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Edge-like and line-like features result from spatial phase con-
gruence, the local phase agreement between harmonic com-
ponents of a spatial waveform. Psychophysical observations
and models of early visual processing suggest that human
visual feature detectors are specialized for edge-like and line-
like phase congruence. To test whether primary visual cortex
(V1) neurons account for such specificity, we made tetrode
recordings in anesthetized macaque monkeys. Stimuli were
drifting equal-energy compound gratings composed of four
sinusoidal components. Eight congruence phases (one-
dimensional features) were tested, including line-like and edge-
like waveforms. Many of the 137 single V1 neurons (recorded at
45 sites) could reliably signal phase congruence by any of
several response measures. Across neurons, the preferred spa-
tial feature had only a modest bias for line-like waveforms.
Information-theoretic analysis showed that congruence phase
was temporally encoded in the frequency band present in the

stimuli. The most sensitive neurons had feature discrimination
thresholds that approached psychophysical levels, but typical
neurons were substantially less sensitive. In single V1 neurons,
feature discrimination exhibited various dependences on the
congruence phase of the reference waveform. Simple cells
were over-represented among the most sensitive neurons and
on average carried twice as much feature information as com-
plex cells. However, the distribution of the indices of optimal
tuning and discrimination of relative phase was indistinguish-
able in simple and complex cells. Our results suggest that
phase-sensitive pooling of responses is required to account for
human psychophysical performance, although variation in fea-
ture selectivity among nearby neurons is considerable.
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Psychophysical studies of spatial vision have demonstrated the
importance of spatial phase information in shape perception
(Burton and Moorhead, 1981; Oppenheim and Lim, 1981), tex-
ture discrimination (Klein and Tyler, 1986; Rentschler et al.,
1988), and contour integration (Field et al., 1993; Kovacs and
Julesz, 1993; Dakin and Hess, 1999). Edge-like and line-like
features are examples of salient spatial cues defined by phase.
Detection thresholds for compound gratings (Tolhurst, 1972;
Shapley and Tolhurst, 1973; Tolhurst and Dealy, 1975), and the
discrimination sensitivity for the relative spatial phase of har-
monic components of compound gratings (Burr, 1980; Badcock,
1984a, b; Burr et al., 1989) as well as the phase dependence in
monocular rivalry (Atkinson and Campbell, 1974) and afterim-
ages (Georgeson and Turner, 1985), are all consistent with the
existence of two classes of feature detectors, one tuned to edge-
like and the other to line-like waveforms. Human discrimination
of relative phase requires contrasts markedly above detection
threshold, (Nachmias and Weber, 1975), indicating that the mech-
anism underlying discrimination is nonlinear.

The prevailing view of early vision posits localized and spec-
trally band-limited image analysis at multiple spatial scales. The
privileged role of lines and edges as features in human vision is
posited to derive from phase congruence (Morrone and Burr,
1988). This is illustrated in Figure 1. Phase congruence denotes a

local phenomenon whereby harmonic components across spatial
scales share a common phase and, consequently, reinforce that
phase by summation. Edges and lines are examples of salient
phase congruence across spatial scales. Sensitivity to phase con-
gruence requires the existence of local mechanisms that compare
relative phase information across multiple scales.

Theoretical work also motivates these experiments. The non-
linear feature detector model developed by Burr and Morrone
(1992) derives an edge versus line feature dichotomy from the
orthogonal odd versus even symmetry of the spatial function of
these features’ cross-section. The first stage of their model con-
sists of even/odd symmetry-sensitive linear spatial filters, ideal-
ized cortical simple cells. The second stage, intended to represent
complex cells, implements a local energy operator: squared filter
outputs are summed within a single orientation band in a phase-
specific manner. At the final stage, features are identified by a
winner-take-all localization of maxima in the map of feature
energy. The model of Burr and Morrone (1992) makes successful
qualitative predictions of illusions, quantitative predictions of
thresholds, and testable predictions for the roles of simple and
complex cells in feature detection and discrimination.

Our paper expands on earlier studies that assayed with spatial
compound gratings the feature (relative phase) selectivity of
single neurons in the primary visual cortex (V1) of cat (De Valois
and Tootell, 1983; Levitt et al., 1990) and monkey (Pollen et al.,
1988). We found that nonlinearities contributed to feature coding
in the entire frequency band of the stimulus. Most response
harmonics, but not the DC, were tuned to features. Preferred
features were rather evenly distributed in V1 (edges or lines were
not overtly over-represented) and also varied within local clusters.
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Feature discrimination threshold in the most sensitive V1 neu-
rons approached human psychophysical thresholds. These state-
ments held for both simple and complex cells. The pattern of
feature tuning and discrimination observed in V1 neurons puts
new constraints on our models of cortical circuits.

Parts of this paper have been published previously at the 1998
and 1999 Annual Meeting of The Society for Neuroscience
(Mechler et al., 1998a, 1999).

MATERIALS AND METHODS
Physiolog ical preparation. Standard acute preparation techniques were
used for electrophysiological recordings from single units in the V1 of the
primate (cynomolgus monkeys, Macaca fascicularis). All procedures
were in accordance with institutional and National Institutes of Health
guidelines for the care and experimental use of animals. Some details of
the techniques have been given earlier (Mechler et al., 1998b).

Experiments were performed on 14 adult animals, weighing 3–4.5 kg.
Before surgery, animals were given atropine (0.1 mg/kg, i.m.) and then
anesthetized with ketamine (10 mg/kg, i.m.; Ketaset, Fort Dodge, IA).
Anesthesia was maintained with sufentanil citrate (3–6 �g � kg �1 � hr �1,
i.v.; Sufenta, Janssen, Titusville, NJ), and muscle paralysis was induced
(after all surgical procedures) and maintained with pancuronium bro-
mide (0.1 mg � kg �1 � hr �1, i.v.). Dexamethasone (1 mg/kg, i.m.) and
gentamicin (5 mg/kg, i.m.) were given to help prevent the development
of cerebral edema and infection, respectively. The animal was ventilated
through an endotracheal tube. Heart rate, EKG, arterial blood pressure,
and end-tidal CO2 were continuously monitored with a Model 78354A
Hewlett-Packard Patient Monitor and kept in the normal physiological
range. Core body temperature was maintained between 37 and 38°C
using a thermostatically controlled heating pad. The EEG was obtained
from frontal leads and monitored on an oscilloscope.

A limited unilateral craniotomy to expose the primary visual cortex
was made overlying and posterior to the lunate sulcus (the Horsley-
Clarke stereotaxic coordinates were typically 14–16 mm posterior and
14–16 mm lateral). A 1–2 mm durotomy was made for the recording
electrode, which was stabilized after insertion by agarose gel.

Extracellular recording. Spike responses of single units were recorded
extracellularly. We used either traditional glass-coated tungsten micro-
electrodes (single tip; typical resistance 2 M�) (Merrill and Ainsworth,
1972; Ainsworth et al., 1977), or quartz-coated platinum-tungsten fibers
tetrodes (Thomas Recording, Giessen, Germany). Tetrodes had a conical
tip, with four contacts of �1 M� each, �25 �m apart: one at the apex
and three arranged in radial symmetry on the conical surface. A stepper
motor advanced either type of electrode in 1 �m steps.

The signals from the electrode or tetrode channels were passed
through a unity gain (for the tetrode, multi-channel) differential head-
stage amplifier (NB Labs, Denison, TX, or NeuraLynx, Tucson, AZ),
and then further amplified and filtered (0.3–6 kHz pass-band, Neura-
Lynx eight-channel differential amplifier). Analog candidate spike wave-
forms, as detected by a threshold criterion, were digitized at 25 kHz
within a short (�1.2 msec) temporal window containing the peak ampli-
tude, and then recorded on computer disk (Discovery software, Data-
Wave Technologies, Longmont, CO). Multiple single units were isolated
by cluster analysis of spike waveforms initially performed on-line (Au-
tocut, DataWave Technologies), then off-line [custom software (Reich,
2001)]. Isolation criteria included stability of principal components of
spike waveforms and a 1.2 msec minimum interspike interval consistent
with a physiologic refractory period. Spike times for further data analysis
were identified off-line to 0.1 msec, the accuracy to which the clocks of
the recording computer and the stimulus generator were synchronized.

Histology and laminar assignment of recording sites. Experiments lasted
for 4–5 d, at the end of which the animal was killed by infusion of a lethal
dose of methohexital (Brevital; Eli Lilly & Co., Indianapolis, IN). After
transcardiac perfusion with 4% paraformaldehyde in PBS, a block of the
occipital cortex containing the penetration was saved for histological
reconstruction of the electrode track. The block was cut in 40-�m-thick
parasagittal sections, approximately parallel with the plane of the elec-
trode penetration. Lesioned landmarks and fluorescent tracing aided
track reconstruction. Electrolytic lesions (5 �A � 5 sec, electrode posi-
tive) were made, on withdrawal after recording was completed, at two or
more points along all the tracks made with an Ainsworth single elec-
trode, and on some tracks made with tetrodes. Fluorescent full-track
tracing was made with the lipophilic dye Dil (D-282; Molecular Probes,

Eugene, OR). The dye, applied in a thin coat on the tetrode tip before
penetration, left a �40- to 200-�m-wide trace from entry to the point of
deepest penetration. These traces were easily identified in fluorescent
micrographs prepared from sections before Nissl staining. In the same
sections, the laminar boundaries were identified from the overlaid light
micrographs of the Nissl density taken after Nissl staining. Lesions were
also best identified on the Nissl-stained sections. Laminar positions of the
recording sites were estimated relative to the pattern of Nissl density
along the reconstructed electrode track after correction for tissue shrink-
age. With this method we successfully identified the laminar position of
two-thirds of the recording sites. Sites near a laminar boundary within
the precision of reconstruction were classified as located in either lamina
across the boundary. However, even with good histology, occasionally
landmark positions could not be found or remained ambiguous, and
laminar positions were either not assigned to recording sites or could only
be classified in one of three gross divisions (granular, supragranular, or
infragranular layers).

