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Summary

We performed a detailed analysis of the variability of a steady-state human evoked potential (EP) and the spectral properties of the
simultaneously recorded clectroencephalogram (EEG). This allowed us to determine whether the background EEG was influenced by the evoked
potential slimulus, and 10 what extent variability of evoked potential estimates is simply due to the addition of the background EEG.

Steady-state visual evoked potentials (VEPs) were elicited by a checkerboard undergoing contrast-reversal modulation at 1 of 3 fundamental
{requencies f: 5.0 Hz, 7.5 Hz, and 10.0 Hz. To a first approximation, the evoked potential (at frequency 2 f) and the undriven components of the
EEG combined linearly. However, two kinds of interactions were present: (i) patterned visual stimulation decreased the power in the undriven EEG
in the 5~17 Hz range by as much as a factor of 2; (ii) superimposed on this overall effect of patiern stimulation, there were changes in the EEG
power at specific harmonics of the input frequency. Power increased by as much as 6-fold at the stimulus reversal rate (2 f) and its second harmonic
4 ). These findings imply a complex non-linear interaction between the visual input and the EEG.
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An evoked potential (EP) is the summation of indi-
vidual cellular events synchronized to an external
stimulus. EPs are typically measured either by averaging
the surface potential recorded during many repetitions
of a stimulus or by Fourier analysis. Potentials due to
cellular events locked to the stimulus are reinforced by
the averaging process. Potentials due to cellular events
uncorrelated with the stimulus are not reinforced by the
averaging process, and are attenuated (under ideal cir-
cumstances) in proportion to the square root of the
number of averages.

Signals uncorrelated with the stimulus are ‘noise’ in
the sense that they contribute to variability of the
estimated averaged EP. Typical procedures for extract-
ing EPs seek 10 minimize the contribution of these
signals, However, as has been recognized since the early
days of EP recordings (see Regan 1989 for a review),
these signals may be in part dependent on the stimulus,
and may provide additional information concerning
brain processes. We will call alterations of brain activity
which are due to the stimulus but not extracted by
averaging techniques the ‘undriven’ components of the
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EP. Signals that are extracted by averaging techniques,
1.e., the traditonal EP, will be called the ‘driven’ com-
ponents of the EP.

On a practical level, the undriven components of the
EP., if present, would be manifest as a source of variabil-
ity in studies designed to extract the driven EP. Thus, a
better understanding of undriven EP components may
lead to improved methods of signal processing analysis
for extraction of the driven EP components, and more
rigorous statistical techniques for quantifying their size
(Victor and Mast 1991).

The null hypothesis for our analysis is that the van-
ability in estimates of the visual EP (VEP) is due to
incomplete suppression of the electroencephalogram
(EEG) in the averaged record. That is, we postulate that
there are no undriven-VEP components, and that all of
the variability of the VEP is accounted. for by. the
statistics of the EEG that would be recorded -during
fixation of an unmodulated display. This hypothesis
merely formalizes the idea that the visual stimulus af-
fects only a small number of neurons, and-does’ not
influence bulk brain activity. As shown in.the:theoreti-
cal section of Methods, this hypothesis predicts that-the:
power spectrum measured in the presence of periodic
visual stimulation is .identical to the power spectrum of
the EEG measured during fixation of an unmodulated
display.
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We will find that this prediction of the null hypothe-

~_sis is false. Rather. a periodic visual stimulus influences

bulk brain activity not only by producing an averaged
VEP, but also by alierations of the background EEG.
Some, but not all, of these changes may be related to
non-specific effects of attention and arousal. The nature
of these alterations allows us 10 draw some gqualitative
inferences concerning the dynamics of VEP generation.

Methods

" Physiological methods

‘Eight adult subjects aged 25-35 (the authors and 6
healthy volunieers) with normal or corrected-to-normal
vision participated in this study. The visual stimulus
was a checkerboard whose checks subtended 16 min at
a conlrast [(Imn - ]min)/(]max + ]min)] of 0.4. Epl'
sodes consisted of sinusoidal counterphase modulation
of the contrast of the checkerboard stimulus at funda-
mental frequencies (f) of 5.0 Hz, 7.5 Hz, and 10.0 Hz.
(Reversal frequencies, at which pattern-reversal EP
components were expected, corresponded to 2 {: 10.0
Hz, 15.0 Hz, and 20.0 Hz.) A fourth kind of episode
consisted of presentation of a static checkerboard at the
contrast of 0.4; the subject was instructed 1o maintain
fixation of the center of the unmodulated display during
the course of this episode. The checkerboard had a
mean luminance of 128 cd/m? and subtended an 8.8°
visual angle at the viewing distance of 57 cm. All stimuli
were produced on a Tektronix 608 CRT (P31 phosphor)
whose control signals (X-deflection, Y-deflection, and Z
(intensity)) where generated by specialized electronics
(Milkman et al. 1980) interfaced to a DEC 11/73
computer. The electronics of the display controller pro-
vided for linearization of the intensity/voliage char-
actenistic of the CRT. .

Scalp signals were recorded at O,-C, via gold cup
electrodes applied to the scalp with Nihon-Kohden elec-
trolyte paste, amplified 10,000-fold. bandpass-filiered

(1-100 Hz) by a high-impedance isolation amplifier, °

and digitized at the stimulus frame rate of 270 Hz by
the 11/73 computer. One episode of data collection
consisted of 30 sec. Each subject sat for a total of 32
trials (8 at each of the 3 temporal frequencies and 8
trials of a static checkerboard). Trials were presented in
a randomly interleaved fashion. Breaks were provided

- as'needed by the subjects 10 maintain concentration.

" Digitized data were saved for later analysis without
averaging. Thus, in the off-line analysis, we were able to
calculate Fourier components at the frequencies of in-
terest: (the reversal frequency, its harmonics, and its
‘subharmonics) for arbitrary subsegments of each epi-
sode. As-seen below, this allowed us to investigate the

. statistics of the steady-state VEP estimates.
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Analytical methods

Our method for spectral estimation, described here.
allowed estimation of spectral components even at the
stimulation frequency itself. Comparisons of power
spectra obtained with and without periodic visual stimu-
lation allow us to test whether the variability in the
measured VEP is simply the result of the addition of
fixed background ‘noise’ 10 the VEP signal. Spectral
estimales are obtained by (i) segmentation of the data.
(ii) calculation of Fourier components from each seg.
ment, and (iii) estimation of the scatier of each Fourier
component about its mean. withour assuming that the
mean is zero. Here we briefly formalize this method for
spectral estimation and demonstrate that it provides
proper estimates of the spectrum of an additive noise.
even in the presence of a periodic signal. More detail
concerning this algorithm are consjcicred in the Ap-
pendix.

