a Nikon D70 camera during the dry
season in midday illumination. Trichromatic images were then converted to equivalent log-luminance images.
From this database, we selected a set of 924 images with minimal amounts of sky (see following paragraph).

Image selection. Natural images were taken from two di↵erent databases: the UPenn Natural Image
Database (shown Figures 1 and 3) and the van Hateren Natural Image Dataset (shown in Methods, Com-
parison with van Hateren Database). Images from the UPenn Natural Image Database were selected by
hand to ensure that they contained no man-made objects. We required that images contained minimal
(less that one-third of the total image area) amounts of sky, as the contribution of sky to the overall power
spectrum of natural images is well-documented [62] and is not the focus of the present study. Images from
the van Hateren Natural Image Dataset were chosen subject to the additional constraint that scenery which
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was clearly the result of human landscaping (e.g. trees all in a line) be excluded. The analyses presented
here were performed using the logarithms of the pixel intensities, a standard procedure in the study of
natural images [63]. However, the results were unchanged if absolute pixel intensities were used instead.
For more details about the construction of the images from these sources, see [39] (UPenn dataset) and
http://www.kyb.tuebingen.mpg.de/?id=227 (van Hateren dataset).

Block averaging. Images of size L
1

⇥L
2

are block-averaged by a factor of N , which involves averaging the
intensities of pixels arranged into contiguous N⇥N squares. The resulting image is of size L

1

/N⇥L
2

/N . To
the extent that natural images are scale invariant (a well-supported hypothesis [54, 64, 65]), this procedure
leaves the underlying statistics invariant. In our analyses, we block average images by at least a factor
of two (thereby eliminating the Nyquist frequencies) in order to avoid sampling artifacts imposed by the
camera matrix during image acquisition. In Figures 1 and 3, we presented two values of N : N = 2, 4. In
Methods, Analysis variants for Penn Natural Image Database, we show that our results are consistent when
N is extended to include N = 8, 12, 16, 20.

Fourier whitening. We divide each block-averaged image into square R ⇥ R patches. In Figures 1 and
3, we presented results using three values of R: R = 32, 48, 64. In Methods, Analysis variants for Penn
Natural Image Database, we show that our results are consistent when R is extended to include R = 80, 128.

To remove global correlations in natural images, we whiten the set of image patches by flattening the
Fourier power spectrum of the image patch ensemble. This procedure removes expected ensemble-average
(and thus predictable) pairwise correlations, but non-zero pairwise correlations may still exist within indi-
vidual patches; such correlations are the subject of this study. To carry out this procedure, the whitening
filter is the inverse square-root of the ensemble-averaged Fourier power spectrum. For the natural image
analyses presented here, the filter has a center-surround structure similar to that observed in the retina.

Following the whitening procedure, we binarize each image patch about its median pixel intensity. This
creates image patches with equal numbers of black and white pixels.

Removal of blurry images. In any image database, there will be blurring due to camera motion and
focus artifacts. Because we are interested in the statistics computed from in-focus image patches, we use a
mixture of components (MOC) method to separate blurred from in-focus image patches.

To perform this separation, we first examined the 9-dimensional distribution of natural image statistics
(see Figure 1–figure supplement 1A for the projection of the distribution onto the ↵ � �� plane). When
projected onto various coordinate planes, the structure of the distribution suggested that the distribution
could be well-described by a weighted sum of two components. We explored this two-component description
by running a standard maximum likelihood MOC inference that described each component by a Gaussian
distribution. This inference method returned the mean, covariance, and relative weighting of each putative
Gaussian component. In this process, each image patch was assigned to one of the two components (Figure
1–figure supplement 1B; note that the two components are separated in the 9-dimensional space, although
they appear overlapping in this particular projection). After inspecting the clustering of patches into each of
the two components, we observed that one of the components contained image patches that are sharp (Figure
1–figure supplement 1C), while the other contained patches that are blurry (Figure 1–figure supplement 1D-
E).

We performed several controls to show that this separation is precise and e↵ective. We first confirmed,
based on visual inspection of a large number of images, that this method reliably separates blurred from
in-focus patches. For example, images that were uniformly composed of patches assigned to the “blurry”
component were fully blurred due, e.g., to camera motion (Figure 1–figure supplement 1E). Similarly, images
in which a large percentage of patches were assigned to the “blurry” component contained large regions that
were blurred due to motion or camera focus artifacts (Figure 1–figure supplement 1D). Furthermore, the
spatial boundary between blurred and in-focus regions in the original image matched the boundary between
patches assigned to the “blurry” versus “in-focus” component.

We additionally tested this method by incrementally removing images that were significantly blurred and
then re-running the MOC method. After the removal of each subsequent image, the MOC method returned
a mixture of components that was incrementally more strongly weighted toward the “in-focus” component.
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Figure 1–figure supplement 1: Two-component decomposition of natural image distribution. A The 9-dimensional
distribution of natural image statistics is shown projected onto the ↵ � �� plane, where each point represents a single image
patch. Note that it is not possible to see all points in the distribution due to their overlap. B This distribution is well described
by a mixture of two components in which each image patch is assigned to one of the two components. Inspection of the
image patches assigned to each component reveals that one component (light gray) contains in-focus patches, while the other
component (black) contains blurred patches. Note that the two components are separated in the full 9-dimensional space but
appear overlapping when projected onto a single coordinate plane. Insets show semi-transparent versions of the out-of-focus
B-1 and in-focus (B-2 components. We highlight the coordinate values of specific images that are C fully in focus, D blurred
due to variations in field of depth, and E blurred due to camera motion. Spatial distributions of patch assignments (left) and
original image patches (right) are shown below each distribution. C A sharp image is composed of patches that are uniformly
assigned to the “in-focus” component. D An image that is partially out of focus due to variations in field of depth has patches
that are assigned to each of the two components. E An image that is blurred due to camera motion is composed of patches
that are uniformly assigned to the “blurry” component.

Finally, we tested this method by applying motion and Gaussian blur filters to sharp images (Figure
1–figure supplement 2B). With a su�ciently strong blurring transformation, all of the patches within a
sharp image changed assignment from the “in-focus” to the “blurry” component. Successive block averaging
removes the e↵ects of small blur, such that a larger blurring transformation is required to change the
assignment of patches from the “in-focus” to the “blurred” component. Furthermore, the application of
motion and blur filters altered the spatial distribution of natural image statistics in a manner consistent
with the statistics observed in image patches assigned to the “blurry” component via the MOC method
(Figure 1–figure supplement 2A). Both types of blurring increased the values of second- and fourth-order
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statistics, but they did so in di↵erent manners. Camera motion strongly increased both the fourth-order
statistic and the second-order statistic aligned parallel to the direction of motion. In comparison, camera
focus artifacts (arising, e.g., from variations in field of depth) more uniformly increased all second- and
fourth-order statistics.

A mixture-of-components method separates blurry from in-focus  patches in natural images

Gaussian blur and motion filters reliably alter the statistics and  patch assignment of in-focus patches
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Figure 1–figure supplement 2: Filtering via defocus or motion blur reassigns sharp image patches to the “blurry”
component. A Images can be blurred due to variations in field of depth (upper row) or camera motion (lower row). A mixture
of components (MOC) method separates blurry (black) from in-focus (gray) image patches. Patches assigned to the “blurry”
component have larger positive coordinate values (red), showing saturated values of second- and fourth-order coordinates.
Blurring due to variations in field of depth tends to uniformly increase all second- and fourth-order statistics. In comparison,
motion blurring tends to more strongly increase both the fourth-order statistic and the second-order statistic aligned with the
direction of motion (here, �|). B The application of a Gaussian blur filter (middle row) or a motion filter (bottom row) to an
in-focus image (top row) produces similar e↵ects; with a su�ciently strong filter (Gaussian blur of � = 2 pixels or motion of
�h = 6 pixels), all patches in the original “in-focus” image are reassigned to the “blurry” component. Furthermore, both the
Gaussian blur and motion filters alter the distribution of image statistics in a consistent manner. Gaussian blur filters increase
the values of all second- and fourth-order coordinates, while motion filters more strongly increase the values of the fourth-order
coordinate and the second-order coordinate aligned with the direction of motion.
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Scaling image analyses. To compare between natural image and psychophysical analyses, we scale the
set of 9 standard deviations extracted from a given image analysis by a multiplicative factor that minimizes
the squared error between the set of 9 standard deviations and the set of 9 psychophysical sensitivities.
Figure 3–figure supplement 1 shows the value of the scale factor for di↵erent choices of the block-average
factor N and patch size R. This scaling places the greatest weight on the match between statistics with
high variation/sensitivity (i.e. �| and ��). Note that a di↵erent choice of scaling factor can shift this
weight to di↵erent statistics; for example, a scaling factor that minimizes the least squares error between
inverse standard deviation and thresholds will place larger weight on the match between statistics with low
variation/sensitivity (i.e. ✓ components).
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Figure 3–figure supplement 1: Scaling of natural image analyses. We scale each image analysis by a single scale factor
that minimizes the squared error between the set of 9 standard deviations and the set of 9 psychophysical sensitivities. The
scale factors are shown here as a function of block-average factor N for di↵erent choices of the patch size R. We find that
the variance of image statistics decreases with increasing values of N , and thus larger values of N require a larger scale factor.
Similarly, for a given value of N , the variance of image statistics increases with increasing R, and thus larger values of R require
a larger scale factor.