Optics. The eyes were treated with anti-inflammatory (Ocufen) and
anti-bacterial (neomycin) ophthalmic solutions. Pupils were dilated with
topical application of 1% atropine sulfate (Atrosulf-1; Optics Laborato-
ries Co., Fairton, NJ) and covered with gas-permeable contact lenses
(Metro Optics Inc., Houston, TX) under eyelids retracted with 6-0
chromic gut sutures. Artificial pupils (2 mm) and corrective lenses were
used to focus the stimulus on the retina. Optical correction was estimated
by retinoscopy and then refined by optimizing responses of isolated
single units to high spatial frequency visual stimuli.

Visual stimulation. Foveae were mapped on a tangent board by back-
projection with an ophthalmoscope. The receptive fields of isolated
neurons were mapped on the same board with a laser. The standard
simple/complex classification, based on the modulation ratio, was used: if
the fundamental of the response to a drifting grating of near optimal
spatial parameters was larger than the DC component (after subtraction
of the maintained rate of firing), then the cell was cast as simple, and
complex otherwise (Movshon et al., 1978b; De Valois et al., 1982;
Skottun et al., 1991).

Visual stimuli were generated by a special purpose stimulus generator
(Milkman et al., 1978, 1980) under the control of a PDP-11/93 computer
and displayed on a Tektronix 608 monochrome oscilloscope (green
phosphor; 150 cd/m 2 mean luminance; 270.32 Hz frame refresh). The
luminance of the display was linearized with lookup tables in the range
of 0–300 cd/m 2. At the 114 cm viewing distance of the animal, the stimuli
appeared in a 4° circular aperture on dark background.

After isolation of single units, their receptive fields were characterized
in a standard way using drifting sine gratings: tuning was measured first
for orientation, then for spatial frequency, and finally for temporal
frequency, each parameter optimized for subsequent tuning measure-
ments. The contrast response function was measured using the optimal
sine grating. When multiple single units were simultaneously isolated
with tetrodes, receptive-field characterization was always done for the
most responsive unit, and often for a second unit. For many neurons, the
receptive field was also characterized with pseudorandom black-and-
white checkerboards modulated by long (2 12-1 frames) binary
m-sequences at 67.58 Hz. Our implementation of m-sequence stimuli and
associated analysis procedures have been described in detail previously
(Victor, 1992; Reid et al., 1997; Reich et al., 2000).

Compound gratings. In our experiments, 1D gratings were drifting at or
near the optimal orientation and direction for the V1 neurons. With the
spatial origin centered on the display, the spatiotemporal light variation
�I(x,t) around a spatiotemporal mean intensity I0 in a single drifting sine
grating is described, in cosine formulation for convenience, by:

�I� x,t� � I0Ccos�2���x � ft� � ��, (1)

where C is the Michelson contrast (defined as C � [max(�I ) � min(�I )]/
I0 ), � is spatial frequency (c/°), f is temporal frequency (in Hz), and � is
relative phase (in radians). At time zero, the intensity peak is at position
��/2k� (so, if � � 0, it is at the origin). The drift velocity of the grating
is v � f/�. Compound gratings are linear combinations (spatiotemporal
superpositions) of these single sine gratings.

Each of our compound-grating stimuli is constructed from four of
these single-grating harmonic components. We use a superposition of
odd harmonics. That is, the mth component grating is chosen to have a
frequency equal to 2m-1 times the fundamental. Consequently, the light
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variation around the mean intensity in the mth component, Sm(x,t), is
given by:

Sm� x,t� � I0Ck�m� cos�2��vk�m� x � Fk�m� t� � ��, where
(2)

Ck�m� � C/�2m � 1�

�k�m� � �2m � 1��

Fk�m� � �2m � 1� f, m� 	1,2,3,4
.

Thus, the four gratings included a fundamental and its third, fifth and
seventh harmonic (see Fig. 2a, boxed area), each with a contrast inversely
proportional to the harmonic number, and at the same drift velocity v �
Fk /�k � f/�. For the fundamental, we used a low-frequency sine grating
(typically, � � 0.25 c/°, and f � 0.78 Hz; v � 3.1 °/sec). These funda-
mentals were selected so that the higher harmonics up to the seventh fell
within the pass-band of most cells. Across the set of compound gratings,
the spatial and temporal frequencies and the contrasts of the four
components were unchanged, but the phases were varied systematically
to specify the shape of the compound waveform. With the above nota-
tion, the light variation (around the mean intensity) in the compound
grating stimuli that we used is given by:

W�� x,t� � �
m�1

4

Sm�x,t� � I0C �
k� 	1,3,5,7


1
k

cos�2�k�vx � ft� � ��. (3)

Thus, � plays the role of the congruence phase, i.e., the phase shared by
all components at x � 0 and t � 0 (Fig. 1). As seen in Figure 2b, we
sampled the congruence phase in eight equal steps on the [0,�) phase
interval to construct eight different compound waveforms. The ampli-
tudes of the four component gratings were chosen so that, when com-
bined with phase � � �/2, these components constitute the first four
non-zero Fourier components of a square wave (or edge; see Fig. 2a).
Because the amplitudes of the components were the same for each
stimulus, all the compound gratings thus constructed had equal energy.
For a comprehensive discussion of the mathematical properties of our
compound gratings, see Appendix.

Note that the phase parameter � specifies the shape of each compound
grating. As the phase parameter increases from 0 to �, the compound
waveform smoothly varies, from line-like (at � � 0), to edge-like (at � �
�), and then back to line-like (via a different sequence of waveforms).
This sequence of waveforms is then repeated as � varies along the [�,2�)
interval. Note that a waveform constructed with a particular value of � is
shifted by half a period (either in time or in space) when � is replaced by
� � �, and thus does not produce new stimuli. In summary, by varying
a single phase-parameter on just half the circle, we create a “feature
space” of one-dimensional (1D) equal energy compound gratings. We
call the corresponding parameter space the “phase circle,” keeping in
mind that it comprises the periodic continuation of the [0,�) interval. In

Figure 2b, this feature space is illustrated with the eight equally spaced
samples around the phase circle that we used in these experiments.

Note that although the edge-like combination of an infinite number of
sine components is convergent (because it is the Fourier series of an
edge; see Fig. 2a) the infinite series does not converge for any other phase
congruence. Consequently, with the exception of the edge-like stimulus,
the peak (Michelson) contrast of each compound waveform would grow
without limit, albeit slowly, as additional odd-harmonic components were
added. However, this does not lead to any practical difficulties, because
we use only a finite set of gratings for all phase combinations. For a fixed
set of components, the Michelson contrast in our feature space decreases
monotonically (as a cosine function of congruence phase) from line to
edge in either direction on the phase circle. The Michelson contrast is
largest for the line-like waveform (congruence phase � � 0), the contrast

of which at peak is C�1�
1
3�

1
5�

1
7�, and smallest for the edge-like wave-

form (congruence phase � � �/2), the contrast of which at peak corre-

sponds to C�1�
1
3�

1
5�

1
7�. We set the contrast of the fundamental com-

ponent C to 0.5 so that the modulation of the four-component line-like
waveform had a Michelson contrast of 0.84. The root-mean-square con-
trast was 0.38 for each compound grating.

Data analysis. Off-line data analysis was performed in the Matlab
programming environment using custom software. In general, fast Fou-
rier transforms were used whenever Fourier analysis is mentioned. The
details of the information analysis based on Fourier metrics have been
given previously (Mechler et al., 1998b). Matlab toolbox functions, as
well as custom programs, were used to perform tests of statistical signif-
icance. Specifics of each data analysis will accompany the description of
the corresponding results.

RESULTS
Data were obtained from V1 neurons with parafoveal receptive
fields (centered at 2–5° eccentricity). Following convention, we
used the modulation ratio (see Materials and Methods) for the
classification of V1 neurons: if the modulation ratio exceeded 1.0,
neurons were classified as simple cells, and complex cells other-
wise. A total of 226 data sets were collected from 137 neurons (88
complex and 49 simple) from 45 recording sites. Criteria for
quantitative analysis were (1) good isolation was maintained
throughout the experiments described below, and (2) responses to
at least one of the compound gratings were reliable (d� 
 1.0 for
the amplitude of any of the first six Fourier components of the
response in comparison to the blank condition, or �

i�0

5
d�i 	 3.0

across these first six components). Slightly more than half of the
data sets met these criteria. These 121 data sets from 32 recording
sites included 78 data sets from 46 complex cells and 43 data sets
from 31 simple cells. (Some cells yielded two data sets from
compound gratings of different drift velocity). Note that in each
recorded cluster the fundamental frequency and orientation of
the compound gratings were optimized for one cell only (usually
the most robustly responding one). Because grating parameters
were not necessarily optimal for each cell in the cluster, the
fraction of cells that could yield responses that met analysis
criteria (had they been stimulated with gratings of optimal ori-
entation) may be higher than 77/137. Cells that did not meet the
above selection criteria for analysis typically also responded
poorly to the component gratings presented alone at the selected
frequencies and orientation.