Let us represent the recorded scalp signal by S(t). We
will form an estimate of its power spectrum S(«) from
Fourier transforms of S(t) over finite samples of data.
For a sample of data of length L centered at a time T.
we denote the cosine and sine components of the Four-
ier transform of S(t) at the frequence w by xg(w.L.T)
and ys(w.L.T):

xs(u.L,T)=/x S(1) W(1 — T) cos(wt) dt
. o)

ye(w.L.T) = -/_x S(1) W(t = T) sin(wt) dt

where W(1) is va normalized window function
W(t)=1/Lif 1] < L/2; W(1) =0, otherwise. {2)

We restrict attention to frequencies «w which repeat an
integral number of times in the analysis period L. We
further assume that the analysis period L is an integer
multiple of the stimulus period P.

It is convenient to consider the two real Fourier
estimates Xg(w,L.T) and ys(w.L.T) together, as an
estimate of a single complex Fourier component:

zg(w.L.T) = x5(w,L.T) + 1y5(w.L.T)). (3)

The deviation of an individual estimate of zg(w.L.T)
from its expected value (zs(w,L,T)) will be denoted by
825(w.L,T) = z5(w,L.T) — (zg(w,L,T)). (4)

The power spectrum $(w) is related to the variance of
6z4(w,L.T) by

S(w) = Lli_.mm 2%(|azs(w.L,T) 12). (5)

In the above equations (4) and (5). the brackets ¢ )
indicate the expected value of the quantity they enclose.
Strictly speaking. this expected value is an average t0 be
calculated over a statistical ensemble of instances of the
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experiment. In practice, this ensemble average is re-
placed by an average over multiple data segments, each
centered at time T;. The times T, must all be at the same
phase of the ex(ema] stimulus. That is, we calculate

1 ‘
IZS(G.LT st T Z Zs(w.L.Tj) (b)

and

<|6zS(w!L*T) I:'):sl
1 2
TI-1 ,El |z5(w.1.T;)
=

in the limit that the number of estimates J is large. the
¢stimated quantities in equations (6) and (7) become
equal 1o their exact values, which appear in equations
4) and (5). The quantity J—1 appears in the de-
nominator of (7) rather than the quantity J, because the
average value of {(zg(w.L,T)) is estimated from the data,
rather than assumed to be zero. If the quantities
5(w.L,T;) are independent (see Appendix), then there
are 2(J — 1) degrees of freedom associated with the
estimate (7): J — 1 degrees of freedom for the contribu-
tions of the real parts. and J — 1 degrees of freedom for
the contribution of the imaginary parts. Note that for
contiguous data which have been segmented into seg-
ments of length L, (z4(w,L.T)),, can be caiculated
cither as an average of individual Fourier estimates (as
indicated by eqn. 6), or as a single Fourier estimate
obtained from the unsegmented record.

Now let us assume that the signal S(1) is a sum of

two components: an evoked response, R(t), and ongoing
‘noise’ unrelated to the stimulus, E(1):
S(t) = R(1) + E(1) (8)
E(1) represents not only endogenous EEG, but also
zxogenous sources of variability, such as signals gener-
asted by head movement. The expected value of the
‘noise’ E(t) is assumed to be equal to zero. The ‘true’
evoked response R(1) is assumed to be a periodic func-
tion with period P (the stimulus period), and to have no
intrinsic variability. We will show that application of
the algorithm (7) to S(t) vields a power spectrum S(w)
which is equal to the power spectrum of the ‘noise.’
E(w).

Since the VEP signal R(t) and the EEG ‘noise’ R(1)
combine additively. so do their Fourier components (1):

2g(w,L,T) = 2p(w,L,T) + 2g(w,L.T). 9)

It follows that fluctuations of these Fourier components
about their mean values are also additively related:

25(w,L.T) = (z5(w,L,T))e
= [ZR(“"L'T) - (ZR(“”L'T)>¢M]
+[ze(@ L.T) = (2e (@ L.T))cs ]

—(2s(w.L T l® (7)

= [2e(0.LT) - Gze(e L] e

The second equality follows from the fact that: the’
response R(t) is assumed to be deterministic, and® thus™
its Fourier components zg(w,L.T) are equal-to 1hcm’
mean values (zg(w,L.T)),. S

1t follows from (10) that estimates of the vanance of

the combined VEP and EEG signal (| 62g(w . LT)| )y .. -

as derived from (7) are equal to the estimates of the
variance of the EEG signal alone (|8zg(w,L.T)|?)x;
derived by the same procedure. Since the power spec-
trum is related to these variance estimates through -
equation (5), the power spectrum $(w) as estimated by
this method is equal 10 E(w). the power spectrum of the
‘noise’ E(t) in isolation.

We contrast the algorithm summarized by equations
(5). (6) and (7) with the more traditional approach (Kay
1988) 1o spectral estimation, which is applicable when
the signal S(t) does not contain periodic componenits. In
this case, (z¢(w,L,T)) is assumed 10 be zero, rather than
estimated from the data by equation (6). In this case, (7)
is replaced by

(18z¢(w,L,T) |2>¢,,= ): les(w,L.T;) |2 (11)

J-]
This estimate of (|8zs(w,L,T)|?) does nor yield a
convergent estimate of the power spectrum (5), if there
are periodic components in S(t). Rather, as the analysis
period L increases, spectral estimates obtained from
(11) have progressively higher and narrower peaks at
the frequency of any periodic input.

Results

The simplest hypothesis concerning fluctuations of
the steady-state YVEP is that fluctuations are solely due
1o superimposed background EEG, incompletely sup-
pressed by the averaging process. Implicit in this view is
the hypothesis that the background EEG is independent
of whether or not periodic visual stimulation is present:
the basic notion is that the VEP simply adds to an
ongoing process. As seen above, this implies that spec-
tral estimates should be independent of whether visual
stimulation is present. We now test this prediction.

Since we do not explicitly consider the limiting pro-
cess L - of equation (5) we are (smctly speaking)
nents, rather than power. Power spectral estimates are
readily obtained from variances of Fourier components,
through a normalization for epoch duration (5). Because .
of this relationship, variance ratios are identical to -
ratios of spectral estimates. : :

Relation of the spectrum of the background EEG 10 visual e

stimulation .
Estimated values of the variance

(V(f) = (18z5(27f, L,T) | *)es, (equation (7))
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“were calculated as a function of temporal frequency f
for the 4 experimental conditions: 5 Hz stimulation, 7.5
‘Hz stimulation, 10 Hz stimulation, and static stimula-
tion. The interval length L used for analysis was the
~entire episode length (29.96 sec), so that the resolution
of each frequency bin was 0.03 Hz. At each frequency. a
geometric ‘'mean across subjects was calculated. (Geo-
metric, rather than arithmetic, means are used to avoid
bias 1owards the behavior of subjects who happened to
have a large EEG amplitude, and also because the

ultimate quantities of interest are variance ratios.) The
resulting variance. estimates, smoothed by averaging

J. MAST. 1.D. VICTOR

(arithmetically) across frequency windows of 1.0 Hz (3¢
frequency bins) are shown in Fig. 1.