Psychophysical methods

We determined perceptual sensitivity to local image statistics via a texture segmentation paradigm adapted
from [34], and in standard use in our lab [35–37]; we describe it briefly here. These measurements were
carried out in parallel with the natural scene analysis described above. Some of the psychophysical results
have been previously reported [36,37]; see “Subjects” below.

Stimuli. The basic stimulus consisted of a 64⇥64 black-and-white array of square image elements (“checks”),
in which a target 16⇥64 rectangle of checks was embedded, positioned 8 checks from one of the four edges of
the array. The target was distinguished from the rest of the array by its local statistical structure (see [36]
for details on the synthesis of these images), which was varied as described below.

Individual experimental sessions consisted of threshold measurements for each of a pair of image statistic
coordinates (i.e., two choices from {�|,��,�\,�/

, ✓
p

, ✓
q

, ✓
y

, ✓
x

,↵}), and their pairwise interactions. For the
trials used to determine the sensitivity along a coordinate axis, the coordinate was set to one of five equally
spaced values; lower-order coordinates were set to 0, and higher-order coordinates were set to their maximum-
entropy values (0 for all cases except the (�,↵) pair; see [36] for further details on this point). The highest
coordinate value tested was determined from pilot experiments, and was set at 0.45 for �| and ��, 0.75
for �\ and �

/

, 1.0 for the ✓’s, and 0.85 for ↵. For the trials used to determine the sensitivity to pairwise
combinations of coordinates, each coordinate was given a nonzero value; all sign combinations were used. The
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ratio of the coordinate magnitudes was fixed, and chosen in approximate proportion to the above maximum
values. Two values for each sign combination were studied.

To ensure that the response was driven by figure/ground segmentation (rather than, say, a texture
gradient), two kinds of trials were randomly intermixed: (1) trials in which the target contained the nonzero
value(s) of the coordinates and the background was random (i.e., all coordinates set to 0), and (2) trials in
which the background had the nonzero values, and the target was random. Targets were equally likely to
appear in any of the four possible locations. All trials were intermixed. This amounted to a total of 288
trials per block along 8 rays. We collected 15 such blocks per subject (4320 trials) for each coordinate pair,
and tested 11 pairs, for a total of 47520 trials per subject: (��,�|), (��,�\), (�\,�/

), (��, ✓y), (�\, ✓y),
(�

/

, ✓
y

), (✓
y

, ✓
x

), (✓
y

, ✓
p

), (��,↵), (�\,↵), (✓y,↵). These pairs encompass all the distinct coordinate pairs,
up to 4-fold rotational symmetry. Since there was no detectable dependence on the orientation of pairwise or
third-order correlations related by rotational symmetry in pilot experiments, measurements along coordinate
axes and coordinate planes related by rotation are pooled in Figure 3 and in Figures 3–figure supplement 5-
3–figure supplement 8.

Stimuli were presented on a mean-gray background, followed by a random mask. The display was an
LCD monitor with control signals provided by a Cambridge Research ViSaGe system; mean luminance of
23 cd/m2 and refresh rate was 100 Hz. The stimulus size was 15�⇥15� (check size of 14 min), contrast was
1.0, and viewing distance was 1m. Presentation time was 120 ms.

Subjects. 4 normal subjects (2 male, 2 female), ages 23 to 54 participated. One subject (MC) was a very
experienced observer (several thousand hours); the other three had modest viewing experience (10 to 100
hours) prior to the experiment. JD and DF were naive to the purposes of the experiment. All subjects had
visual acuities (corrected if necessary) of 20/20 or better. For subjects MC and DT, data from all coordinate
planes other than the (�\,↵)-plane were previously reported [36, 37]. For subjects JD and DF, data from
the seven pairs of coordinates not containing ↵ were previously reported [37].

Procedure. Subjects were asked to indicate the position of the target (4-alternative forced choice), by
pressing one of four buttons. They were informed that the target was equally likely to appear in any of
four locations (top, right, bottom, left), and were shown examples of stimuli of both types: target struc-
tured/background random and target random/background structured) prior to the experiment. Subjects
were instructed to fixate centrally and not scan the stimulus. During training but not data collection, au-
ditory feedback for incorrect responses was given. After performance stabilized (approx. 3 hrs for a new
subject), data collection began. Within blocks, trial order was random. Block order was counterbalanced
across subjects.

Determination of sensitivity. To summarize the psychophysical performance, we fit Weibull functions
to the fraction correct (FC) for each subject and each kind of block (i.e., each pair of coordinates). In the
first step of the analysis of each dataset, maximum-likelihood fits were obtained separately for each of its
eight rays r (the rays consisted of the positive and negative values for the two coordinates, and the four
diagonal directions):

FC(x) =
1

4
+

3

4

⇣
1� 2�(x/ar)

br
⌘
, (0.1)

where x is the Euclidean distance from the coordinate vector to the origin, a
r

is the distance at which
FC=0.625 (halfway between chance and perfect), and b

r

is a shape parameter, controlling the slope of the
psychophysical curve. Since the shape parameter b

r

was usually in the range 2.2 to 2.7 for each pairwise
coordinate plane, we then fit the entire dataset within each plane by a set of Weibull functions constrained
to share a common exponent b, but allowing the parameter a

r

to vary across rays. For each on-axis ray, we
averaged the value of 1/a

r

obtained from all planes that included the ray (these were mutually consistent [37])
to obtain a final value for the perceptual sensitivity.

Determination of isodiscrimination ellipsoids. To determine the isodiscrimination ellipsoids, we first
parameterized them by a quadratic
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each represent one of the local coordinates
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where T
r

is the texture along the ray r at which criterion performance is reached (i.e., the texture at a
distance a

r

from the origin, where a
r

is the sensitivity along the ray r, as determined above), and c
ij

(T ) is
the value of the ith coordinate for the texture T

r

. This minimization is a linear least-squares procedure in
the Q
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. Deviation of the fitted values of
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) from unity, which corresponds to deviation
of the fitted ellipsoidal surface from the measured points of criterion performance, ranged from 7 to 10%
(root-mean-squared) across subjects. The ellipses shown in Figures 3B, 3–figure supplement 6, and 3–
figure supplement 7 correspond to loci at which

P
i,j

Q
ij

c
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c
j

is constant, and the eigenvectors described in
Figures 3–figure supplement 3 and 3–figure supplement 8 are the eigenvectors of Q.

Analysis of image statistics in pairwise coordinate planes

In pairwise coordinate planes, our hypothesis predicts that the inverse covariance matrix, or precision matrix,
matches human isodiscrimination contours. A precision matrix is represented by the contour lines of its
inverse (the covariance matrix M); these are the points (x, y) at which M

xx

x2+2M
xy

xy+M
yy

y2 =constant.
A short distance of this contour from the origin thus indicates a large value of M and a small value of
the precision matrix. This in turn denotes a direction in which prior knowledge of the image statistic is
imprecise.

Figure 3B shows a correspondence between contours of the precision matrix (extracted from natural
images) and human isodiscrimination contours. This is shown again here in Figure 3–figure supplement 2A
for subject-specific (lower half grid) and subject-averaged (upper half grid) isodiscrimination contours. This
correspondence can be made quantitative by computing the angular tilt (Figure 3–figure supplement 2B)
and eccentricity (Figure 3–figure supplement 2C) of each ellipse. Across all 36 pairwise coordinate planes,
we find a detailed quantitative match between the shape and orientation of precision matrix contours and
human isodiscrimination contours.