Feature tuning in V1 neurons
Our aim in this study was to gain insight into how V1 neurons
signal and discriminate spatial waveforms, including those that
resemble salient spatial features such as edges and lines. These
features are presumed salient because of spatial phase congru-
ence. We know that although appropriate symmetry-selective

Figure 1. The definition of congruence phase, �. At the location of phase
congruence, components reinforce the local spatial feature that dominates
the compound waveform. Depending on their congruence phase, �, the
sum of the same four component gratings can give rise to very different
spatial compound waveforms. On the lef t, the components are combined
in cosine phase (� � 0). The harmonic components coincide at their
peaks, leading to a waveform of alternating bright and dark lines. On the
right, components are combined in sine phase (� � �/2). The harmonic
components coincide at their position of maximal slopes, leading to a
periodic sequence of on- and off-edges approximating a square wave.
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filtering is necessary, linear filtering alone cannot explain the
underlying feature-extraction mechanism. Subcortical visual pro-
cessing involves nonlinear transformations, but these transforma-
tions are primarily related to adjustment of overall gain and
dynamics, and are not orientation or feature specific. Thus, the
neuronal circuitry that performs feature extraction in primates is
almost certainly at a cortical level.

The neuronal implementation of feature extraction, however, is
as yet unknown. Natural candidates for the pre-filters are V1
simple cells the receptive field profiles of which have the appro-
priate even or odd symmetry as required by a local energy model.
Although the analysis of phase selectivity to spatial compound
gratings is a necessary step in understanding the relationship of
these neurons to feature extraction, only a few studies of single
neurons evaluated this directly: De Valois and Tootell (1983) and
Levitt et al. (1990) in the cat, and Pollen et al. (1988) in the
monkey. Our study extends these earlier works by examining
responses to more complex ( f � 3f � 5f � 7f) compound gratings
at a closely spaced set of relative phases, and also responses to the
components themselves. To obtain good statistical confidence, we
typically recorded responses for 100 repeats of each stimulus.
With tetrodes, we simultaneously probed multiple nearby neu-
rons, thus examining the local variation of phase selectivity of V1
neurons. These measures allowed us to address questions about
spatial feature extraction in V1 that have both neurophysiological
and psychophysical implications.

The defining feature of simple cells is the simple, approxi-
mately linear fashion in which they appear to sum spatial stimuli
within their classical receptive fields (Hubel and Wiesel, 1962),
but it is well recognized that this approximate spatial linearity is
typically compounded with various types of nonlinearity (Mov-
shon et al., 1978a; Albrecht and Geisler, 1991; Carandini et al.,
1997a). Strict linearity mandates that a response contain only
components at those temporal frequencies that are present in the
stimulus. If simple cells were strictly linear, the amplitude and
phase of each harmonic component of their response to the

compound grating would depend only on the corresponding com-
ponent grating in the stimulus. The presence of other stimulus
components, or the phase in which they are combined, should be
irrelevant. Consequently, if we were to restrict the response
measure to a single harmonic present in the stimulus, the mag-
nitude and phase of this response harmonic would be identical for
all of the compound gratings, up to a phase offset corresponding
to the phase offset in the stimulus. Moreover, responses at even
harmonics should be absent, because the stimulus components are
restricted to the first four odd harmonics. However, nonlinearities
are expected in the response to compound gratings even in simple
cells. The most obvious nonlinearity in all V1 neurons is a spike
threshold. Other nonlinearities expected in all V1 neurons include
contrast gain control (Albrecht and Hamilton, 1982; Bonds, 1989;
Heeger, 1992), which is thought to be phase-insensitive, and pat-
tern adaptation (Maffei et al., 1973; Carandini et al., 1997b, 1998),
which may be phase-sensitive. The aim of the initial analysis was to
identify the effects of these nonlinearities in the responses of
simple cells to compound gratings. We also asked whether nonlin-
ear responses are tuned to spatial waveforms, and if so, how the
tuning is distributed in the population of V1 simple cells.

Responses of a paradigmatic simple cell are shown in Figure 3.
This layer 4C
 simple cell had little spontaneous activity in the
absence of visual stimuli (shown as the blank condition, i.e. a
uniform screen of luminance set at the mean of the grating stimuli
in Fig. 3a). Single drifting gratings (those in Fig. 3a, as well as
other sine gratings used for characterizing the neuron; data not
shown) elicited responses that seemed close approximations to
half-wave rectified sinusoids the modulation frequency of which
was that of the first harmonic component of the stimuli. This
behavior is characteristic of typical simple cells, both in our data
and as previously reported (Movshon et al., 1978a; Skottun et al.,
1991). Responses elicited by the set of eight compound gratings
are shown in Figure 3b, organized according to the position of the
compound gratings in the feature space. This simple cell re-
sponded with a robust burst of spikes to the passage of an

Figure 2. Construction of our compound grating
stimuli. a, A square wave (edge) is a linear com-
bination of an infinite series of spatial sine waves.
This Fourier decomposition of the edge contains
only the odd harmonics of the fundamental spatial
frequency f, each with amplitude inversely propor-
tional to its harmonic index. Note that the compo-
nents have the same relative phase (� � �/2 at the
location of the spatial feature, the edge. This iden-
tical relative phase of the components at the loca-
tion of the spatial feature is called the congruence
phase. b, The eight equal-energy compound lumi-
nance gratings used in our experiments (thick
lines) were built of four sinusoidal components
(thin lines), the first four non-zero components of
an edge ( f through 7f shown boxed in a). The
congruence phase, �, is varied in eight equal steps
counterclockwise around the phase circle [0,�).
The spatial waveform of the compound gratings
varies smoothly with �, from line-like (� � 0)
through edge-like (� � �/2) back to line-like (� �
�) through intermediate transient waveforms. No-
tice that the line-like waveform obtained with � �
� is a half-cycle shifted version of the waveform
with � � 0. Correspondingly, the variation in
waveform observed throughout the [0,�) phase
interval is repeated on the [�,2�) phase interval,
with a half-cycle shift in the compound waveforms.
Because all stimuli were presented as drifting waveforms, this spatial shift is equivalent to a half-period temporal delay. Therefore, stimuli on the [�,2�)
phase interval duplicate those in the [0,�) phase interval.
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OFF-transient (luminance decrement), present to variable extent
in each of the eight waveforms. Although the transient of the
opposite polarity, an ON-transient (luminance increment), is also
present in each stimulus waveform, this cell fired only minimally
during its passage in most conditions. This sensitivity to spatial
contrast polarity is characteristic of a linear spatial integrator
followed by a threshold. Because of the threshold, an elevation in
firing rate in a linear response to one polarity is not matched by
a drop in firing rate to the opposite polarity.

Note the similarity between the response to the full edge (Fig.
3b, true edge) and the response to the stimulus that approximates an
edge via its first four components (Fig. 3b, “edge”). For this cell, the
response to the full edge is slightly narrower in time. This indicates
that the pass-band of the linear receptive field of the cell was broad
enough so that one or more stimulus components of the edge above
the seventh harmonic affected the response of the cell. In most
neurons, however, responses to the full edge and its truncated
approximation were indistinguishable. Thus, the pass-bands of
most neurons were sufficiently narrow so as to exclude the details
present in those higher harmonics. This is expected given the
average 2–2.5 octave spatial frequency bandwidth (full width at
half-height) of macaque V1 neurons (De Valois et al., 1982).

The above observations were quantified by Fourier analysis.
There is a more general reason for doing the Fourier analysis: we
have no a priori knowledge of which response component carries
feature dependent signals. Although nonlinear interactions may
act to enhance selectivity toward a particular spatial feature, this
need not be consistent across all response components. First, we
consider conventional scalar response measures defined on Fou-
rier amplitudes alone and in combination, the analysis of which is
relatively straightforward. Next, we present an analysis of the
Fourier amplitudes and phases jointly (as vectors in the complex
plane), which is perhaps more demanding, but also more inter-
esting, because the complex measures have larger signaling ca-
pacity attributable to the extra degree of freedom in the phases.