Though the variances in the static condition (salig
circles) are similar to those in the 3 conditions of
periodic sumulation, several differences are apparen:.
For analysis frequencies f in the range 5-17 Hz, stimu.
lation systematically reduced the variance. The 10 H;
stimulation frequency (inverted triangles) had the larges:
effect. followed by the 7.5 Hz stimulation frequency.
followed by the 5 Hz stimulation frequency. The pealk
effect occurred at analysis frequencies in the alpha
range and amounted 1o a power attenuation by a facior
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of 2.4 at 9 Hz. That these findings are not likely to be
due to chance is readily seen from their consistency
across analysis frequencies.

Below 5 Hz, there was an increase in variance with
-ontrast-reversal stimulation, without clear dependence
on the stimulation frequency. The maximum size of the
cffect was an increase in power by a factor of 1.6.
above 20 Hz, vanance in the static condition and the §
Hz stimulation conditions were similar. There was a
slight tendency for increased variance with 7.5 Hz
aimulation, and decreased variance with 10 Hz stimula-
tion. The effects of periodic stimulation on variances
above 20 Hz were very small, typically 15% or less.

At the frequency resolution in Fig. 1, the major effect
of stimulation was to depress variance in the 5-17 Hz
range; the amount of depression depended on the input
frequency. At a higher frequency resolution of 0.03 Hz
(Fig. 2), other phenomena appeared. For all 3 mod-
ulated stimuli (Fig. 2A, B, C), a peak of width ap-
proximately 0.5 Hz centered at approximately 11 Hz
was present. There was little evidence of this peak in the
ynstimulated condition (Fig. 2D). Detailed comparison
of stimulated and unstimulated spectra reveal that this
peak does not represent an increase in variance with
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with the alpha rhvthm per se cannot be determined :

from our data.

The major finding seen in the high-resolution spectra -
is that there are increases in the variance at frequencies -
harmonically related to the stimulus frequency. With
f=5.006 Hz stimulation. there are one-bin peaks at
exactly 2f =10.012 Hz and 4f = 20.024 Hz. With =
7.509 Hz stimulation, there is a one-bin peak at exactly
2f = 15.018 Hz and a less-prominent peak at 4f = 30.036
Hz. Similar peaks at 2f and 4f appear with stimulation
at f =10.012 Hz. It can be seen that all of these peaks
are highly unlikely to be due to chance alone, in that
they are larger in amplitude than their hundred or so
neighbors. There was no increase in variance at frequen-

~cies removed from 2f or 4f by as little as 0.03 Hz.

To assess the statistical significance of these data, we
cannot simply use the F distribution for individual
variance ratios, since the quantities we have plotted are
geometric means of variance ratios from several (N = 8)
subjects.. However, we may proceed as follows: for
gaussian-distributed quantities, variance estimates with
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Fig. 2. High-resolution plots of the variances of EEG Fourier components V() = (| 8z5(2nf,L.T)|* )&,l The procedure of Fig. 1 was (ollowed bul
*anance cstimates within individual 0.03 Hz bins are retained. A: stimulation at 5.006 Hz. B: stimulation at 7.509 Hz. C: stimulation at 10.012 Hz.
D: static stimulation. Variances are in #V2, The calibration bar indicates a 95% confidence interval, calculated as described in the text.




_n degrees of freedom have a variance equal to 2/n times
the sample vanance (asymptotically for large n). It
follows that the logarithm of a vaniance estimate has a
variance of 2/n (asymptotically for large n). For a
iogarithm of a ratio of independent variance estimales,

‘-+ the-variances add. Thus. if numerator and denominator

have n,vahd‘ n, degrees of freedom respectively, their
ratio has variance 2/n, +2/n,. The mean of N such
log-ratios has variance [2/n, + 2/n.]/N. For large n,,
n,, and N, this quantity (the mean log-ratio) is gaus-
sian-distributed. according to the central limit theorem.
In our application, n;= n, = 14, the number of degrees
of freedom in a variance estimate in one subject, N = §,
the number of subjects. Thus, the logarithm of the
guantity plotied in Fig. 2 is approximately gaussian-dis-
ributed with variance 1/28. 95% confidence limits are
then obtained from standard tables of the normal distri-
bution. ‘

Nature of the stimulus frequency-specific increase in vari-
ance .

We now turn to an analysis of the increase in vari-
ance at harmonics of the input frequency. In order to
remove the overall effect of periodic stimulation on the
variance (Fig. 1), we compare variance estimales at
harmeonics kf of the input frequency f to variance esti-
mates at nearby frequencies kf + 6 and kf — 4§, with
6=0.03 Hz. For each subject, we calculated G(k.f),
where

G(k.f) = V(kf) /[ V(kf — 8)V(kf + §)]'/. (12)

G(k,f) thus represents the proportional height of the
variance peak at kf, referred to its local baseline.

Geometric means of G(k,f) across the 8 subjects are
shown in Table I. The 95% confidence limits of this
quantity are 0.725-1.378, calculated as described above.
All even harmonics up to 30 Hz show an enhancement
of variance. This enhancement is most prominent for
frequencies kf in the neighborhood of 20 Hz: the largest®
effect for the input frequency f=35 Hz is seen at its
fourth harmonic (k = 4), while the largest effect for the
input frequency f = 10 Hz is seen at its second harmonic
(k=2). No clear evidence of a change in response
variance is seen at the input frequency itself (k =1).
- However, there is a statistically significant suppression
of variance at k = 3 for two of the input frequencies and
an enhancement of variance at k = 5 for all input fre-
quencies.