Analysis of the full 9-dimensional distribution of image statistics

Principal component decomposition. Here, we verify our hypothesis within the full 9-dimensional
space of image statistics using an approach that does not single out coordinate axes, either individually or
in pairs. Just as the projections of the natural image distribution can be fit by a bivariate Gaussian in
each coordinate plane, the entire distribution can be fit by a multivariate Gaussian in the full 9-dimensional
space. Similarly, the full set of perceptual isodiscrimination contours can be fit by a single 9-dimensional
ellipsoid. Our hypothesis predicts that these two 9-dimensional ellipsoids have the corresponding shape and
orientation.

To test this, we compare the principal axes {~⇠
NI

} of variation in natural scenes with the principal

axes {~⇠
PP

} of human sensitivity inferred from the ellipsoidal isodiscrimination surface [37]. To aid in this
comparison, we first align the two sets of principal axes based on eigenvalue rank and symmetry considerations
(discussed below). We then compute the fractional contribution f of sets of coordinates to each principal

axis ~⇠(i), therein grouping coordinates with similar ranges of variation. Figures 3–figure supplement 3A-D
respectively show the fractional contributions f{�|,��}, f{�\,�/}, f{✓x,✓p,✓q,✓y}, and f

↵

to {~⇠
NI

} (blue bars)

versus {~⇠
PP

} (red bars).
We find that the principal axes of variation in natural scenes match the principal axes of human sensitivity.

As observed in Figure 3, the correspondence is within the range of variability observed across image analyses
and human subjects.

We quantify the overlap between each image analysis and the set of psychophysical analyses by computing

the scalar product between each principal component vector ~f
(i)

NI

extracted from natural images and the

corresponding subject-averaged psychophysical vector ~f
(i)

PP

, where ~f = {f
�|� , f�\/ , f✓, f↵}. This overlap,
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Figure 3–figure supplement 2: Covariation in natural image statistics predicts human isodiscrimination contours.
A For each pair of coordinates, we compare the precision matrix (blue ellipses) extracted from natural scenes (using N = 2,
R = 32) to human perceptual isodiscrimination contours (red ellipses). Coordinate planes are organized into a grid, with
subject-averaged and subject-specific isodiscrimination contours shown respectively above and below the diagonal of the grid.
Across all 36 coordinate planes, there is a correspondence in the shape, size, and orientation of precision matrix contours and
perceptual isodiscrimination contours. The quality of the match is quantified by computing the angular tilt B and eccentricity C
of image-statistic contours (blue circular markers; shown for variations in the block-average factor (N) and patch size (R) used
during image preprocessing) and of perceptual isodiscrimination contours (red square markers; shown for individual subjects).
Since contours are highly similar within subsets of coordinate planes (denoted by blocks in A; e.g. the set of ✓↵ planes), contour
properties have been averaged within such subsets. Angular tilt and eccentricity are highly consistent between precision matrix
contours and perceptual isodiscrimination contours (except for near-circular contours, for which tilt is poorly-defined, as in the
case denoted by an arrow).

averaged across principal components, ranges from .991 to .996 across image analyses and is consistently
larger than the overlap measured under null hypotheses in which patch labels and coordinate labels are
independently shu✏ed (p  .0004 for each image analysis under both hypotheses; see Appendix 4 for
details).

Alignment of principal components. As described in the previous subsection, we use principal com-
ponent analysis for the multivariate comparison of natural image statistics and perceptual sensitivities. In
addition to the standard approach of ordering components by percentage of variance explained within each
dataset, followed by comparing components of corresponding rank, we use an additional tool: the symmetries
in the definitions of the image statistic coordinates. As detailed below, we use these symmetries to group
principal components into symmetry classes, and we then rank-order the components within each class. By
matching components based on both symmetry and rank order of explained variance, we avoid ambiguities
that would otherwise occur if only explained variance was considered. The four symmetry classes are defined
as follows:

1. 4-D subspace in which statistics are invariant under 90� rotations in the plane (here, designated
“SYM”). This is spanned by:

(i) �| = ��, all else 0 ([ 1p
2

, 1p
2

, 0, 0, 0, 0, 0, 0, 0])

(ii) �\ = �
/

, all else 0 ([0, 0, 1p
2

, 1p
2

, 0, 0, 0, 0, 0])
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(iii) ✓
p

= ✓
q

= ✓
y

= ✓
x

, all else 0 ([0, 0, 0, 0, 1

2

, 1

2

, 1

2

, 1

2

, 0])

(iv) ↵ 6= 0, all else 0 ([0, 0, 0, 0, 0, 0, 0, 0, 1])

2. 2-D subspace in which coordinate values are negated after a horizontal or vertical mirror (here, desig-
nated “HVI”). This is spanned by:

(i) �\ = ��
/

, all else 0 ([0, 0, 1p
2

,� 1p
2

, 0, 0, 0, 0, 0])

(ii) ✓
p

= �✓
q

= ✓
y

= �✓
x

, all else 0 ([0, 0, 0, 0, 1

2

,� 1

2

, 1

2

,� 1

2

, 0])

3. 2-D subspace spanned by two vectors v
1

and v
2

for which a 90� rotation transforms v
1

to v
2

and v
2

to
�v

1

(here, designated “ROT”). This is spanned by:

(i) ✓
p

= �✓
y

, all else 0 ([0, 0, 0, 0, 1p
2

, 0,� 1p
2

, 0, 0])

(ii) ✓
q

= �✓
x

, all else 0 ([0, 0, 0, 0, 0, 1p
2

, 0,� 1p
2

, 0])

4. 1-D subspace in which a diagonal mirror negates coordinates (here, designated “DII”). This is spanned
by:

(i) �| = ���, all else 0 ([ 1p
2

,� 1p
2

, 0, 0, 0, 0, 0, 0, 0])

We compute the normalized principal axes {~⇠
NI

} of variability in natural image statistics and principal

axes {~⇠
PP

} of human perceptual sensitivity. We then assign each set of components to the above symmetry

classes by maximizing the total overlap between {~⇠} and the above classes. This is accomplished by computing

the size of the projection of each individual component ~⇠(i) into each of the above subspaces, and then
assigning the component into the subspace that contains the largest projection. In one case where two
components with nearly degenerate eigenvalues could not clearly be assigned to symmetry classes (analysis
N = 20, R = 32 in the PIDB, shown in Figure 3–figure supplement 8A-D below), we force symmetry by
performing a 45� rotation in the plane spanned by the degenerate components.

Once all components have been assigned to symmetry classes, we rank-order components within each
class. This resulted in unambiguous pairing between natural image dataset and psychophysics in all but one
pair of components in three image analyses (out of a total of 9 components for each of 31 separate image
analyses). In those analyses (image analyses N = 2, R = 48, 64, 128 in the van Hateren database), there
were two nearly-degenerate SYM components in the image dataset; we paired these components with the
psychophysics data by maximizing their overlap.

To compare between natural image and psychophysics analyses, we compute the fractional contribution
~f (i) = [f (i)

�|�
, f

(i)

�\/
, f

(i)

✓

, f
(i)

↵

] of sets of coordinates to each principal component, where the components of ~f (i)

are given by:

f
(i)

�|�
= (⇠(i)

�|
)2 + (⇠(i)

��
)2 (0.3)

f
(i)

�\/
= (⇠(i)

�\
)2 + (⇠(i)

�/
)2 (0.4)

f
(i)

✓

= (⇠(i)
✓

p

)2 + (⇠(i)
✓

q

)2 + (⇠(i)
✓

y

)2 + (⇠(i)
✓

x

)2 (0.5)

f (i)

↵

= (⇠(i)
↵

)2 (0.6)

and f
(i)

�|�
+ f

(i)

�\/
+ f

(i)

✓

+ f
(i)

↵

= 1 for each normalized component ~⇠(i).