Feature tuning in scalar response measures
Figure 4a shows the analysis of Fourier amplitudes of the re-
sponses of the simple cell from Figure 3 to the sine gratings

presented alone. Selective tuning to gratings of various spatial
and temporal frequencies, drifting at a constant speed, is indi-
cated by the response amplitudes measured at the fundamental
frequency of each grating (amplitudes marked with thick bars).
Note that the grating contrast was scaled as in the components of
an edge: the contrast of first component was three, five, and seven
times larger than the contrast of the second, third, and fourth
components, respectively. This means that the simple cell was
even more sensitive to gratings of high frequencies than this plot
indicates, i.e., the high-frequency cut-off in the pass-band of this
cell fell beyond the seventh harmonic, because its response to this
stimulus was unequivocal (m � 4 in Fig. 4a). Nonlinear responses
to single gratings are indicated by non-zero components at mul-
tiples of the fundamental frequency for each grating. The approx-
imately �/2 ratio of the response fundamental over the DC
component of the response is consistent with these components
originating from half-wave rectification. (An exact �/2 modula-
tion ratio is expected for a perfect half-wave rectifier).

Nonlinearities are also seen in the response to the full edge (Fig.
4a, true edge). One manifestation of nonlinearity is the presence of
responses at even harmonics, as described above. A second mani-
festation is that the responses measured at the odd harmonics to
either of the compound gratings (Fig. 4b) or the full edge (Fig. 4a)
is not equal to the responses to the corresponding gratings pre-
sented alone. For this cell, the individual grating responses would
predict that the peak component of the response to each compound
gratings or the full edge occurs at the third harmonic frequency
(F3), but in fact it occurs at F1 or F2. Although some Fourier
components above the eighth harmonic temporal frequency (F8)
are still significant, the overwhelming part of the response energy
is contained in the DC and the first eight components.

For this and other simple cells, examination of the Fourier
amplitudes of the responses to compound gratings (Fig. 4b)
reveals that F1 has both the largest response amplitude and the
largest variation of amplitude across the stimulus set. At each
frequency, linearity predicts identical Fourier amplitudes for all
compound gratings. Note that although the approximate con-
stancy of the DC component is consistent with the linear predic-

Figure 3. Typical responses to compound grat-
ings and their components recorded from a V1
simple cell, a layer 4C
 neuron (L400306as). For
each condition, thick lines (bottom) represent the
time course of luminance variation across one re-
peat of the stimulus near the center of the recep-
tive field. (A repeat is one period at the funda-
mental temporal frequency of F1 � 0.78 Hz.) Note
that the temporal waveforms are not the same as
the spatial waveforms depicted in Figure 2, but are
related by mirror symmetry and translation be-
cause the stimuli depend on time and space
through the combination vx � f t (see Eq. 3). Ras-
ter plots (middle) show the spike responses re-
corded for 100 repeats. Poststimulus time histo-
grams (top) show the average firing rate variation
in 20 msec bins. a, Responses to the component
sinusoids presented individually {F1 , F3 , F5 , F7}.
The blank condition is also included (top). b, Re-
sponses to compound waveform stimuli. Stimuli
and responses are arranged around the circle of
the feature space (as in Fig. 2) and labeled by their
congruence phase, �. Also included is the re-
sponse to the true edge: it is directly lef t of the
response to the compound grating with the edge-
like congruence phase (� � �/2).
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tion in this simple cell (cell of Fig. 3), which thereby gives the DC
component the poorest feature tuning, most other Fourier ampli-
tudes show systematic variation (i.e., tuning) with stimulus con-
gruence phase. Moreover, this tuning seems similar across com-
ponents. Judging by the maximum amplitude of most
components, the optimal waveform for this simple cell has a
congruence phase �/2 � �opt � 3�/4 (between 90 and 135°). By
any one of these response measures, therefore, this cell is tuned
neither for edges nor lines but for an intermediate waveform.

In general, the nonlinear signature of complex cell responses to
the compound gratings is that even-order Fourier harmonics dom-
inate the response. In the typical complex cell, unlike the typical
simple cell, the largest response component as well as the response
component with the largest phase-dependent modulation is the DC
or the second harmonic component, F2. Figure 5 shows the re-
sponses of six more V1 neurons (mostly complex cells). As a group,

these give a sense of the variety of phase-selective responses
encountered in V1; individually, each is selected to emphasize a
distinct point. Figure 5a shows the responses of a typical complex
cell. For this cell, unlike for the typical simple cell, the poststimulus
time histograms for drifting gratings, especially at high frequencies,
are unmodulated. For compound gratings, the response histograms
for this cell are characteristically bimodal, with a response transient
corresponding to the passage of the stimulus transient of both

Figure 4. Mean Fourier amplitudes of the responses shown in Figure 3.
Error bars indicate 95% confidence limits on the mean. a, Fourier com-
ponents (DC and F1 through F8 ) of responses to simple grating stimuli.
From f ront to back: blank screen (at the mean luminance of the edge), the
first four non-zero drifting sine components of an edge (Eq. 2), and the
full edge. b, Fourier components of responses to drifting compound
gratings. For this simple cell and most other V1 neurons, nearly all
response energy is contained at these eight frequencies. The maximum
amplitude (across congruence phase) of most response harmonics predicts
similar optimal waveforms for this simple cell, (�/2 � �opt � 3�/4, i.e.,
between 90 and 135°). For clarity, error bars are shown only for the
line-like waveform. Insets at the bottom show a snap shot of the ‘edge’ and
‘line’ stimuli. The second copy of the ‘line’ (� � �) is a half-cycle shifted
version of the first (� � 0).

Figure 5. Response histograms for six V1 cells that exhibit the variety of
response patterns observed in our sample. Responses to compound grat-
ings are shown ordered around the phase circle, as in Figure 3b, and the
responses to the blank as well as the four component gratings (equivalent
to Fig. 3a), in columnar arrangement inside the phase circle (blank on
top). Vertical scale bars indicate size of the peak response. a, Typical
complex cell (450213.u); vertical scale 60 spikes/sec; fundamental period
315.7 msec. b, The complex cell that was most sensitive and had highest
signal-to-noise in our sample (431115.s); vertical scale 350 spikes/sec;
315.7 msec. c, The simple cell that was the most sensitive and had the
highest signal-to-noise in our sample (440909.t); vertical scale 350 spikes/
sec; 1263 msec. d, A complex cell that approximates a broadly tuned edge
detector (490707.s); vertical scale 30 spikes/sec; 1263 msec. e, A complex cell
that responds only to the full edge (shown above the response to the
four-component approximation of the edge) but not to the four-component
compound gratings (470320.t); vertical scale 20 spikes/sec; 1263 msec. f, A
borderline simple/complex cell that approximates a broadly tuned line
detector (440813.s); vertical scale 100 spikes/sec; 1263 msec.
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contrast polarities. This contrasts with the unimodal histograms
seen for the paradigmatic simple cell (Fig. 3). For each drifting
waveform, there are two response peaks approximately half a
period apart (in terms of the fundamental), but their size and ratio
vary systematically with the congruence phase. Thus, the typical
complex cell shows a strong nonlinearity (domination of the re-
sponse energy by even-order harmonics), but the phase-dependent
variation manifest in the size and ratio of the peaks diverges from
what is expected of a phase-insensitive energy operator.

Figure 5, b and c, respectively, shows the responses of the
complex and simple cell that had the highest gain and the least
noisy responses in our sample. Both follow with high fidelity the
higher harmonic modulations present in the stimulus. The simple
cell responses exhibit a tendency of firing to be restricted to
one-half of the stimulus period, indicative of dominant odd-
harmonic Fourier components in the response. The response
histograms of the complex cell exhibit the opposite tendency,
toward a firing pattern that is replicated in each half of the
stimulus period, indicative of dominant even-harmonic Fourier
components in its response. However, these descriptions are
caricatures, and most cells within our sample of 
100 V1 neurons
showed intermediate behavior. (The ability of the even and odd
response harmonics to signal congruence phase is given in a
systematic population analysis below.)

Each neuron discussed so far was typical in that it had a more
or less vigorous response to each congruence phase, but with a
variable response waveform. On the basis of the response histo-
grams alone, therefore, it is difficult to tell by eye for most
neurons whether they are selective to one or the other spatial
waveform to any significant degree, and a quantitative analysis of
the responses is necessary. However, a minority of the neurons
were quite selective to certain waveforms to a degree that was
obvious even from a cursory examination of their response his-
tograms. Figure 5d–f presents examples of such phase-selective
neurons. Figure 5d shows a complex cell that was broadly tuned to
edges. Figure 5e shows another edge-selective complex cell that
was quite responsive to the full edge but barely to the four-
component edge-like compound grating. For this cell, most grat-
ing components probably fell below its pass-band, but it fulfilled
the criteria for analysis based on d� (see above). This behavior
was rare (only 2 of 137 cells in our sample). The final example, a
borderline simple/complex cell shown in Figure 5f, can be de-
scribed as a (broadly tuned) line detector. This cell preferred an
approximately line-like waveform (for the congruence phases
tested, the largest peak of the response histogram occurs at
�opt � 7�/8). In general, only a few neurons in the entire sample
of 77 V1 neurons that were analyzed exhibited such obvious
phase preference.

Some V1 cells (such as the simple cell in Fig. 3) signal variation
of congruence phase predominantly in their odd response har-
monics, and other cells (such as most complex cells in Fig. 5)
signal congruence phase predominantly in their even response
harmonics. Therefore, scalar measures of the even and odd re-
sponse energy are also obvious candidates for further analysis.
For the simple cell of Figures 3 and 4, some of these measures are
examined in Figure 6.