Now, let us focus on the variance increase at 2f,
which is clearly seen for all 3 input frequencies studied
~ (Fig. 2A-C and Table I). The variance of a (complex)
Fourier component is described by 3 quantities: the
_ variance of the real part, denoted V,,, the variance of
the lmggmary part, denoted Vyy, and the covariance of
e real and imaginary parts, denoted V,,. These quanti-
ies are not the most useful ones for some analytical

J. MAST, J.D. VICTOR

TABLE 1

Relative variance at harmonics of the input frequency. Geomeiric
means of the quantity G(k,f) across subjects. This quantity (cquation
12) expresses the relative amount of variance at the frequency kf
compzrad with the variance at nearby {requencies, during stimulatior.
at the frequency f.. Upward arrows denote values which lie in the
upper 2.5% of their theoretical distributions, and downward arrows
denote values which lic in the lower 2.5% 1tail of their distribution.
Theoretical distributions are determined as described in the text.
Columns are spaced in order to align the rows corresponding 10 equal
output frequencies kf.

kf f = 5.006 Hz f=7.509 Hz f=10.012 Hz
5.006 k= 1:1276
7.509 k=1:1.5941
10.012 k= 2:37921 " k=1:0955
12.515
15.018 k= 3:0.864 k=2:38917
17.521
20.024 k= 4:6.5621 k=2:49721
22.527 k=3:03754
25.030 k= 5:1.5291
27.534
30.037 k= 6:1.8641 k=4:24611 k=13:05761
33.540
35.043 k= 7:0.603]
37.54¢6 k=5:17001
40.049 k= 8:1.163 k=4:31831
42.552
45.055 k= 9:0.308] k=6:1.488%
47.558
50.061 k=10:17211 k=5:22611

purposes, however. We therefore consider two derived
quantities. One is the ratio of the variance of the real
part to the variance of the imaginary part, denoted
F =V,,/V,,. For gaussian noise, it is distributed like an
F statistic with n — 1 degrees of freedom in numerator
and denominator. The second is the correlation coeffi-
cient of the real and imaginary parts, denoted r=
Vy/(ViuVyy)'/2. For gaussian noise, it is distributed like
a standard product-moment correlation coefficient, with
n — 2 degrees of freedom. Together with the overall
variance V=V, + V. the quantities F and r de
termine the set of partial variances and covariances V...
V,,. and V,,.

The relationship of the quantities V,,. V,,. and V...
r. and F are illustrated in Fig. 3. The average value of 3
Fourier estimate (zg(w.L.T)) may be regarded as 2
vector in the complex plane, whose length represents
the magnitude of the Fourier component and whos¢
direction represents the phase of the Fourier comp¢-
nent. Individual estimates of this quantity will scatter 1
a cloud around their mean value. For any desired level
of confidence, this scatter may be described by a confi-
dence region, analogous to a confidence interval. If the
variability is due to a gaussian process, the confidcff“
region is an ellipse. In the special case (see Appendix)
that the gaussian process is not synchronized to th¢

— - — ————— W

DRIVEN

stimulus
rather t
in Fig. 2
The «
confiden
projectic
essential
ratio, F
elongate
iBisan
r=0. T
there s
parts of
confiden
is an exi
r>0.Fo
r+0.Th
Table
wecond h
the respo
and ther
10 the
V(Zf)/V,
The h
simple p1

TABLE I

Analysis of
frequency. |
variance of
less. and the
variance ral
distribution.
arrows denc
tail of their

——

‘=5006H
AL2f)
V20
21y
12f)
V2D V(2

'=7509 H.
A2N
Vi)
Fan
12f)
ven v,

f=100121
AM2M)
vn
F2n
420
Van/ vt



CTOR

ymetric
Juation
ney kf
ulation
In the
arrows
bution.
€ lext.
2 equal

2

erived
e real
‘noted
ike an
eraior
coeff:-
ir=
xd like
t. with
sverall
r de-
es V..

id Vi
seof a
| as a
resents
whose
0mpo-
iter in
d level
. confi-
. If the
fidence
rendix)
1o the

U

A A e - | A— bttt | ... o 11} oS e ks 48 Vo e

DRIVEN AND UNDRIVEN EEG COMPONENTS

stimulus. then the confidence region must be a circle,
rather than a general ellipse. This situation is illustrated

in Fig. 3A.

The quantities r and F describe deviations of the
confidence region from a circle. V,, is essentally the
projection of the ellipse onto the real axis, and V, 1s
essentially its projection onto the imaginary axis. Their
ratio, F, indicates whether the confidence region 1is
elongated horizontally (F > 1) or vertically (F < 1). Fig.
3B is an example of a confidence region with F> 1 and
r=0. The correlation coefficient r indicates whether
there is any interaction between real and imaginary
parts of the variance. A non-zero r thus means that the
confidence region is elongated along a diagonal. Fig. 3C
is an example of a confidence region with F=1 and
r > 0. For the typical confidence ellipse, both F# 1 and
r = 0. This is shown in Fig. 3D.

Table 11 presents measurements of r and F at the
second harmonic of the stimulus frequency, along with
the response amplitude A(2f), the overall variance V(2f),
and the ratio of the variance in the stimulated condition
t0 the variance in the unstimulated condition,
V(2) /V,(26).

The hypothesis of additive gaussian noise leads 10
simple predictions for the distribution of these derived

TABLE Il

parameters. The real and imaginary parts of the van:
ance should be (i) equally distributed and (i) indepen-
dent (see Appendix). If equally distributed, their ratio,
F(2f). should be distributed according to an F distribu-
tion. The number of degrees of freedom is 7, one less
than the number of individual estimates in the sum (7).
If independent, the correlation coefficient r(2f) should
be symmetrically distributed about zero according to
the distnbution of the product-moment correlation
coefficient. The number of degrees of freedom is 6, two
less than the number of individual estimates in the sum
(7). These facts. along with published tables of the
appropriate distributions (Sokal and Rohlf 1969), were
used to determine whether the scatter of F(2f) about 1,
and of r(2f) about 0. was anticipated from chance
alone. Two of the values of F(2f) lie in the lower 5% tail
of the appropriate F distnibution, and two le in the
upper 5% tail. Out of 24 values of F(2f) displayed. it
would be expected that a total of 2.4 values are in these
tails. Finding 4 or more values, rather than the expected
2.4, would occur at least 22% of the time, according to
Poisson statistics. Similarly, out of the 24 values of r(2f)
displayed. one lies in the lower 2.5% tail and two lie in
the upper 2.5% tail. Three or more values in the tails
would occur at least 12% of the time, according to

Analysis of variance at the reversal rate (2f). Summary of Fourier components and their vanances at the second harmonic of the stimulus
frequency. Fourier component amplitude A(2f) is in microvolts, its overall variance V(2f) is in pV°, ratio of the variance of the real pan to the
variance of the imaginary part F(2f) = V,,(2)/V,,(2f) is dimensionless. the correlation coefficient r(2f) = V,"(2[)/[\’,.,‘(2f')Vyy(2f)]'/2 is dimension-
less. and the ratio of the variance in the stimulated condition to the variance in the unstimulated condition, V(2f)/Vy(2f), is dimensionless. For the
vaniance ratios F(20) and V(26)/Vy(2f) and the amplitude A(2f), upward arrows denote values which lie in the upper 5% of their theoretical
distributions, and downward arrows denote values which lie in the lower 5% tail of their distribution. For the correlation coefficient r(2f), upward
arrows denote values which lie in the upper 2.5% of their theoretical distributions, and downward arrows denote values which lie in the lower 2.5%
@il of their disiribution. Theoretical distributions are determined as described in the text.