The principal components shown in Figure 3–figure supplement 3 are rank-ordered within each symme-
try class, where the four classes were ordered as follows: SYM (~⇠(1) � ~⇠(4)), HVI (~⇠(5), ~⇠(6)), ROT (~⇠(7),
~⇠(8)), DII (~⇠(9)). Note that while the comparisons between psychophysics and natural images are based
on the squares of the principal components coordinates (equations 0.3-0.6) and is insensitive to their signs,
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Figure 3–figure supplement 3: Principal axes of variation in natural images predict principal axes of perceptual
sensitivity. Principal axes {~⇠NI} of variation in the distribution of natural image statistics are shown in comparison to the

principal axes {~⇠PP} of human sensitivity. Each of the 9 principal axes is represented by a vertical gray/white column. Markers
(circular = variation in natural image coordinates; square = human perceptual sensitivity) represent the fractional power of the
contributions of A second-order cardinal (�|,��), B second-order oblique (�

/

,�\), C third-order (✓), and D fourth-order (↵)
coordinates to each principal axis; all contributions within each column sum to 1. Principal axes components, and the range of
variability observed across image analysis variants or across subjects (see legend), are shown in blue for natural scene statistics
and in red for perceptual sensitivities.

the classification of principal components by symmetry classes guarantees that we are only comparing psy-
chophysical and natural-image components for which the signs within each coordinate set ({�|,��}, {�\,�/

},
and {✓

p

, ✓
q

, ✓
y

, ✓
x

}) covary in the same fashion.

20



Permutation Tests

Our results, shown in Figure 3 for single coordinates and pairwise coordinate planes, and extended to the full
9-dimensional distribution in Figure 3–figure supplement 3), show a consistent match between the variation in
natural image statistics and psychophysical sensitivities. We quantify this match by first assigning vectors to
the quantities shown in Figures 3 and 3–figure supplement 3, and then computing the overlap between natural
image vectors and the corresponding psychophysical vectors. We consider the following vector quantities:

Single coordinates: We describe the range of variation in natural image statistics by the normalized
9-component vector of standard deviations ~�

NI

/k~�
NI

k, where k~vk denotes the L2 norm 1

N

P
N

i=1

v2
i

of a vector ~v. Similarly, we describe the set of perceptual sensitivities by the normalized vector
~s
PP

/k~s
PP

k. In both cases, the vector components are measured with respect to the coordinates
{�|,��,�\,�/

, ✓
p

, ✓
q

, ✓
y

, ✓
x

,↵}.

Pairwise coordinate planes: We describe each ellipse by the unit vector ~! that is a combined
measure of eccentricity (✏) and tilt (�). We define ~! on one quarter of the unit sphere: ~! = sin↵ cos � x̂+
sin↵ sin � ŷ+cos↵ ẑ, where ✏ = sin↵ and cos � are defined on the interval [0, 1] (the second follows from
the 180� rotational symmetry of ellipses). Note that this definition of ~! captures the ellipse property
that when ✏ = sin↵ = 0 (circular ellipses), � is not defined. See Figure 3–figure supplement 4 for a
schematic of this representation.

Principal components: We consider two related measures for describing principal components. As
shown in Figure 3–figure supplement 3, we describe each principal component {~⇠(i)} by the normalized

vector ~f (i)/k~f (i)k, which measures the fractional contribution of sets of statistics to the principal com-

ponents ~⇠(i). For a more detailed comparison, we can similarly describe each principal component by

the normalized vector ~F (i)/k~F (i)k, where ~F (i) = [f (i)

�|
, f

(i)

��
, f

(i)

�\
, f

(i)

�/
, f

(i)

✓

p

, f
(i)

✓

q

, f
(i)

✓

y

, f
(i)

✓

x

, f
(i)

↵

]. This mea-

sures the fractional contribution of individual statistics (rather than sets of statistics) to the principal

components ~⇠(i).
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Figure 3–figure supplement 4: Mapping ellipse shapes to the quarter unit sphere. We describe an ellipse by the unit
vector ~! = sin↵ cos � x̂ + sin↵ sin � ŷ + cos↵ ẑ, where ✏ = sin↵ is the eccentricity and � is the angular tilt. In spherical
coordinates, the tilt � is the polar angle defined in the x� y plane, and the angle ↵ = sin�1(✏) is the azimuthal angle measured
from the z-direction. In this representation, the unit vector ẑ corresponds to a circle, and the unit vectors x̂ and ŷ correspond,
respectively, to the ellipses that have been maximally elongated (i.e., into lines) in the x̂ and ŷ directions. Points between the
equator (in the x� y plane) and the pole correspond to ellipses of intermediate eccentricities.

For each vector quantity (~�, ~!, ~f , and ~F ), we compute the scalar product between a given image analysis
vector and the subject-averaged psychophysical vector. We then report the overlap values (scalar products)
measured for the six image analyses considered Figures 1 and 3 (N = 2, 4 and R = 32, 48, 64). In
computing the scalar product between ~!

NI

and ~!
PP

, we report the overlap averaged over all 36 pairwise
coordinate planes. Similarly, in computing the overlap between ~f

NI

and ~f
PP

and between ~F
NI

and ~F
PP

, we
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report the overlap averaged over all 9 principal components. Note that, for each vector ~�, ~!, ~f , and ~F , the
maximum overlap is 1.

We find that natural image analyses show consistently high overlap with the set of psychophysical results
(see Tables 3-2). The overlap, as measured across image analyses, ranges from .988 to .999 for single
coordinates (~�), from .953 to .977 for pairwise coordinate planes (~!), from .987 to .993 for fractional principal

axes (~f), and from .829 to .917 for the full principal axes (~F ). We test the significance of this overlap by
comparing our results to the following two null models:

1a. Shu✏ed coordinate labels: sets of coordinates. This model (and model 1b) tests the null
hypothesis that the apparent correspondence between image statistic covariances and isodiscrimina-
tion contours is chance. We examine the 23 permutations of the sets of coordinates {�|�,�\/, ✓,↵}.
We apply these permutations to the psychophysical data, as human subjects are equally sensitive
to coordinates within each set ({�|,��}, {�\,�/

} and all ✓’s). This shu✏ing creates a new set of
subjects whose second-order cardinal, second-order oblique, third-order, and fourth-order coordinate
values are randomly permuted (transforming the original vector [�|�,�\/, ✓,↵] into, e.g., the shu✏ed
vector [�\/, ✓,�|�,↵]). If the correspondence between quantities derived from image analysis and psy-

chophysics is statistically significant, we expect that the shu✏ed vectors ~�, ~!, ~f , and ~F will show
less overlap with the image analysis vectors than do the original psychophysical vectors (note that the
limited number of permutations restricts the minimum p-value to be .04).

1b. Shu✏ed coordinate labels: individual coordinates. Here, we expand the test described in 1a
to randomly shu✏e the full set of coordinate labels {�|,��,�\, �/

, ✓
p

, ✓
q

, ✓
y

, ✓
x

,↵}. In an analogous

manner to that described in 2a, we expect that the shu✏ed vectors ~�, ~!, ~f , and ~F will show less overlap
with the image analysis vectors than do the original psychophysical vectors if the correspondence
between quantities derived from image analysis and psychophysics is statistically significant.

2. Shu✏ed patch labels. This model tests the null hypothesis that the apparent covariances in image
statistics are due to chance. For each coordinate, we randomly shu✏e image patch labels. This
shu✏ing creates a new set of null patches whose second-, third-, and fourth-order coordinate values are
randomly drawn from a subset of the original image patches (e.g. a given null patch can be described
by a �

/

-value measured from patch m but an ↵ value measured from patch n). This shu✏ing destroys
correlations between coordinate values measured within individual patches. Note that this shu✏ing
does not alter the range of variation measured along single coordinate axes and will therefore not
alter the values of precision matrix ellipses measured along coordinate axes. As a result, this test is
not applicable to ~�, which measures natural image variation and human sensitivities along individual
coordinate axes. However, shu✏ing will destroy correlations along oblique directions in coordinate
planes, thereby aligning each ellipse along a single coordinate axis. Note that the eccentricity of each
ellipse (in, e.g., the A-B plane) is then trivially related to the ratio of variances �2 measured along the
corresponding coordinate axes: ✏ =

p
1� �2

A

/�2

B

. We therefore expect that this shu✏ing will most
strongly a↵ect the tilt and eccentricity in pairwise planes in which ellipses are oriented along oblique
directions (�|��, �\�/

, and ✓✓ planes). Finally, in destroying correlations between pairs of coordinates,
this shu✏ing creates a diagonal covariance matrix, such that principal components are aligned with
single coordinate axes. If the correspondence between quantities derived from image analysis and
psychophysics is statistically significant, we expect that the shu✏ed vectors ~!, ~f , and ~F will show less
overlap with the psychophysical vectors than do the original image analysis vectors

Each null model is constructed by randomly selecting permuted indices that independently shu✏e coordinate
labels for subject-averaged psychophysical data (Null Model 1) and independently shu✏e image patch labels
for a given statistic (Null Model 2). For null model 1a, we perform the full set of 23 non-identity permutations.
For models 1b and 2, we perform 10000 permutations.