The four response measures shown here are the mean firing
rate (Fig. 6a, DC), the even-harmonic energy (defined as the
summed squared amplitudes of the DC and harmonics 2, 4, 6, and
8). (Fig. 6b), the odd-harmonic energy (summed squared ampli-

tudes of harmonics 1, 3, 5, and 7) (Fig. 6c), and the total response
energy (summed squared amplitudes of the DC and the first eight
harmonic components of the response) (Fig. 6d). The linear
prediction that the response is independent of congruence phase
fails. Each of these response measures systematically depends on
the stimulus phase, and, for the three energy measures, this
dependence is substantial.

To describe the dependence of each of these response mea-
sures on spatial phase, we used the method of least squares to fit
a harmonic function of the congruence phase, � to the response
measure, R:

R � a0 � a1 cos�2� � 
1� � a2cos�4� � 
2�. (4)

This five-parameter fitting function is a natural choice for the
following reason. The complex amplitudes of the response har-
monics are well approximated by an ellipse parametric in twice
the congruence phase, as demonstrated empirically in Figure 9
and analytically (considering contributions up to and including
fourth-order nonlinear contributions) in the Appendix. Given
such an elliptical dependence of the complex amplitudes of the
individual harmonics on congruence phase, one can show that the
dependence of an energy measure on congruence phase will be a
function of the form of Equation 4. For each response measure
considered, we defined the optimal congruence phase, �opt , as the
phase at which the curve fitted by Equation 4 takes its maximum.

In the circular feature space used here, the sharpness of the
tuning to features of a response measure (i.e., its feature selec-

Figure 6. The dependence of various scalar response measures on the
congruence phase, for the simple cell of Figures 3 and 4. To describe the
feature tuning of the cell in each measure, the data (open symbols) were
fit (thick lines) with a five-parameter second-order harmonic function (Eq.
4) independently for each response measure. The optimal congruence
phase (�opt ; arrows), and the selectivity measure based on circular vari-
ance (1 � CV ), were extracted from the fits. Error bars represent the 95%
confidence intervals around the mean. a, Mean firing rate (DC), �opt �
0.75� rads (136°); 1 � CV � 0.03; b, response energy in first four even
harmonics: �opt � 0.63� rads (114°); 1 � CV � 0.18; c, response energy
in first four odd harmonics: �opt � 0.67� rads (120°); 1 � CV � 0.19; d,
total response energy: �opt � 0.59� rads (106°); 1 � CV � 0.18.
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tivity) is naturally measured by the circular variance (CV) of the
response measure (Mardia, 1972). The CV is defined as:

CV � 1 � ��
k

Rkei2�k��
k

Rk� ,

i.e., 1 minus the length of the vector-averaged response measures.
To apply this measure, we take the response amplitudes Rk from
the fitted curve and �k to be the congruence phase. The length
of the vector-averaged value (the measure 1 � CV) approaches 1
in the limit of narrow tuning, and 0 for a response measure that
is independent of congruence phase. The measure (1 � CV) is a
global measure of the selectivity of tuning, and, for simple uni-
modal tuning functions, it is monotonically related to the con-
ventional local measures of selectivity such as bandwidth or
modulation depth.

For the simple cell in Figure 6, the four response measures,
although not equally sharply tuned, yield very similar optimal
phases (arrows). This is remarkable because one might expect
that they reflect the effects of different nonlinearities. For this
cell, the optimal compound waveforms had a congruence phase
�opt � �/3 (120°). The DC was least tuned to congruence phase
(any tuning in the DC is attributable to nonlinearities of at least
fourth order; see Appendix), and the three energy response
measures were about equally selective when measured by circular
variance (1 � CV was 0.03 for DC, �0.18 for each energy
measure).

The analysis shown for the simple cell in Figure 6 was also
carried out for the examples of Figure 5 (mostly complex). Figure
7 summarizes quite similar results for the DC and the three
energy measures. The DC (open circles) usually predicted the
same optimal congruence phase, but in most cases was a less
selective measure than the energy measures, as quantified by the
CV. Although a greater selectivity is expected for the energy
measures than for the DC merely because the energy (impulses
squared/seconds squared) but not the DC (impulses/second) is a
squared quantity, the full extent of the observed selectivity dif-
ference is not explained by units of measurement. In the case of
the typical complex cell in Figure 7a, the even energy (squares)
and odd energy (triangles) are similarly tuned, but the even energy
dominates. The dominance of the response by even energy is even
more pronounced in the case of the complex cell in Figure 7b. In
this case, and in the case of the “edge-detector” (Figure 7d), the
even and odd energy are also differently tuned. (Note that al-
though the odd energy is very small, the measured values are
highly reliable, as determined by the illustrated bootstrap confi-
dence limits.) However, in most cases when the even and odd
response energies were both substantial, such as in the cases of the
simple cell (Fig. 7c) and the line detector (Fig. 7f), the two scalar
measures tended to be similarly tuned. Note that Figure 7, b and
c shows the cells with the highest signal-to-noise ratios in our
sample of V1 neurons; the error bars of the other cells are more
typical.

Figure 8 shows an example of how phase tuning varies locally in
V1. These four complex cells, recorded simultaneously by a
tetrode, exhibit considerable difference in phase sensitivity (gain),
selectivity, and preference. This is representative of the variation
of these parameters in local V1 ensembles. Cell 1, the cell with
the highest gain in this local cluster, and cell 2 are least selective:
their tuning curves (Fig. 8c, lef t) approximate what would be
expected from a strict (phase-insensitive) energy calculation. In
comparison, cell 3 (the least sensitive in this cluster) and cell 4

(the cell comparable in sensitivity to cell 2) are both well tuned
but tuned to different preferred phases (Fig. 8c, right). Cell 3 is
tuned to a waveform the congruence phase of which is interme-
diate between that of a line and an edge. (Judged from its
responses shown in Fig. 8a, cell 3 seems simple but it was
classified as a complex cell on the basis of its response to the
optimal single grating.) Cell 4 is tuned to a line-like waveform.

Another notable point is that responses of cell 4 to compound
gratings have a single mode (Fig. 8b, innermost histograms),
much like those of simple cells, but its responses to single sine
gratings, except at the lowest spatial frequencies (Fig. 8a, histo-
grams in rightmost column), consist mostly of spike rate elevation
and only weak modulation, the defining characteristic of complex

Figure 7. The dependence of the same scalar response measures as in
Figure 4, the DC (open circles), odd energy (open triangles), even energy
(open squares), and total response energy ( filled circles), on congruence
phase for the six examples of Figure 5. Panels correspond to those in
Figure 5. Note that the vertical scale for the energy measures (lef t) and the
DC (right) differ. For each cell, the optimal phase (�opt ), and the phase
selectivity based on circular variance (1 � CV ) given below are estimated
from the total response energy. Vertical dotted lines and arrowheads
indicate the optimal congruence phase. Error bars indicate 95% confi-
dence limits. The continuous lines are the best fitting second-order har-
monic functions (Eq. 4). a, Cell 450213.u, �opt � 0.97� rads (�174°); 1 �
CV � 0.153; b, cell 431115.s, �opt � 0.63� rads (�117°); 1 � CV � 0.126;
c, cell 440909.t, �opt � 0.56� rads (�100°); 1 � CV � 0.140; d, cell
490707.s, �opt � 0.56� rads (�101°); 1 � CV � 0.428; e, cell 470320.t,
�opt � 0.99� rads (�179°); 1 � CV � 0.169; f, cell 440813.s, �opt � 0.91�
rads (�163°); 1 � CV � 0.492.
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cells. Such apparently mixed behavior was observed in many cells
of both classes (as defined by their responses to single gratings) in
our sample: simple cells could have strong even harmonic com-
ponents in response to compound gratings (as in Fig. 7c), whereas
complex cells could have strong odd harmonics in response to
compound gratings. Mixed behavior, intermediate behavior be-
tween what is expected for an “ideal” simple and ideal complex
cell, was reported earlier in cat area 17 neurons studied with
contrast-reversed single gratings (Spitzer and Hochstein, 1985).
However, the mixed behavior observed by those authors was
based on absolute phase (position) sensitivity, not on the sensi-
tivity to relative phase (or feature) as observed in this study.

Feature tuning in vector response measures
The energy measures considered above are sensitive to response
size but not timing. This extra degree of freedom present in the
phases may also make it possible for the responses to encode the
stimulus space (a circle), which is of genuinely two-dimensional
(2D) topology and which the scalar measures are incapable of
encoding. To determine whether this is indeed the case, we next
consider a joint analysis of the amplitude and phase of response
components. We begin this analysis on the simple cell of Figures
3, 4, and 6. Figure 9a shows the dominant response component,
F1 , plotted as a vector on the complex plane for each of the eight
compound gratings. F1 is referenced to the phase of the funda-
mental stimulus component by subtracting the congruence phase
� (Eq. 2) from the measured phase of F1. (This plotting conven-
tion corresponds to h � 1 in the Appendix.) With this phase
reference, a linear response would be represented by the same
complex number for each stimulus: the eight plotted responses
would all coincide at a single point. The expected position of the
linear response is the center of the dark disk (m � 1 alone) in
Figure 9a, which represents the response to the fundamental
grating component presented alone. Deviation from this, as indi-
cated by the lawful arrangement of responses on a loop, indicates
the effects of phase-sensitive nonlinear interactions between the
different harmonic components of the stimulus. Because our
stimuli, by design, contained only odd harmonics of the funda-
mental frequency, nonlinear contributions at the fundamental
can be attributable only to odd-order nonlinearities. (For details
on how our stimulus design determines the frequency- and phase-
signature of nonlinearities, see the Appendix.) Third-order inter-
actions, the odd-order nonlinearities with the lowest order, are
likely the largest contributors to F1. As detailed in the Appendix,
third-order nonlinearities are of two kinds, with different impli-
cations for how their phase dependence affects the shape of the
locus plotted in Figure 9.