Subject

BF AV AD XA TA AA SA Y
f = 5.006 H:
QN 24181 09721 101291 45311 23741 2.8841 19751 37451
v 0.225 0.051 1.780 0671 0.490 0817 0.093 0.448
Fn 1.273 0.545 1738 2273 2.684 0.819 1.325 0.629
21 0.078 ~0.023 -0.513 0.103 0.307 -0.103 ~0.465 0.460
V2D V(2D 1.813 0.886 2146 45721 31591 0.986 _ 0.527 47921
[=7.509 Hz ' e
A0 0.5671 03351 10.4631 1.6611 0.6071 13061 0.080 3.0231
van 0051 0.112 1.483 0.119 0.241 0.189 0.121 0.282
F2n 1684 0.836 1.455 0202} 0.882 0.294 0.833 5.4321
2N 0.011 0.395 0.795 1 0.193 0.701 0.166 -0210 ~0.576"
V(2D /Vo(20) 1154 6.8831 38841 2.420 51711 5.9951 3.2021 5.061 1
[= 10012 H: (ST e
A@n 0.9251 0.096 76391 0.6181 12361 22211 21541 22971
ven 0.045 0.086 1.093 0.071 0297 0.348 0.488 - 0273
F1) 0.2504 0323 0.695 1731 1.483 0.432 0.852 5.0661
(1) -0.220 0241 0.8281 0335 0.318 0.469 ~0.7611 0.459
YO0,/ Vo(20) 35221 34191 a.8621 28951 7.1451 17.8321 4.3101 113411
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Fig. 3. Confidence regions and Founier components. A Fourier com-
ponent (zg) may be regarded as 2 vector in the complex plane, whose
length represents the magnitude of the Fourier component and whose
direction represents the phase of the Fourier component. V,, denotes
the variance of the real part of a Fourier estimate and V,, denotes the
variance of the imaginary part of a Fourier estimate; their ratio
V“/V),y is denoted by F. In addition to V,, and V,,, r=V,./
V..V )V2 is required 1o characterize the shape of the confidence
reg:on A shows the confidence region for a Fourier estimate in the
situation that the real and imaginary parts of the estimate have
fluctuations which are uncorreiated (r =0) and of equal variance
(F=1). B is an example of a confidence region with F>1 and r=0.
C is an example of z confidence region with F=1 and r > 0. For the
typical confidence ellipse, both F+#1 and r # 0. This is shown in D.

Poisson statistics. Finally, if either F(2f) or r(2f) were
not randomly distributed, one might expect that more
extreme values would be found under conditions which
produced the largesl enhancement in variance V(2f)/
Vp(2f). As seen in Table 11, this is not the case. s
Thus, there are no apparent sysiematic deviations of
F(2f) or r(2f) from their expected distributions. Em-
pirically, individual estimates of the real and imaginary
parts of the response are uncorrelated and of equal
variance. That is, the confidence interval surrounding a
Fourier estimate must conform to the diagram of Fig.
3A, rather than the alternatives shown in Fig. 3B, C,
—and D. This observation is key to a rigorous approach
10 confidence regions for Fourier components (Victor
.and Mast 1991).
- We now examine the variance ratio V(2f)/V,(2f),
which expresses the change in power at the frequency 2f
in-the stimulated condition, as compared to the un-
timulated condition. Here, the appropriate F statistic
has' 14 degrees of freedom in both numerator and
enominator (since both numerator and denominator
‘have "7 -real and 7 imaginary components). Of the 24

J. MAST, 1.D. VICTOR

measured values, 22 are in the upper 95% tail. This is
not surprising, given the peaks at 2{ seen in Fig. 2A-C.
Across subjects, the average enhancement in power was
by a factor of 1.82 for stimulation at 5 Hz, 3.72 for
stimulation at 7.5 Hz, and 5.66 for stimulaiion at 10 Hz.

For two of the subjects, one temporal frequency
elicited no deteciable driven componcm at 2f: SA 3
f=75Hz AV at f =10 Hz (The T2, statistic (Victor
and Mast 1991) was used to assess significance of
driven response components.) One proposed reason for
the lack of a driven response at 2f is that two or more
generators happen to cancel geometrically (Halliday
and Michael 1970; Jeffreys 1971; Tyler et al. 1978). This
explanation, rather than a lack of responsiveness to the
stimulus frequency, is supported by the fact that both
subjects had driven components at 4/, even though there
was no response at 2f. Here, we emphasize that in both
cases, an enhancement of the variance at 2f of a similar
magnitude as that observed in other subjects was seen.
The bias of V(2f)/V,(2f) to values significantly larger
than 1 is therefore not simply a consequence of a driven
component at this frequency. Rather, it constitutes an
independent index of the efféct of periodic stimulation
on brain activity.

Discussion

Methods for extraction of EPs from the background
EEG traditionally consist of triggered time-domain
averaging, Fourler analysis with or without frequency-
domain averaging, or cross-correlation, with or without
filtering (Regan 1989, pp. 43-45). All of these proce-
dures are fundamentally linear and rely on the
stimulus-locked nature of the evoked potential to dis-
tinguish it from ‘noise.” In this paper, we have analyzed
components of the EEG during periodic visual stimula-
tion and compared this to the EEG activity recorded
without periodic visual stirnulation. The analysis proce-
dure was based on calculation of the variances of Four-
ier estimates. This procedure is not a linear one and is
thus capable of detecting EEG changes not locked 1o
the stimulus.

We first summarize our results. (i) The presence of u
periodic visual stimulus alters the spectrum of the EEG.
Less variance is present in the frequency range 3-17
Hz, and more is present at frequencies below 5 Hz.
Periodic stimulation at 10 Hz produces a greater effect
than stimulation at 7.5 Hz or 5 Hz. (ii) There aw¢
stimulus frequency-specific changes superimposed 07
the overall change in the spectrum. The most prominent
such change is an increase in the variance estimates !
the reversal rate (2f) and its second harmonic (4f). (i)
Even though specific increases in variance occur !
harmonics of the input frequency, this variance is not
synchronized to the ‘driven, or traditional, VEP, a¢
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DRIVEN AND UNDRIVEN EEG COMPONENTS

manifest (Table 11) by the chance distribution of F(2f)
and r(2f).