For each permutation, we compute a set of shu✏ed vectors {~�, ~!, ~f, ~F}, and we measure the overlap

(defined as the scalar product ~(⇤)
NI

· ~(⇤)
PP

) between each shu✏ed vector and the corresponding subject-
averaged psychophysical vector. Note that, when assigning shu✏ed principal components to symmetry
classes, no hand-tuning was performed. However, as described previously, such hand-tuning was only applied
to a very small fraction of components for select image analyses.
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When repeated for many permutations, this procedure yields a distribution of shu✏ed overlap values
against which we measure the significance of the true (observed) overlap. Significance values (p-values) are
estimated by computing the fraction of permutations for which the shu✏ed overlap exceeds the true overlap.

We find that the original image analyses show significantly higher overlap with psychophysical data than
do the analyses produced by either of the null models. Results are significant for each measure of overlap
and for each of the six analyses presented in Figures 1 and 3 (p < .0005, or as small as possible given the
number of possible permutations, in all cases); see Tables 2-3 for full results.

Table 1: Permutation tests for null model 1a: shu✏ed coordinate labels. We separately permute the sets of coordinate
labels {�|�,�\/, ✓,↵}. We apply these permutations to the psychophysical data, therein examining all 23 non-identity permu-
tations of the four labels. This shu✏ing significantly decreases the overlap between image analyses and psychophysical data.
Results are significant across all six analyses considered in Figures 1 and 3 (N = 2, 4 and R = 32, 48, 64). p-values, estimated
as the fraction of permutations for which the shu✏ed overlap exceeds the true overlap, are less than .04 (the minimum value
given 23 permutations) for each image analysis.

Measures of Overlap Image Analysis Observed Overlap
Shu✏ed Overlap Values

Significance
mean std min max

N = 2

R=32 .999 .859 0.9 ⇥10

�1
.704 .983 < .04

R=48 .993 .832 1.1 ⇥10

�1
.651 .978 < .04

Range/ R=64 .987 .809 1.1 ⇥10

�1
.614 .974 < .04

Sensitivity
N = 4

R=32 .998 .825 1.1 ⇥10

�1
.638 .969 < .04

~�NI · ~sPP R=48 .994 .812 1.1 ⇥10

�1
.646 .990 < .04

R=64 .991 .794 1.1 ⇥10

�1
.617 .985 < .04

N = 2

R=32 .971 .709 1.5 ⇥10

�1
.508 .924 < .04

R=48 .969 .692 1.6 ⇥10

�1
.469 .924 < .04

Inverse Range/ R=64 .953 .685 1.7 ⇥10

�1
.450 .913 < .04

Threshold
N = 4

R=32 .967 .679 1.7 ⇥10

�1
.447 .908 < .04

h~!NI · ~!PPi R=48 .975 .632 1.5 ⇥10

�1
.400 .880 < .04

R=64 .977 .648 1.6 ⇥10

�1
.411 .894 < .04

N = 2

R=32 .994 .382 1.5 ⇥10

�1
.160 .657 < .04

R=48 .995 .485 1.2 ⇥10

�1
.287 .727 < .04

Fractional R=64 .991 .487 0.7 ⇥10

�1
.372 .632 < .04

Principal Components
N = 4

R=32 .995 .459 1.4 ⇥10

�1
.238 .732 < .04

h~fNI · ~fPPi R=48 .996 .444 1.0 ⇥10

�1
.277 .601 < .04

R=64 .996 .450 1.1 ⇥10

�1
.279 .614 < .04

N = 2

R=32 .917 .316 1.3 ⇥10

�1
.123 .578 < .04

R=48 .828 .401 1.0 ⇥10

�1
.228 .611 < .04

Full R=64 .911 .363 0.7 ⇥10

�1
.282 .532 < .04

Principal Components
N = 4

R=32 .882 .376 1.2 ⇥10

�1
.180 .618 < .04

h~FNI · ~FPPi R=48 .917 .362 1.0 ⇥10

�1
.201 .520 < .04

R=64 .919 .357 1.0 ⇥10

�1
.196 .522 < .04
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Table 2: Permutation Tests for null model 1b: shu✏ed coordinate labels. We separately permute all nine coordinate
labels {�|,��,�\, �/

, ✓

p

, ✓

q

, ✓

y

, ✓

x

,↵}. This shu✏ing, applied to the psychophysical data, significantly decreases the overlap
between image analyses and psychophysical data. Results are significant across all six analyses considered in Figures 1 and 3
(N = 2, 4 and R = 32, 48, 64). p-values, estimated as the fraction of permutations for which the shu✏ed overlap exceeds the
true overlap, are less than .0005 for all image analyses.

Measures of Overlap Image Analysis Observed Overlap
Shu✏ed Overlap Values

Significance
mean std min max

N = 2

R=32 .999 .806 6.8 ⇥10

�2
.659 .999 .0003

R=48 .993 .775 7.7 ⇥10

�2
.610 .993 < .0001

Range/ R=64 .987 .762 8.0 ⇥10

�2
.579 .987 < .0001

Sensitivity
N = 4

R=32 .998 .828 6.0 ⇥10

�2
.707 .998 < .0001

~�NI · ~sPP R=48 .994 .798 7.1 ⇥10

�2
.660 .994 .0002

R=64 .991 .780 7.6 ⇥10

�2
.630 .991 < .0001

N = 2

R=32 .971 .693 8.1 ⇥10

�2
.499 .972 .0002

R=48 .969 .682 8.4 ⇥10

�2
.476 .969 .0003

Inverse Range/ R=64 .953 .671 8.5 ⇥10

�2
.446 .954 .0002

Threshold
N = 4

R=32 .967 .696 7.6 ⇥10

�2
.521 .964 < .0001

h~!NI · ~!PPi R=48 .975 .692 8.0 ⇥10

�2
.509 .976 .0002

R=64 .977 .689 8.2 ⇥10

�2
.493 .978 .0003

N = 2

R=32 .994 .592 1.2 ⇥10

�1
.271 .995 .0003

R=48 .995 .604 1.3 ⇥10

�1
.281 .995 .0004

Fractional R=64 .991 .591 1.2 ⇥10

�1
.278 .991 .0003

Principal Components
N = 4

R=32 .995 .590 1.2 ⇥10

�1
.218 .995 .0001

h~fNI · ~fPPi R=48 .996 .577 1.2 ⇥10

�1
.251 .996 .0002

R=64 .996 .581 1.2 ⇥10

�1
.266 .996 .0004

N = 2

R=32 .917 .391 1.2 ⇥10

�1
.100 .927 .0002

R=48 .828 .391 1.2 ⇥10

�1
.086 .856 .0008

Full R=64 .911 .396 1.1 ⇥10

�1
.120 .953 .0003

Principal Components
N = 4

R=32 .882 .381 1.2 ⇥10

�1
.066 .989 .0003

h~FNI · ~FPPi R=48 .917 .380 1.2 ⇥10

�1
.090 .902 < .0001

R=64 .919 .387 1.2 ⇥10

�1
.095 .937 .0004
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Table 3: Permutation tests for null model 2: shu✏ed patch labels. Within each image analyses, we separately permute
image patch labels along individual coordinate axes. This shu✏ing does not alter the range of variation observed along individual
coordinates; as a result, this test only applies to ~!, ~

f , and ~

F . We find that this shu✏ing significantly decreases the overlap
between image analyses and psychophysical data. Results are significant across all six analyses considered in Figures 1 and 3
(N = 2, 4 and R = 32, 48, 64). p-values, estimated as the fraction of permutations for which the shu✏ed overlap exceeds the
true overlap, are less than .0001 for each image analysis.