To get a better view of the details of the F1 responses in Figure
9a, we present an expanded version in Figure 10. One kind of
third-order nonlinearity that can contribute to F1 is represented
by the combination F1 � Fk � Fk (see n � 3; p � 1 in Appendix
and Table A1). The phase of this nonlinear contribution covaries
with that of the fundamental because the phases of Fk and �Fk in
the stimulus cancel each other. For these interactions, the con-
vention used for plotting phases in Figure 9, namely, offsetting by
the phase of the fundamental grating component, will lead to a

Figure 8. Four complex cells simultaneously recorded by tetrode (infra-
granular layers). a, b, Response histograms. Vertical scale bar indicates
150 spikes/sec for Cell 1, and 50 spikes/sec for Cells 2–4. Horizontal scale
bar indicates the 1263 msec fundamental (F1 ) stimulus period. a, Re-
sponses to single sine components presented alone. b, Responses to
compound gratings with eight different congruence phases. Data sets
corresponding to different cells are in concentric arrangement. c, The
dependence of three energy measures on congruence phase plotted for
the four cells as in Figure 7 (odd energy, triangles; even energy, squares;
total energy, filled circles). Optimal congruence phase (�opt , arrowheads)
and the phase selectivity based on circular variance (1 � CV ) are
estimated from the total response energy: Cell 1 (450509.s), �opt � 0.02�

4

rads (�4.2°); 1 � CV � 0.066; Cell 2 (450509.t), �opt � 0.91� rads
(�163°); 1 � CV � 0.058; Cell 3 (450509.u), �opt � 0.79� rads (�142°);
1 � CV � 0.277; Cell 4 (450509.v), �opt � 0.09� rads (�15.5°); 1 � CV �
0.271.
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plotted response vector that is independent of congruence phase.
(This is because the congruence phase � is identical to the phase
of the fundamental grating.) That is, these components can
contribute to a difference between the average response to the
compound gratings and the response to F1 alone, but they cannot
contribute to differences among the responses to the eight com-
pound grating stimuli. Their contribution is represented graphi-
cally in Figure 10 as the displacement between the center of the
ellipse (blue star) and the response to F1 alone (red disk).

The other kind of third-order nonlinear interaction that leads
to responses at the fundamental frequency consists of contri-
butions such as F3 � F1 � F1 , F5 � F3 � F1 , (n � 3; p � �1 in
Appendix and Table A1). The raw phase of these responses varies
as �� not �. Thus, after subtraction of the phase of the funda-
mental (i.e., the congruence phase �), their contribution rotates
as �2�. Each of these third-order nonlinearities, if present in
isolation, would therefore lead to a circular locus for the plot of
F1. When combined with arbitrary phases and strengths, their
aggregate can thus lead to an elliptical locus for F1. However,
because each contribution rotates as �2�, their aggregate cannot
shift the center of the response locus. Thus, the third-order
interaction of the first type, together with the linear part, deter-
mines the center of the response locus.

The data in Figure 10 approximate an ellipse rather than a
circle. We show in the Appendix that the fifth-order nonlineari-
ties further displace the center of the locus ( p � 1 terms), add
elliptical distortions to the circle ( p � �1 and p � 3 terms) and
also add asymmetric distortions ( p � �3 terms). Higher-order
nonlinearities add even more distortions to the elliptic configu-

ration. In summary, the approximately elliptical locus seen in
Figure 10 represents the combined effect of third- and higher-
order nonlinearities.

The net result of these nonlinearities is that the locus of the F1

response depends strongly on the stimulus profile. The strong
modulation of the amplitude is comparable to what was seen for
the odd-harmonic energy (Fig. 6c), which was dominated by the
contribution of F1. As we show in the Appendix, an elliptic
approximation of the configuration of the Fourier harmonics of
the response in the complex plane captures the contributions from
nonlinearities up to a certain order (order 4 for F1). Thus, for
descriptive purposes, we fit an ellipse to the set of eight data
points, forcing an equal phase separation of corresponding points
on the ellipse (Fig. 10, white dots on the blue ellipse, indicated by
blue arrowheads):

x��� � x0 � acos���cos�2� � �0� � bsin���sin�2� � �0�

(5)
y��� � y0 � asin���cos�2� � �0� � bcos���sin�2� � �0�.

Here, z(�) � (x(�), iy(�)) is the position of the predicted complex
response harmonic at the congruence phase �. The six parameters
x0 , y0 , a, b, �0 , and � are determined by minimizing the sum of the
squares of the distances between z(�) and the measured response
at the congruence phase �. With this procedure, the measured
responses averaged across all congruence phases determine z0 �
(x0 , iy0), the center of the fitted ellipse. The four remaining free
parameters are the two half-axes, a and b, the angle of tilt of the
ellipse, �, and the initial phase, �0. It is important to keep in mind

Figure 9. Amplitude and phase of the first four Fou-
rier harmonics in the response, represented by a vector
quantity in the complex plane, for the simple cell shown
in Figures 2–4. The center of each shaded circle repre-
sents the mean response to a compound grating. Circles
indicate 95% confidence of the mean. The distance of a
point from the origin indicates the magnitude of the
response, and the direction represents its phase plotted
with the phase correction indicated by h (see Appen-
dix). Progression of congruence phase (�) on the phase-
circle (i.e., on the fitted ellipse) is indicated by circular
arrow in separate insets at the bottom right of each panel.
The linear prediction (dark circle) is indicated only for
the odd harmonics present in the compound gratings (it
is zero at other frequencies), and is estimated by the
response to the component alone (i.e., m � 1 for the F1
plot, and m � 2 for the F3 plot). The response to the full
edge is similarly indicated (light circle), except the F3
plot where it fully overlapped the response to the four-
component approximation of the edge. Deviation from
linearity, as indicated by the lawful arrangement of
responses on a closed loop, is caused by interaction
between the different harmonic components of the
stimulus. The ellipse, fitted as described in Results, is a
good descriptor of the trajectories, although goodness
of fit, as assessed by the p values of the 
10

2 , are often
�0.05. The optimal stimulus (�opt ) predicted by the
most distant point on the ellipse from the origin and
found by interpolation on the ellipse (arrowhead) is
similar in the four response harmonics and comparable
to the values obtained from scalar response measures in
Figure 6. a, Fundamental (F1 ) response; �opt � 0.68�
rads (122°); p � 0.013; b, second harmonic (F2 ) re-
sponse; �opt � 0.72� rads (130°); p � 0.001; c, third
harmonic (F3 ) response; �opt � 0.69� rads (124°); p 

0.130; d, fourth harmonic (F4 ) response; �opt � 0.65�
rads (117°); p � 0.095.
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that the congruence phase plays the role of a parameter on the
ellipse; it is not an angle in the phase plot of F1. Also, note that
there are 6 parameters to be fit, but there are 16 measurements
available (real and imaginary parts of each of 8 responses). The fit
is thus not merely a fit of the elliptical trajectory to the response
locus, but rather of predetermined points (white dots) on the
trajectory to the eight measured responses.

Although the fitted ellipses may deviate detectably from the data
because of the presence of high-order nonlinearities, they provide
a useful summary of the response to the eight stimuli. Both the
statistical significance and the usefulness of this summary depend
on the response variance, but in a different manner. The total
variance in the data (i.e., the variance of the responses to each trial
of each congruence phase) consists of two parts: first, the scatter
caused by trial-by-trial variation of the responses to each congru-
ence phase, and second, the dependence of the mean response on
congruence phase. Trial-by-trial variation of the Fourier compo-
nents are measured by the 95% confidence regions estimated by
the Tcirc

2 statistic (Victor and Mast, 1991) on the complex plane and
indicated by error circles drawn around the mean response to each
stimulus. The phase-dependent variation on the complex plane is
indicated by the layout of the mean responses to the eight phase
conditions in the plane. Naturally, the fit can only explain the
dependence on the congruence phase, not trial-to-trial variation.
The tolerance of the fit, however, depends on the trial-by-trial
variance, or the noise in the responses. With low amounts of

trial-by-trial variance, the goodness of the fit can be poor even if the
ellipse captures most of the phase-dependent variance of the mean
response. Conversely, the level of tolerance of the fits is increased
if scatter within responses dominates the variance. Under those
circumstances, an acceptable fit, as measured by the 
2 statistic,
may nevertheless be meaningless, because there is little systematic
dependence on congruence phase to be explained. We therefore
restrict our phase plane analysis of Fourier components to data sets
that are not dominated by scatter within congruence phases. We
chose as a criterion that the phase dependence of the mean re-
sponse account for at least 40% of the total variance. This criterion
eliminated one-third of the data sets originally selected for analysis
(N � 121 reduced to N � 94). In slightly less than half of the data
sets that met this criterion (42 of 94), the elliptical fit to F1 or F2 was
a statistically acceptable fit, as measured by the 
2 statistic at the
p � 0.05 level. Conversely, in more than half the V1 neurons that
qualified for this analysis (52 of 94), nonlinearities of fifth and
higher order contributed measurably to the response in a phase-
specific manner. This is equally true for data sets from simple (N �
36) and complex (N � 58) cells. The distribution of the goodness-
of-fit for complex and simple cells was indistinguishable (Kolmog-
orov–Smirnov paired statistic; p 
 0.25; N � 94).