All of these findings are at odds with the notion that
the effect of periodic visual stimulation is to svnchro-
aize the activity of 2 small number of neurons, and that
e bulk of brain activity, which is responsible for the
hackground EEG. is unchanged. Previous studies have
disagreed as to the nature and importance of interac-
ions between ongoing EEG activity and evoked poten-
iials. For example. Regan (1966) found that EP ampli-
wwdes were unchanged despite epoch-10-epoch vanation
of alpha amplitude of up to 15-fold, and Jones and
Armington (1977) found that ongoing alpha activity did
not become phase-locked 10 a periodic visual stimulus.
On the other hand, Kaufman and Locker (1973) re-
ported intermodulations between a stimulus flickering
at 1.5 Hz and the alpha rhythm, and both Sayers et al.
(1974) and Bagar (1980) have postulated that EPs are
cenerated by complex interactions between stimulus
and EEG. We now turn 1o some possible explanations
for our findings.

Results are not due 10 slow trends or artifacis

One potential explanation for our findings 1s that the
‘driven’ components of the EEG changed slowly with
1ime, either during the course of individual 30 sec data
segments or during the course of the 32 episodes re-
quired for data collection from each subject. However,
there were no significant trends in VEP amplitudes,
either within individual episodes or during the course of
a recording session. Furthermore, although an overall
amplitude change would result in the appearance of
excess variance at the reversal frequency (2f), it could
not explain changes in variance at frequencies such as
3f (at which there was no response) or for those subjects
who had no response at 2f (SA at f=7.5 Hz, AV at
f=10 Hz).

It is also unlikely that artifacts in the EEG record-
ings account for our results. The presence of artifact
was minimized- by several methods. Subjects were well
motivated and cooperative. Stimulation runs were brief
(approximately 30 sec), with ad lib. pauses between
runs. The recording montage (O,-C,) was insensitive to
blink artifacts. The raw EEG signal was visually
inspected during the run, and runs were aborted if large
voltage excursions were observed. Thus, we believe that
the fluctuations of measured Fourier components were
due primarily to neural sources. Furthermore, artifacts
uncorrelated with EEG activity would likely have the
effect of randomly distoriing variance estimates and,
thus, would tend 1o obliterate any systematic stimulus-
dependent findings.

Another potential source of ‘noise’ is the digitization
duning data collection. After amplification, the least-sig-
nificant bit of the analog-to-digital converter corre-
sponded to 0.24 uV. To estimate the contribution of

digitization noise to the measured variance, we may ;
consider the digitization noise to be a noise of uniform_
distribution between +0.12 pV. This has a variance of
(0.12)2/3 < 0.005 uV2. which is insignificant for the’
phenomena we consider here. Furthermore, digitization
noise is present equally with and without periodic: - .
stimulation and, therefore, could not result in the ap--
pearance of any undriven VEP components. '

Role of atiention and related processes

It is well known that attention to a task alters the
EEG (Elul 1969). Similarly, the presence of a predict-
ably changing visual stimulus may influence the
frequency content of the background EEG. This kind of
change of EEG ‘state’ might be a subtler version of the
dramatic difference in EEG frequency content when
eyes are open or closed. Although a state change i1s a
possible basis for the overall depression in EEG power
in the 5-17 Hz range during periodic visual stimulation,
it is unlikely 1o account for changes in the EEG which
are specific to particular stimulus frequencies. For ex-
ample, as seen in Table I, the variance at 10 Hz is
increased by stimulation at 5 Hz but not 10 Hz, while
the variance at 40 Hz is increased by stimulation at 10
Hz but not 5 Hz.

Now consider the possibility that brain responsive-
ness changes in an irregular manner over time. and that
the size of the EP elicited during a particular interval
depends on the brain responsiveness during that period
of time. This kind of phenomenon is suggested by the
work of Bagar (1980), who found evidence for a sys-
tematic dependence of transient EPs on the characteris-
tics of the EEG background immediately preceding the
stimulus. The simplest kind of response modulation
would be a multiplicative one, in which the overall VEP
size depends on a fluctuating brain responsiveness. This
multiplicative interaction of the EP and the EEG prop-
erly predicts an increase in variance at the stimulus
frequency, as we have observed. But it also predicts that
the phase of the VEP is known with greater certainty
than its amplitude, since the postulated multiplicative
interaction would distort response size but not timing.
That is. the confidence region about a Fourier estimate
is predicted to be elongated along the axis of the
Fourier estimate itself (Fig. 4A). This is inconsistent
with the analysis of Table II: the confidence region
remains a circle.

Thus, overall atientional effects on the EEG back-
ground, as well as random modulation of VEP size by a
fluctuating brain responsiveness do not explain our- -
findings. A more complex picture of VEP generation i§° =
therefore required. S

Candidate models for the undriven VEP component SO
Although modulation of overall response amplitude .
cannot explain an increase in variance without an elon-




Fig. 4. Confidence regions and Fourier estimates for some models of
the undriven VEP component. If the increased variance at the reversal
frequency 2f were due to a multiplicative interaction with ‘a fluctuat-
-ing responsiveness, then the confidence ellipse would be elongated
along the direction of the Fourier estimate (A). A superposition of
two components in quadrature, each of which has an independent but
identical multiplicative noise, yields 2 response whose confidence
region is circular (B). A superposition of many components ecach with
their own confidence regions may lead 10 a net response with a nearly
circular confidence region (C).

gation of the confidence region. a simple elaboration on
this model can account for this finding. Let us assume
that the driven VEP has two independent neural genera-
tors, which produce driven components at relative phase
of 7 /2 radians (90°; Fig. 4B). Further, assume that the
fluctuations of these components are modulated in a
multiplicative fashion, and that these fluctuations are
equal in expected size, but statistically independent. If
either component were recorded alone, we would re-
cover the situation illustrated in Fig. 4A. Now consider
the superposition of these two components, and their
respective variances. The driven components and their
variances V,,, V,,, and V,; sum linearly. because vari-
ances of independent processes add. It follows that the
confidence interval for the combined response is cir-
cular.

The orientations of the Fourler estimates themselves

are irrelevant to the above analysis. Other than indepen-
dence of component variances, the crucial features in
_the above model are that the confidence regions about
the two components have orthogonal major axes, and
that these ellipses are of the same size and shape. It
seems relatively unlikely that this would occur for most
subjects under most conditions.

-Although the 2-component model of Fig. 4B relies on

™ -Coincidences to achieve a circular confidence region, it
« does illustrate an important point: components with

J. MAST. J.D. VICTOR

elliptical confidence regions may combine additively (s
form a response whose confidence region is more neariy
circular, without cancellation of the driven EP.