Comparisons Image Analysis Observed Overlap
Shu✏ed Overlap Values

Significance
mean std min max

N = 2

R=32 .971 .924 .70 ⇥10

�3
.921 .926 < .0001

R=48 .969 .921 1.1 ⇥10

�3
.917 .925 < .0001

Inverse Range/ R=64 .953 .912 1.3 ⇥10

�3
.908 .917 < .0001

Threshold
N = 4

R=32 .967 .919 1.7 ⇥10

�3
.914 .926 < .0001

h~!NI · ~!PPi R=48 .975 .922 1.9 ⇥10

�3
.916 .930 < .0001

R=64 .977 .924 2.8 ⇥10

�3
.916 .935 < .0001

N = 2

R=32 .994 .806 9.1 ⇥10

�6
.806 .806 < .0001

R=48 .995 .806 8.3 ⇥10

�6
.806 .806 < .0001

Fractional R=64 .991 .806 3.7 ⇥10

�6
.806 .806 < .0001

Principal Components
N = 4

R=32 .995 .807 2.5 ⇥10

�4
.806 .809 < .0001

h~fNI · ~fPPi R=48 .996 .807 4.1 ⇥10

�4
.806 .810 < .0001

R=64 .996 .807 3.5 ⇥10

�4
.806 .810 < .0001

N = 2

R=32 .917 .448 5.8 ⇥10

�2
.406 .596 < .0001

R=48 .828 .502 5.9 ⇥10

�2
.408 .675 < .0001

Full R=64 .911 .458 4.8 ⇥10

�2
.407 .591 < .0001

Principal Components
N = 4

R=32 .881 .489 4.9 ⇥10

�2
.409 .638 < .0001

h~FNI · ~FPPi R=48 .917 .454 3.0 ⇥10

�2
.408 .637 < .0001

R=64 .919 .492 4.2 ⇥10

�2
.411 .648 < .0001
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Analysis variants for Penn Natural Image Database

In Figures 1 and 3, we reported results using image analyses with varying values of the block-average factor
N (N = 2, 4) and patch size R (R = 32, 48, 64). In Figure 1–figure supplement 3, we show that the
relative variation in di↵erent image statistics (first shown in Figure 1E) is not an artifact of our image
analysis pipeline, as the pattern of variation is destroyed if white-noise image patches are instead used.
In Figures 3–figure supplement 5-3–figure supplement 8, we show that the comparison between natural
image and psychophysical analyses is consistent across a wider range of image preprocessing parameters:
N = 2, 4, 8, 12, 16, 20 and R = 32, 48, 64, 80, 128. Note that sampling limitations restrict some
combinations of N and R (e.g. for su�ciently large N , we must choose su�ciently small R to have a
statistically significant number of image patches).
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Figure 1–figure supplement 3: Image statistics along single coordinate axes for white-noise patches. The robustly
observed statistical structure of natural scenes (open circles) is completely absent from the same analysis performed on samples
of white noise (shaded circles). The inset shows that this holds across analysis parameters.

Comparison with van Hateren Database

All analyses reported in Results and shown in Figures 1 and 3 were performed on a set of images from
the UPenn Natural Image Database [39]. Here, we extend our analyses to a set of 2300 images from the
van Hateren image database [21], using the same set of parameters used to analyze images from the UPenn
database, with block-average factors N = 2, 4, 8, 12, 16, 20 and patch sizes R = 32, 48, 64, 80, 128.
Note that we are able to perform a larger number of analyses (specific combinations of N and R) than was
performed using the Penn database, as we have a larger selection of images and therefore do not face the
same sampling limitations. Figures 3–figure supplement 5-3–figure supplement 8 confirm that our results
are consistent across image databases.
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Figure 3–figure supplement 5: Single coordinate axes: variation in natural images predicts human perceptual sen-
sitivities. Scaled variation in natural image statistics measured along second- (�), third- (✓), and fourth-order (↵) coordinate
axes (blue circular markers) are shown in comparison to human perceptual sensitivities measured along the same coordinates
(red square markers). Natural image statistics are extracted from the Penn natural image database A and the van Hateren
image database B. Ranges of variation and human sensitivities are robustly rank-ordered as �|� > �\/ > ↵ > ✓. When each
image analysis is scaled by a single factor, ranges match sensitivities.
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Figure 3–figure supplement 6: Pairwise coordinate planes in Penn Natural Image Database: covariation in natural
images predicts human isodiscrimination contours. A For each pair of coordinates, we compare the precision matrix (blue
ellipses) extracted from natural scenes (using N = 2, R = 32) to human perceptual isodiscrimination contours (red ellipses). A
precision matrix is represented by the contour lines of its inverse (the covariance matrix M); these are the points (x, y) at which
M

xx

x

2 + 2M
xy

xy +M

yy

y

2 =constant. A short distance of the blue contour from the origin thus indicates a large value of M
and a small value of the precision matrix. This in turn denotes a direction in which prior knowledge of the image statistic is
imprecise. Our prediction is that psychophysical thresholds (red ellipses) should match these contours. Coordinate planes are
organized into a grid, with subject-averaged and subject-specific isodiscrimination contours shown respectively above and below
the diagonal of the grid. Across all 36 pairwise coordinate planes, there is a correspondence in the shape, size, and orientation
of precision matrix contours and perceptual isodiscrimination contours. The quality of the match is quantified by computing
the B angular tilt and C eccentricity of image-statistic contours (circular markers) and of perceptual isodiscrimination contours
(square markers). Since contours are highly similar within subsets of pairwise planes (denoted by blocks in A; e.g. the set of ✓↵
planes), contour properties have been averaged within such subsets. Angular tilt and eccentricity are highly consistent between
precision matrix contours and perceptual isodiscrimination contours.
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Figure 3–figure supplement 7: Pairwise coordinate planes in van Hateren Image Database: covariation in natural
images predicts human isodiscrimination contours. A For each pair of coordinates, we compare the precision matrix (blue
ellipses) extracted from natural scenes (using N = 2, R = 32) to human perceptual isodiscrimination contours (red ellipses). A
precision matrix is represented by the contour lines of its inverse (the covariance matrix M); these are the points (x, y) at which
M

xx
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2 + 2M
xy

xy +M
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y

2 =constant. A short distance of the blue contour from the origin thus indicates a large value of M
and a small value of the precision matrix. This in turn denotes a direction in which prior knowledge of the image statistic is
imprecise. Our prediction is that psychophysical thresholds (red ellipses) should match these contours. Coordinate planes are
organized into a grid, with subject-averaged and subject-specific isodiscrimination contours shown respectively above and below
the diagonal of the grid. Across all 36 pairwise coordinate planes, there is a correspondence in the shape, size, and orientation
of precision matrix contours and perceptual isodiscrimination contours. The quality of the match is quantified by computing
the B angular tilt and C eccentricity of image-statistic contours (circular markers) and of perceptual isodiscrimination contours
(square markers). Since contours are highly similar within subsets of pairwise planes (denoted by blocks in A; e.g. the set
of ✓↵ planes), contour properties have been averaged within such subsets. Angular tilt and eccentricity are highly consistent
between precision matrix contours and perceptual isodiscrimination contours. Coordinates extracted from the van Hateren
database show larger variability in the �|�� and �\�/

planes than those extracted from the Penn Natural Image Database
(Figure 3–figure supplement 6), exhibiting a larger number of low-eccentricity contours for which tilt is poorly defined.
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Figure 3–figure supplement 8: Principal axes of variation across natural images predict principal axes of human
perceptual sensitivity in the full coordinate space. Principal axes {~⇠NI} of variation in the distribution of natural image

statistics are shown in comparison to the principal axes {~⇠PP} of human sensitivity. Each of the 9 principal axes is represented
by a vertical gray/white column. Markers (circular = variation in natural image coordinates; square = human perceptual
sensitivity) represent the fractional power of the contributions of A, E second-order cardinal (�|� ), B, F second-order oblique

(�
/\), C, G third-order (✓), and D, H fourth-order (↵) coordinates to each principal axis; all contributions within each column

sum to 1. Principal axes components, and the range of variability observed across image analysis variants or across subjects
(see legend), are shown in blue for natural scene statistics and in red for perceptual sensitivities. There is an excellent match
between the blue and red components for both the Penn and van Hateren image databases.
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Asymmetries in distributions of natural image statistics