For the example cell shown in Figure 10, the fitted ellipse runs
through the 95% confidence regions of each response ( gray
disks). However, when the eight data points (black crossed centers
of gray disks) are considered together, their overall deviation

Figure 10. An expanded view of a portion of Figure 9a. Red circle is linear prediction, and blue circle is full edge. See Results for details. A snapshot
of each compound grating is shown next to the corresponding responses.
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from the fit (white dots on ellipse indicated by blue arrowheads) is
beyond the range expected from measurement error (
16-6

2 �
22.49; p � 0.013). That is, the data occupy a locus that is
significantly different from an ellipse, although no single point
differs significantly from the prediction of the elliptical locus. As
pointed out before, such deviations from the ellipse are in fact
expected for the F1 response harmonic from fifth-order and
higher odd-order nonlinearities. The low tolerance found for the
fit for this simple cell is the direct consequence of the unusually
low levels of noise in the data (in comparison with most of our
cells), resulting in a high confidence in the position of the mea-
sured average responses. In spite of this, the fit in this case is a
useful descriptor because it captures 99% of the phase-dependent
variance of the mean responses. The amount of unexplained
variance via the Tcirc

2 analysis of the individual responses, al-
though statistically significant, is small.

The most impressive feature of this plot, and one that is typical
of the other data sets, is that the responses capture the topology
of the stimulus space. That is, the orderly progression of F1 in a
single loop around the ellipse mimics the progression of the
congruence phase around the phase circle. One can also see that
the response fundamental of this cell measured for the true edge
(blue circle) and its truncated approximation with only four com-
ponents are indistinguishable (their error circles fully overlap in
Fig. 10). Because none of the error circles corresponding to the
eight compound gratings overlap with one another or with the
origin, this cell can detect and identify each waveform based just
on the response fundamental, provided that F1 amplitude and
phase are jointly considered. Amplitude alone primarily distin-
guishes waveforms the congruence phase of which is in the range
0 � �opt � �/2 (top half of the ellipse) from those waveforms with
a congruence phase that is in the range �/2 � �opt � � (bottom
half of the ellipse). The phase of F1 primarily discriminates along
the orthogonal direction within the stimulus space, i.e., between
the edge and line-like waveforms.

To compare response characteristics across neurons, we define
the optimal congruence phase to be the phase parameter on the
ellipse that corresponds to the most distant point from the origin.
That is, it is the congruence phase of the stimulus that leads to the
largest F1 response, as interpolated by the fitted ellipse. With this
definition, the optimal congruence phase for this cell is �opt �
0.68� rads � 122°), a stimulus that is intermediate between edge
and line (see snapshots in Fig. 10). This corresponds closely to the
optimal stimulus as inferred from the scalar measures, shown in
Figure 6.

Figure 9, b and d, show that the higher response harmonics F2

and F4 also depend on the congruence phase of the stimulus in a
similar way as F1 , but F3 (Fig. 9c) has a different behavior. Its
dependence on stimulus phase is much less prominent (the mean
responses are indistinguishable by spatial phase as the overlapping
error circles indicate) than for F1 , F2 , and F4. Moreover, the F3

response to every compound grating is less than the linear predic-
tion, i.e., the F3 response to the second component grating, which
contains this frequency alone (red). (The amplitude of this re-
sponse was also shown in Fig. 4a.) That is, the spatial nonlinearities
contributing to F3 that are elicited by the compound gratings are all
antagonistic to the linear contribution to the F3 response. In sum,
although nonlinear interactions may act to enhance selectivity
toward a particular spatial feature, this need not be consistent
across all response components. Nevertheless, in this and most
other cells, most of the significant Fourier harmonics of the re-
sponse tended to be maximal for the same stimulus waveform.

The results of a similar analysis of response harmonics in the
complex plane is summarized in Figure 11 for the six V1 neurons
shown in Figure 5 and 7. For each cell, one or more of the
representative Fourier components are plotted with the conven-
tions of Figure 9. The remarkably different levels of signal-to-
noise ratio among these cells are evident from the very different
sizes of the error circles in these plots (for clarity, some of the
error circles were omitted). As explained above for the simple
cell of Figure 10, the goodness of the elliptical fit is typically
greater for neurons that have responses of lower signal-to-noise
ratio. In general, the harmonics at which the response was largest
generally were also the most phase selective. For example, the
high-fidelity complex cell (Fig. 11b) is well tuned in F2 and F4 but
poorly in F1. Conversely, the “line-detector” (Fig. 11f) is remark-
ably tuned in the odd harmonics F1 and F3 , which are also the
largest. The locus on the complex plane of the odd harmonic
responses of this phase-selective neuron is well approximated by
an elongated ellipse the long axis of which is aligned with the
direction from the origin. This alignment, together with the
narrow eccentricity, maximizes phase sensitivity and selectivity.
However, this neuron is less well tuned in the even harmonics: the
F2 (data not shown to prevent overlap with F1 ), the largest even
harmonic, is comparable in amplitude to F3 , but its elliptic locus
is less eccentric and tilted at an angle relative to the direction of
the origin. A comparison of these results with those of Figure 7
reveals that the optimal congruence phase predicted by the el-
lipses fitted to the various Fourier components of the responses
corresponds very well with the optimal phase values deduced
from the scalar response measures.

Feature tuning in the V1 population
Figure 12a summarizes the comparison of the optimal congru-
ence phase obtained from scalar response measures (as in Fig. 6)
and vector response measures (as in Fig. 10) for the population of
simple cells. Figure 12b is a similar population summary for the
complex cells. These are summaries of the 94 data sets (36 simple,
58 complex) that both passed the original d� criterion for analysis,
and the additional criterion on trial-by-trial variance for the
complex plane analysis.

For each response measure (indicated by labels above the top
row of graphs), the wedge diagrams on the diagonal show the
distribution of the optimal congruence phase. The area (not the
radius) of each wedge is proportional to the frequency of cells
the optimal congruence phase of which fell into the correspond-
ing range of phases. Optimal phase of each cell is indicated by a
dot at the corresponding direction on the perimeter. The wedge
diagram indicates gross deviations from the uniform distribution
on the circle; its details are sensitive to binning. The Rayleigh test
(Mardia, 1972) quantifies deviation from uniformity toward a
unimodal distribution. By the Rayleigh test (performed on the
optimal congruence phases before binning for the wedge dia-
grams), the null-hypothesis of uniform distribution on the circle
is rejected if the sample mean is significant (*p � 0.05; **p �
0.01; ***p � 0.005). For both simple and complex cells, some
response measures had a small but significant population bias in
the optimal phase toward the congruence phase of the line
(�opt � 0). Arrows indicate significant population biases, and
surrounding wedges indicate the 95% confidence intervals on the
direction of bias, as estimated from circular standard error (Fish-
er, 1993). In simple cells, a significant bias is found only in the
second response harmonic (F2 , h � 2, one of the two possible
forms of analysis) and in the first response harmonic (F1 , h � 1),
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where the distribution is apparently bimodal (this was not tested).
In complex cells, the bias is significant in all vector measures
examined and also in the odd energy. Significant bias was also
found in the same four response measures when all 94 data sets
(simple and complex) were analyzed together. In all cases where
there was evidence for deviation from uniformity toward a uni-
modal circular distribution, the 95% confidence limits around the
bias angle included the line phase. The population bias for simple
and complex cell populations was statistically indistinguishable
for all measures except the odd energy and F1 ( p � 0.05; two-
sample circular mean test) (Fisher, 1993).