The muliiplicative interaction we have considered iy
only one way 1o generate interactions between back-
ground EEG and the EP. In general, any non-linear
oscillator (Kaufman and Locker 1973; Wilson and
Cowan 1973: Kawahara 1980) driven both by an EP
signal and noise will lead to interactions between the EP
and the ‘noise,” and hence a change in the variance of
Fourier components at the response frequency 2f. The
shape and orientation of the confidence region will
depend on the details of the oscillator’s dynamics. Now
consider the possibility that the VEP is generated by nat
just two components, but many components. The confi-
dence regions for each component will be ellipses with
different eccentricities and orientations (Fig. 4C). How-
ever, if there are enough ellipses of different orienta-
tions, the net confidence region obtained by superim-
posing the components is likely to be roughly circular.

The crucial part of this analysis is that it is ‘easies’
for the eccentricities of confidence regions to cancel
than for the driven components themselves to cancel.
This is because rotation of an ellipse by only 90° leads
to cancellation (Fig. 4B) of eccentricities, while rotatior
of the response vector by 180° is required for cancelli-
tion. Conversely, synchronization of driven EP compo-
nents may be relatively crude (i.e., within 180°), and a
net driven EP will result. However, the uncertaint:
ellipses must be within 90° of a common phase to avoid
cancellation.

Changes in the variance ai the stimulus repeat frequerc
Because of the symmetry of the pattern-reversi!
stimulus, we do not anticipate any driven EP compe-
nents at the stimulus repeat frequency f. In broadest
terms. this is because a single reversal of the stimulus is
equivalent to a translation of the stimulus. Since scalp
recording sums over a wide region of cortex, such
translations cannot yield a net driven response.

The simple cells (De Valois et al. 1979) of priman
visual cortex and likely other cell types as well) are
anticipated to be driven at the fundamental frequency .
Even though symmetry forbids recording their net sig-
nal as a driven EP, the analysis above would suggest
that periodic activation of these neurons will lead 0
increased variance at f. However, in contrast to the
fairly large variance increases seen at 2f and 4f (Table
1), there is little if any increase in variance at f. (In-
creased variance at f might also be manifest as *period-
doubling,” which appears to be evanescent and rarel:
substantial (Regan 1972, p. 236).) One possibility fot
the apparent lack of a variance increase at the funda-
mental frequency f is that it, also, it cancelled by the
same symmetry considerations which cancel the driVef‘
response at f. We point out that this can only occuf if
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ditively (o 1 he ‘noise’ sources are highly corrglalcd over a cortical We are imeres?ed in the distribution of thej deviation:s;"
\ore ﬂe-arl\‘ 3 «ale corresponding to the check size. of individual estimates zg(w L. T) from their expcc}c;d‘»
P. © values (zg(w,L.T)), denoted by ézg(w.L.T). For sim-:
isidered i ‘i Changes in rhef variance at other harmonics ‘ plicity, we will assume that we have sufﬁciept data so- 3
een baci. | The znalysis above does nol.gddrcss the chapges in that we may approximate {z¢(«w.L.T)) by is sample
non-liney, 1 Power 1‘hat appear al a range of integer hgrmomt;s (kf) estimate (zg(w,L.T)),,. As shown by equation (10)
ilson ang of the 1nput frequencies (Tgb]e I). It is interesting o above, 8z¢(w,L,T) depends only on the ‘noise’ term
by an Ep sote that the largest changes in variance occur at aTound E(t):
enthe gp & 0 Hz, independent of whether this frequency is the ‘ .
ariance of | cond harmonic of the inpgt frequency (f = 10 Hz) or §25(w,L.T) = j‘ E(1) W(t = T) e™*' dt (14)
v 2f. The the fourth harmonic of the input frequency (5 H.z). Al o
pion wij | present. we display these data as a future basis for where W(1) again denotes the windowing function, such
1ics. New , ~valuation of specific non-linear mode‘]s and do not as eqn. (2).
ed by nor ' stempt to draw additional qualitative inferences from The real and imaginary parts of (14), 8x¢(w,L.T) and
‘he confi- them. 8ys(w, L T), are distributed in a gaussian fashion (be-
pses with ’ ) cause they are linear superpositions (14) of gaussian-dis-
C). How- | Conclusion o ) tributed quantities) and have a mean of zero. Thus,
orienta- | We have shown that a periodic visual pattern in- their joint distribution is completely determined by
superim- | Juced changes in the EEG in add_iuon to the lradx}lona] their variances and covariances.
circular, | driven’ EP. The nature of these interactions Prowdes a We examine the covariance of the fluctuation of an
s ‘easier ' new insight into the complexity of mechanisms that estimate at the frequency w = 2nz/P at time T, and the
o cancel | undef“? EP generation, fluctuation of a second estimate at the frequency ' =
y cancel. . Previously, there has been relatively little evidence 2n'm/P at time T'. It is helpful to express all times
2° leads | for inlergctions between steady-state VEP signal and other than T, the rm'dpoini of the first interval, in terms
rotation |I the ongoing EEG (Van der Tweel and Verduyn Lgncl of new variables as follows: (i) D=T - T, the time
sancella- i 1965; Regan 1966: Kaufman and Locker 1973). Since between the midpoints of the two intervals used for
compa. - “ome of the phenomena we have observed are not small estimates: (ii) 7 = t — T. time relative to the midpoint of
). and & I icp.. a 6-fold increase in variance), we suspect that the first interval; and (ifi) h= (1’ = T') = 7, time rela-
ertaint EP/EEG interactions are not well appreciated simply tive 10 the midpoint of the second interval minus 7.
10 avord ' hecause routine data collection techniques strive 10 ob- With this change of variables, the covariance of
literate them. fluctuations of the real parts of 2 estimates (14) is:
| (8xg(w,L,T) 8x5(w’.L,T"))
equency
reversal ! Appendix: characteristics of fluctuations of Fourier com- = (/fx E(D)E(t") W(t = T) W(' = T") cos(wt)
conmpo- i ponents —= L
'roladcg I xcos(w't’) dt dt”)
nulus s .
o ceni (  Here we examine the Fourier components zg(w,L.T) _a = ,
f s::clg i! in greater detail. The main goal is to understand how I (/f_xE(T +7)E(T+7+h+D) W(r) W(r+h)
variances and covariances of the real and imaginary ,
JAmary l parts of zg behave under the hypothesis (8) that the X {COS[Q(T-'- 7) +f” (T+7+h+ D)]
) are | calp signal is'a sum of two components: an evoked +cos{w(T+7) =’ (T+7+h+D)])} dr dh).
ency . l re'sponse R(1). apd ongoing ‘noise’ unrelated to th.e (15).
et sig- | Stimulus E(1). This Appendix also calculates the covari- This expression now may be simplified. Fluctuations of
suggest ’ ances of Fourier components 25(w.L.T) and 25(w.L.T") the ‘noise’. E(1) are independent of the remaining quan-
ead 1o | obtained at Successive umes. ) . tities (W(1) and the cosine terms) in (15). Thus, in the
o the | To address the issue of the covariances of the Fourier calculation of the ensemble-average () in (15), E(T +
(Table | components, we must postulate some form for the ‘noise’ 7)E(T+7+h+D) can be réplaced by its expected
f. (In- I term E(t). We will assume that E(t) is represented by a value A(h + D). as given by (13). This leads to
seriod- gaussian, though not necessarily white, noise of mean §xg(w,L.T) 6‘ (o' LTy
' zero (Elul 1969). Therefore, E(1) is completely described (0xs{w.L, xs(«”L.T7))
rarely e .
ity for by its autocorrelation function A(h), which is defined as = %(ff A(h+ D) W(r) W(7+h)
Ll;lmtjlfe l A(h) "<E(T)E(~T+h)> o ‘ (13) x {cos|w(T+ 7))+« (T+7+h+ D)]
driven I The autocorrelation function is symmetric: +cos|w(T+7)— ' (T+7+h+D)]) drdh)