We find systematic asymmetries in the distributions of natural image statistics when examined beyond their
second moments. Figure 3–figure supplement 9 shows the distributions of single coordinates for the image
analysis N = 2, R = 32. All distributions are shifted toward positive coordinate values, and there is larger
variation in positive versus negative coordinate values. We assess this asymmetry in natural image analyses
by computing the ratio of the standard deviations measured along positive versus negative coordinate axes.
We similarly assess asymmetry in psychophysical analyses by computing the ratio of human sensitivities to
positive versus negative deviations of coordinate values. This comparison is shown in Figure 3–figure sup-
plement 9. The mismatch provides potential clues for the neural mechanisms responsible for processing local
image statistics (see Discussion).
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Figure 3–figure supplement 9: Asymmetries in natural image statistics. A Probability distributions of natural image
statistics. Projections of the distribution along second- and fourth-order coordinate axes are asymmetric about the origin,
being shifted toward positive values. B We compute the ratio of standard deviations measured along positive versus negative
coordinate axes (circular markers) to the ratio of human sensitivities measured along positive versus negative coordinate axes
(square markers). Natural images show larger asymmetries in second- and fourth-order coordinate values than is observed in
human sensitivities. This is particularly notable for the ↵ coordinate, which shows a 2-6 fold asymmetry in natural images
variation but at most a 1.2-fold asymmetry in human sensitivity.
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Two regimes of e�cient coding

sk Lk

sampling
noise

channel
noise

(to be optimized)
channels of 
limited total

dynamic range

signal linear filter

Figure 4–figure supplement 1: Schematic representation of channel optimization problem. We consider a set of
channels, each of which is dedicated to processing an independent signal s

k

. Sampling noise (taken here to be unity) is added
to the signal s

k

, which is then passed through a linear filter L
k

with gain |L
k

|. Channel noise (taken here to be unity) is added
to the output of L

k

. The total dynamic range of all channels is constrained.

In this section, we illustrate how two contrasting regimes emerge from the e�cient coding principle: (i)
the well-known transmission-limited regime, in which “whitening” is optimal, and (ii) the sampling-limited
regime, which is the focus of this paper. To enable exact calculations of optimal behavior, we consider a
simplified scenario, in which all signals and noises are Gaussian, and all filters are linear.

We consider a set of channels dedicated to processing independent signals of varying sizes. The channels,
which are indexed by k, are abstract and general. For example, each k can represent a di↵erent spatial or
temporal frequency in the input, as in the traditional analysis of visual coding in the periphery. Here, we
take the signal on each channel k to represent a complex image feature, i.e. the result of a specific local
nonlinear transformation applied to the input image.

Figure 4–figure supplement 1 shows the setup of a single channel dedicated to processing the signal s
k

.
Sampling noise, which is assumed to be identical for each channel, is added to this signal; without loss of
generality, we can take its value to be unity. Note that for the parametrization of local image statistics used
here, sampling noise is in fact identical for each parameter at the origin of the parameter space (see [36],
Equations B19-B20).

The result is passed through a linear filter L
k

, characterized by a gain |L
k

|. The output of L
k

then has
intrinsic channel noise added, and the total dynamic range of all channels is constrained. All channels are
assumed to have the same intrinsic noise. Again, without loss of generality, we take this value to be unity
(as any scale associated with this noise can be absorbed into an overall multiplier for the filters L

k

and the
constraint on total dynamic range of the channels).

We seek to find the optimal set of gains {|L
k

|} that maximize the mutual information
P

k

H
k

between
the signals {s

k

} and the channel input, subject to a constraint Q on total output power. Using a Lagrange
multiplier ⇤ for the constraint, the problems translates into extremizing P =

P
k

H
k

+ ⇤Q by setting
@P/@L

k

= 0.
The solution can be found in [30], Equation 8, noting the following correspondences between the setup

of Figure 4–figure supplement 1 and the scenario considered in that paper. Referring to the notation
in [30], the input and channel noises, N

p

and N
c

, respectively correspond here to the sampling and channel
noises (both taken to be unity). The prefiltered stimulus power S

p

corresponds here to signal variance
s2
k

. The power transfer function p
n

of the neural filter corresponds here to the filter power |L
k

|2. Finally,
the negative Lagrange multiplier �� corresponds here to the positive Lagrange multiplier +⇤. With these
correspondences, the optimal filter for channel k has a gain |L

k

| given by:

|L
k

|2 =
�(2 + s2

k

) +
p
s4
k

+ 4s2
k

/⇤

2(1 + s2
k

)
(0.7)

provided that the above quantity is non-negative, and has a gain of zero otherwise. The range of values of
s
k

for which the above quantity is  0 corresponds to signals that are not worthwhile to code, because the
signal-to-noise is too small given the constraint on the channel dynamic range. More specifically, the above
quantity is positive (and hence |L

k

| is nonzero) provided that s
k

>
p
⇤/(1� ⇤). Note that this critical value

becomes infinite as ⇤ approaches 1 from below, indicating that ⇤ near 1 is the transmission-limited regime.
Conversely, the critical value of s

k

approaches 0 as ⇤ approaches 0 from above, indicating that this is the
sampling-limited regime. We further discuss these regimes below.
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Figure 4–figure supplement 2: Optimal coding regimes. Optimal gain |L
k

| is shown as a function of signal strength s

k

for
di↵erent choices of the output constraint ⇤. For signals below a critical strength

p
⇤/(1� ⇤), the optimal gain is zero, and

signals are not encoded. The limit ⇤ ! 1 from below defines the transmission-limited regime, while the limit ⇤ ! 0 from above
defines the sampling-limited regime. A Transmission-limited regime. For signal strengths much larger than the critical value,
the main constraint is output power, and the optimal gain is inversely proportional to the signal strength (as indicated by the
dotted line with negative slope). As ⇤ ! 1, there is an increasingly sharp transition between signals that are not encoded, and
signals that are encoded in inverse proportion to their size (“whitened”). B Sampling-limited regime. As ⇤ ! 0, there is a
broadening of the transition between signals that are not encoded, and signals that are whitened. This broadening results in a
regime in which sampling-noise is the dominant constraint, and the optimal gain increases with signal strength (as indicated
by the dotted line with positive slope).

Transmission-limited regime. As mentioned, the transmission-limited regime corresponds to the limit
of ⇤ ! 1 from below. For signals below the critical level of

p
⇤/(1� ⇤), the optimal gain is zero, and signals

are not encoded. For signals that are large compared to this cuto↵, the main limitation is output power. In
this regime, the optimal gain is inversely proportional to the signal strength (Figure 4–figure supplement 2A),
as the asymptotic behavior of Equation 0.7 in the limit of large signal strength s

k

is:

|L
k

|2 ⇠ 1/⇤� 1

1 + s2
k

(0.8)
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This is the classic “whitening” regime, namely small signals are enhanced so that output power is equalized
across channels: |L

k

| ⇠ 1/s
k

for large s
k

.
Note that when ⇤ is close to 1, there is an abrupt transition between signals that are encoded in inverse

proportion to their size, and signals that are too small to be encoded at all (Figure 4–figure supplement 2A).

Sampling-limited regime. When ⇤ ! 0 from above, the transition between signals that are not encoded
at all, and signals that are encoded in inverse proportion to their size, undergoes a broadening. This results
in a regime in which the optimal gain increases with signal strength (Figure 4–figure supplement 2b). This
regime covers signals that are only modestly above the critical level of

p
⇤/(1� ⇤), i.e. signals for which

sampling noise (rather than output capacity) is the dominant constraint. The extent of this regime increases
as the relative importance of the output constraint ⇤ decreases toward 0.

We determine the limiting dependence of |L
k

| on s
k

from the asymptotic behavior of Equation 0.7 in the
limit of small ⇤:

|L
k

|2 ⇠ s
k

1 + s2
k

r
1

⇤
(0.9)

For signals that are small compared to the sampling noise (
p
⇤ < s

k

< 1), the optimal filter is proportional

to the square root of the signal strength, |L
k

| ⇠ s
1/2

k

⇤�1/4.

Correspondence with perceptual sensitivity to local image statistics. We interpret the gain |L
k

|
as representing the amount of resources devoted to a given signal s

k

. Since it is a direct measure of signal-
to-noise for a unit-size input, it therefore corresponds to perceptual sensitivity.