scur if

A(h) = A(-h).

~(16)
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"~ The expected value { ) is an average over an ensemble

of repetitions of the experiment. Since it only depends
- on the ‘noise’ E(1), it must be independent of the
absolute time T chosen for the first interval. This can
only happen-if the above expression is zero, or if &' = «

or-w= —«". In these cases, we find

(8xg(w.L.T) xg(£w.L.T'))
=1f[” A(h+D) W(r) W(=+h)

x cos[ w(h + D)] d+ dh
A similar argument leads 1o
(8ys(w.L,T) 8ys(+w.L.T))

- igf/_‘” A(h+ D) W(r) W(r+h)

(17)

X cos[ w(h + D)] dr dh (18)

and
(6"5(&-‘,1.,’1“) Sys(+w L T'))

- i-}ff—mA(h+D) W(r) W(7+h)

xsin[ — «(h + D)] dr dh (19)

We first focus on estimates from the same inter-
val (T=T’, D=20), and then for distinct intervals.
When both estimates are from the same interval (T =T’
and D = 0), the covariance of the real and imaginary
part of the fluctuation is zero, because of the symme-
try of the function A(h). Furthermore, the variances

(8xg(w,L,T) 6xs(;tw,L,T)} (equation (17))
and + (8y,(«.L.T) 8ys(+w,L,T)) (equation (18))

of fluctuations of the Fourier coefficients estimated
from an interval of length L are equal. We denote this
quantity by V(L)/2, with

V(L)=ff_x A(h) W(7) W(r+h) cos(wh) drdh
(20)

The results thus far may be summarized as follows:
fluctuations of the estimates of Fourier components are
gaussian-distributed quantities of mean zero, and may
therefore be characterized completely by their variances
and covariances. Fluctuations in the estimates of Four-
ler components at two frequencies w and w’ are inde-
pendent - unless the frequencies coincide (w= +w’).
When the frequencies do coincide, the covariance of the
fluctuations in the real parts (17) and imaginary parts
{(18) are equal. Covariances of fluctuations in estimates
from two intervals depend on the time interval D be-
tween the two data samples used for the estimate, and
- -on the autocorrelation function of the noise process, but
7" nor on‘the evoked response R(t). In the specxal case that
,the Awo intervals coincide, fluctuations in the real and
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imaginary portions of the estimates are uncorrelaied.
and their total variance is given by V(L) (equation 20).

To understand the relationship beiween the covar;.
ances and the separation D between the two intervals
we transform the expressions (17), (18), and (19) inwo
the frequency domain. For this purpose. expressions
(17) and (19) are conveniently combined into a common
expression:

(6xs(w,L,T) 8z,(w, L. T"))
= (8x5(w.L.T) 6x5(«,L.T"))
+ (8xg(w,L,T) 8ys(w L, T'))

=3[ A(h+D) W(r) W(r +h)e™""D dr dh
(211

Application of the convolution formula for Fourier
transforms to (21) yields

<8XS(w.L.T) BZS(w,L,T/))
=2w2/gc Alw+¢)|W(e)|? e*Pde (22)

where A(¢) and W(¢) are the Fourier transforms of
A(h) and W(h):

Ale) = %fif’*(h) e™**" dh; A(h) = j_:A(,b) e d.

(23)
and
W(e) =5z [~ W(h) e dn:
W(h) = [* W() e do. (24

The expression (22) can be approximated if the power
spectrum A may be regarded as approximately flat in
the vicinity of w. For a sampling window W of length L.
only frequencies ¢ which are small in comparison
27/L contribute 10 the integral (22) because of the
windowing term [W(¢)|2. Thus. for sufficiently large
L, we may approximate the covariances (22) by

(8xg(w.L.T) 6z5(w,L.T'))

]

202 A(w) [ [W($) 1% e*Pdo

(25)

T A(w)[W*W](D),
where [W X W](t) is the convolution of the window
function (2) with itself:

[WaW](1) = (L - |t])/L%if |t] <L
[W=*W](t) = 0. otherwise.

Thus, the variances and covariances (25) of (h¢
fluctuations of estimates of Fourier components ar

(26)
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spproximated by a product of two terms. One term,
A(«), is the amount of power in the ‘noise” near the
f-equency of interest «. The second term. [W X W(D).

' expresses the extent of overlap of two window functions

.cparated in time by D. In general. since {W= Wi is
sero for all arguments outside of the range [—L. 1]
esumates of Fourier components from non-overlapping
intervals (|D | > L) are essentially independent. This ap-

| proximation is valid provided that L is large enough so

that the power spectrum A(+) is approximately flat
within a frequency window 27 /L about w.

We have seen that if the data interval L is sufficiently
jong. then spectral estimates from non-overlapping seg-
ments are independent. This is exactly the same crite-
non for L that ensures that the power spectrum, as
;igorously defined by the limiting process (5), is ade-
auately approximated by an estimate obtained from a
finite value of L. To see this, we specialize (25) 1o
T=T'. We find
o<

bzg(w LT) |y = an? Ae) [ |W(9)| d

=27 A(w) [W*W](0)

=27 A(w)/L. (27)
li follows immediately from (5) that if the approxima-
tion (25) is valid, then the power spectrum S(w) is the
Fourier transform of the autocorrelation of the noise
process A(w).
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