In the psychophysical experiments here, we measure sensitivity for each of the image statistic coordinates
{�|,��,�

/

,�\, ✓p, ✓q, ✓y, ✓x,↵}, using a highly artificial set of stimuli. As predicted from the sampling-limited
regime, we find that gains |L

k

| are larger for the channels in which the natural environment provides larger
values of the signal s

k

.
While this analysis provides a rigorous identification of a regime in which gain increases with signal

strength, we caution that it is an asymptotic analysis of a simplified model of feature coding. It therefore
stops short of making the quantitative prediction that gain (sensitivity) is proportional to the square root
of the signal strength of each image statistic.

On the other hand, the analysis does translate into a quantitative prediction about perceptual axes
(i.e., about the orientations of the isodiscrimination contours). As shown in Figure 3 (blue contours), the
image statistic coordinates {�|,��,�

/

,�\, ✓p, ✓q, ✓y, ✓x,↵} have substantial covariances. A rotation of the
coordinates will thus yield a new set of coordinates with zero covariance and independent sampling errors.
If these new coordinates are independently coded, then the perceptual axes will share the same axes as the
image statistics which is what we find (Figure 3B).

Numerical optimization in two dimensions. Here, we numerically show that in the 2-dimensional
case, the axes of the optimal encoder will be aligned with the principal axes of the input statistics. As shown
in Figure 4–figure supplement 1, the response r is given by:

r = L(s+ ⇠) + ⌘, (0.10)

where ⇠ is the sampling noise, ⌘ is the intrinsic channel noise, and s is a d-dimensional signal from natural
scenes (each dimension corresponds to one of our image statistic coordinates; for simplicity, let d = 2, i.e.,
we examine one pairwise plane). L is the linear transformation that we are looking for: this is essentially
a “gain” plus “rotation” transformation. The axes of perceptual isodiscrimination contours should then be
given by the eigenvalues of LLT . The covariance of the stimuli is S = hssT i. Noise is assumed IID, given by
h⇠⇠T i = ⌅I at the input and h⌘⌘T i = ⌃I at the output, where I is a 2⇥ 2 identity matrix and ⌅ and ⌃ are
noise magnitudes. With this notation, the total noise covariance matrix of the output is given by:

N = ⌃I+ ⌅LLT . (0.11)
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Figure 4–figure supplement 3: Noise-dependent transition between e�cient coding regimes. Total noise is the sum of
sampling noise (x-axis) and channel noise (y-axis). In the case considered here (d = 2), channel noise cannot exceed 0.5, but
sampling noise can. For total noise below 0.5, the optimal filter L is antialigned with the signal, and the optimal strategy is
decorrelation via whitening (white region, transmission-limited regime). For total noise above 0.5, the optimal filter is aligned
with the signal (black region, sampling-limited regime), consistent with our findings that perceptual sensitivity is tuned to the
direction and degree of variation in natural image statistics.

The total variance at the output is:

r2 = d⌃+ ⌅ Tr LLT +Tr LSLT . (0.12)

By analogy to the van Hateren derivation, we fix the output power. Without loss of generality, we choose its
value to be unity, which sets the unit for all power measures in the system. The information for a Gaussian
multivariate channel in a standard form, r = L0s+ ⌘ is:

I =
1

2
log det

⇣
I+ S

1
2L0TL0S

1
2

⌘
, (0.13)

but this is only valid when the noise ⌘ is IID unit variance. In the present study, this is not the case: first, the
noise, N, is correlated in the two channels, because the sampling noise is mixed by L; second, the variances
are not the same in the two channels. We can, however, make a change of variables, r0 = Or, such that the
noise for the new output r0 is IID unit variance. To do this, we decompose N = VDVT into its eigensystem,
make O = D� 1

2VT , and identify L0 = OL = D� 1
2VTL, so that we can use the standard result given in

Equation (0.13). The optimal linear filter is given by:

L⇤ = argmax
L,r2=1

1

2
log det

⇣
I+ S

1
2L0TL0S

1
2

⌘
(0.14)

Since the output power is limited to 1 and channel noise ⌃ feeds directly into the output power, there is no
solution for L for ⌃ > 0.5 (since d = 2 and ⌃ is the noise in each of the channels, the total output power is
taken up by channel noise at ⌃ = 0.5). The magnitude of the sampling noise can be unbounded, since one
can always select the gain in L to be low enough so that the constraint on total output power is satisfied.
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Because the gain rescales the input, we can fix the total power of the input signal (the trace of S) to be
unity. With this choice, the remaining parameters of the problem are the magnitude of the channel noise
(⌃) and the magnitude of the sampling noise relative to the input power (i.e. 1/SNR at the input).

Given these two parameters that determine the sampling and channel noise magnitudes, we generate
input signal covariances S with total power of unity but with randomly selected “tilts” (angles of the leading
eigenvector of Smeasured relative to the horizontal) and “eccentricities” (=

p
1� g2

min

/g2
max

, where g are the
eigenvalues of S); these quantities can be directly estimated from natural scenes. We then use constrained
optimization to numerically identify the optimal transformation L⇤. For each such solution for L⇤, we
compute the eigensystem of L⇤L⇤T , extract its eccentricity and tilt as describe above, and compare these
values to the eccentricity and tilt of the input signal.
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Figure 4–figure supplement 4: Optimal filter shape and orientation. Tilt and eccentricity of the optimal linear filter L⇤

for random choices of the input signal s. As the magnitudes of sampling and channel noises vary, there emerge two regimes of
e�cient coding: a transmission-limited regime A-B and a sampling-limited regime C-D. In the transmission-limited regime,
the maximum filter eigendirection is aligned with the minimum signal eigendirection (and hence there is a di↵erence in tilt
of ⇡/2). In contrast, in the sampling-limited regime, the maximum filter eigendirection is aligned with the maximum signal
eigendirection. Note that a direct comparison of eccentricities between these two regimes can be misleading, due to a reversal
of the maximal eigendirections. A Sampling noise ⌅ = 0, channel noise ⌃ = 0.2. The optimal strategy is decorrelation via
whitening using a filter aligned perpendicularly to the input signal (right panel) with an eccentricity that matches that of the
input signal (dashed line, left panel). B Sampling noise ⌅ = 0.1, channel noise ⌃ = 0. At very low total noise, even with
zero channel noise, the optimal strategy is still decorrelation (right panel) using a filter whose eccentricity is less than the
eccentricity of the input signal. C Sampling noise ⌅ = 4, channel noise ⌃ = 0 (the low input SNR regime identified in [30]).
The tilt of the optimal filter is aligned to the tilt of the signal (right panel), and the filter eccentricity is approaching the
prediction of the square-root gain relation (curved dotted line, left panel) with decreasing SNR. D Sampling noise ⌅ = 0.4,
channel noise ⌃ = 0.35 (dominating sampling noise). For increasing sampling noise strength, the filter eccentricities match the
signal eccentricities (dashed line, left panel).

We identify the following e�cient coding regimes that depend the total noise and on the relative magni-
tudes of sampling and channel noises (Figure 4–figure supplement 3):

• Transmission-limited regime (total noise < .5)

– 0  ⌅ ⌧ ⌃ (dominating channel noise). The optimal strategy is decorrelation by whitening
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(Fig 4–figure supplement 4a); the tilt of the filter relative to the signal is ⇡/2, and the eccentricities
are equal (i.e., the small eigenvalue of L⇤L⇤T is proportional to the inverse of the large eigenvalue
of S and vice versa, indicating that the gain scales as the inverse of the input power).

– 0 < ⌅ ⌧ 1,⌃ = 0 (zero channel noise, small sampling noise). The optimal strategy is
still decorrelation (Fig 4–figure supplement 4b) with signal components of higher power being
suppressed by the gain, but the suppression does not follow the inverse law as above.

• Sampling-limited regime (total noise > .5)

– ⌅ � 1,⌃ = 0 (zero channel noise, large sampling noise). The tilt of the filter matches the
tilt of the signal, and the gain scales with input power. For high sampling noise and zero channel
noise, the gain scales as the square-root of the input power (Fig 4–figure supplement 4c).

– ⌅ > ⌃ > 0 (dominating sampling noise). In a broad regime of noise strengths where sampling
noise dominates over non-zero channel noise, the tilt of the gain matches the tilt of the signal,
and the gain roughly scales with the input power (Fig 4–figure supplement 4d). This regime is
consistent with the correspondence that we observe between the natural scenes statistics and the
psychophysical measurements.
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