The various response measures are not exactly equivalent mea-
sures of phase tuning. Comparisons of optimal congruence
phases for pairs of response measures show a range of correlation,
as seen in the scattergrams above the top diagonal of Figure 12.
In each scattergram, each data point corresponds to a single cell,

and compares the optimal phase angles for a pair of response
measures, with the horizontal axis of the scattergram correspond-
ing to the row measure (indicated by the row label of the scatter-
gram) and the vertical axis of the scattergram corresponding to
the column measure (indicated by the column label of the scat-
tergram). Note that both axes refer to periodic variables. If two
response measures predicted identical optimal phases, then all
points would fall on the diagonal line of unity slope with zero
phase difference between the two predictions. If the optimal
phases predicted by two response measures are fully uncorre-
lated, then the data would be evenly dispersed within a stripe of
� width centered on the diagonal line of unity slope. To make
these observations more precise, for each pair of measures of
optimal congruence phase, we tested for the presence of a linear
relationship between them: �1, opt � �2, opt � �diff . We defined
the circular correlation coefficient by a normalized vector quan-

Figure 11. Dependence of representative Fourier components of the response on congruence phase in the six examples of Figures 5 and 7. Arrangement
of the cells in panels follows that in Figure 5. Notice the different radial scales in different panels. The continuous lines are the best fitting ellipses (Eq.
5). For each cell, various Fourier components are plotted in the same complex coordinates. For clarity, the 95% confidence regions ( gray disks) are
omitted for some responses. The response to the full edge (white disk) and the fundamental grating alone (m � 1; dark disk) are also shown when they
do not overlap compound grating responses. The direction of the progression of congruence phase on the ellipse is opposite for even and odd harmonics,
as in Figure 9. a, Cell 450213.u, F1 (h � 1), �opt � 0.95� (� 171°); p 
 0.700; F2 (h � 0), �opt � 0.97� (� 175°); p 
 0.200. b, Cell 431115.s, F1 (h �
1), �opt � 0.94� (� 168°); p � 0.001; F2 (h � 0), �opt � 0.83� (� 148.5°); p � 0.001; F4 (h � 0), �opt � 0.61� (� 110.5°); p � 0.001. c, Cell 440909.t,
F1 (h � 1), �opt � 0.66� (� 118°); p � 0.001; F2 (h � 0), �opt � 0.99� (� 177.5°); p � 0.001; F3 (h � 1), �opt � 0.67� (� 121°); p � 0.001; F4 (h �
0), �opt � 1.00� (� 179.5°); p � 0.001; F5 (h � 1), �opt � 0.39� (� 69.5°); p � 0.001. d, Cell 490707.s, F2 (h � 0), �opt � 0.59� (� 106.5°); p 
 0.7;
F4 (h � 0), �opt � 0.56� (� 100°); p 
 0.100; F4 data were rotated by 90° clockwise for clarity. e, Cell 470320.t, F2 (h � 0), �opt � 0.97� (� 174.5°);
p � 0.053. Note that for other even harmonics, relationship between responses to the full edge and the compound gratings is similar to what is shown
here for F2. Responses did not contain significant odd harmonics. f, Cell 440813.s, F1 (h � 1), �opt � 0.91� (� 164.5°); p � 0.037; F3 (h � 1), �opt �
0.89� (� 160°); p 
 0.950; F3 data were rotated by 90° counterclockwise for clarity.
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tity calculated from the circular covariance (Fisher, 1993) of the
two sets of phase-congruence values. The circular covariance is a
complex number of magnitude �1. Its modulus rc is analogous to
the absolute value of a linear correlation coefficient and indicates
the strength of correlation. Its angle is the mean difference �diff

between the two sets of congruence phases, as estimated from
circular regression, and not the algebraic mean.

As indicated by the values of rc (Fig. 12, top lef t corner of each

scattergram), some pairs of measures were highly correlated (*p �
0.05; **p � 0.01; ***p � 0.005). One such pair is total power
versus total even power for both cell classes (Fig. 12a, b). Other
pairs of measures were less tightly correlated, and the null-
hypothesis of random association on the circle could not be
rejected ( p 
 0.05), e.g., for both cell classes, the F2 measures
versus the odd response power or the DC in Figure 12, a and b. In
simple cells but not complex cells, measures based on F1 and odd

Figure 12. Summary statistics of the optimal
congruence phase in the population of V1 cells
that met selection criteria. a, Simple cells, 36
data sets. b, Complex cells, 58 data sets. Optimal
congruence phase was determined separately for
seven response measures; DC; total energy; even
energy; odd energy; F1 with h � 1; F2 with h �
0; and F2 with h � 2. (See Appendix for expla-
nation of the plotting convention on the complex
plane as indicated by the h values.) The wedge
diagrams on the diagonal show the distribution
of the optimal congruence phase (each dot plot-
ted around the circumference corresponds to a
single cell) obtained from each of the seven
measures. The significance of a unimodal devi-
ation from a uniform distribution is indicated by
asterisk (*p � 0.05; **p � 0.01; ***p � 0.005),
and where significant, the direction of this bias
(arrows), and its 95% angular confidence range
(surrounding wedges) are shown. Above the diag-
onal, scattergrams compare optimal congruence
phases obtained from each pair of response mea-
sures via a scatter plot. Note that the domain
[0,�) is periodically extended to [0,2�) on the
ordinate. At the top left corner for each, the value
of the circular correlation coefficient, rc , is indi-
cated. Significance levels are indicated by the
same asterisk convention. Below the diagonal, his-
tograms of the within-cell difference in optimal
congruence phase obtained from each pair of
response measures are shown. These correspond
to the marginal distribution of the scattergrams
after collapsing along the diagonal of unity slope.
The population mean of phase difference and its
95% confidence are indicated by line intervals
below the histograms. Significance levels are in-
dicated by the same asterisk convention.
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response energy were significantly correlated with those based on
DC, the F2 , and the even response energy (Fig. 12a). Only in
simple cells was the F1 component comparable to the even har-
monics, or odd response energy comparable to the even response
energy, so it is not surprising that tuning measures based on these
quantities behaved in a more random fashion in complex cells.

In simple cells, the sensitivity (as defined by the gain) of the
response measures was a good predictor of their feature selectiv-
ity (as quantified by the selectivity index, 1 � CV). Note that in
simple cells, the even harmonics were often of comparable sen-
sitivity as well as selectivity to the odd harmonics [median (1 �
CV) of the odd versus even response energy: 0.185 versus 0.183;
p 
 0.2; N � 36; Wilcoxon’s paired-sample signed rank test of
medians]. However, in complex cells, the even harmonic response
measures were typically the more sensitive, but the odd harmon-
ics tended to be the more selective to relative phase [median (1 �
CV) of the odd versus even response energy: 0.24 versus 0.12; p �
10�5; N � 58; Wilcoxon’s paired-sample signed rank test of
medians]. The odd harmonics were even more selective in com-
plex cells than in simple cells ( p � 0.002; N � 58 � 36; Kolmog-
orov–Smirnov two-sample test). These observations are not as
counterintuitive as they might seem, given the nature of the
stimuli. Only phase-sensitive nonlinearities can contribute to se-
lectivity, because all stimuli have the same components and the
same overall power. In simple cells, the odd harmonics carry large
responses, but their main contributors are likely to be linear,
which will dilute any feature selectivity of the nonlinear contri-
bution at the odd harmonics. Conversely, a contrast polarity-
invariant nonlinearity, well known in the responses of complex
cells “On-Off” transients, is likely to produce a large but phase-
insensitive response at the even harmonics, which dilutes any
stimulus selectivity that other nonlinear contributions might
confer.

Strong correlation between two circular quantities does not
preclude systematic phase differences between them. A systematic
phase difference obtained on the population would indicate that
two response measures have a relative bias in estimating the
optimal feature, which in turn would mandate caution in using
one or both measures for this purpose. To examine whether
optimal congruence phases predicted by different response mea-
sures had such a difference, we plotted the distribution of phase
difference in histograms shown in the bottom diagonal matrix for
each pair of response measures. The mean phase difference �diff

estimated from circular regression, together with 95% confidence
limits estimated from bootstrap, are indicated by line intervals
below the histograms. With one exception, �diff was not signifi-
cantly different from 0. The sole exception was a small difference
seen in the data for simple cells for the moderately correlated pair
of the second Fourier harmonic and the total response energy
(Fig. 12a; F2 , h�2 vs ALL in bottom row). Because this is an a
posteriori finding (1 among the 21 possible phase differences that
were evaluated), it is not likely to be physiologically meaningful.

In summary, response measures that were robust in general
were quite sensitive to congruence phase, well correlated with
one another, and tuned to very similar optimal phases. The caveat
is that the robustness and sensitivity of a response measure to
relative phase depends on the extent and ratio of phase-sensitive
nonlinear contributions to the odd and even Fourier harmonics,
which can vary from cell to cell.

For all measures, the optimal phase is rather evenly distributed
in V1, which indicates that V1 neurons can signal the symmetry of
spatial waveforms with little bias. We do see a modest but signif-

icant population bias in the optimal congruence phase predicted
by many response measures toward what corresponds to the
line-like (even symmetric) waveform. This raises the possibility
that there is a small but significant relative abundance of cells
sensitive to line (but not to edges or odd symmetric spatial wave-
forms) among the V1 neurons. An alternative explanation could lie
in the unequal Michelson (peak) contrast of our compound grat-
ings: smallest for the edge-like, largest for the line-like waveform
(although all were equal in contrast energy). In this scenario, all
other factors being equal, apparent abundance of neurons would
correspond to the peak contrast, and in turn, the relative efficacy
of the stimulus they are selective for. However, the argument that
Michelson contrast and not contrast energy is the effective stim-
ulus for V1 neurons does not seem compelling, because it would
predict both that line-selective neurons are apparently most abun-
dant and that edge-selective neurons are apparently least abun-
dant. This is not supported by the wedge diagrams in Figure 12.
One possibility that is consistent with our data is that there is a
small relative abundance among V1 neurons for both edge and
line preference over all others (i.e., an underlying moderately
bimodal circular distribution centered on the odd- and even-
symmetric waveforms), as might be anticipated from the psycho-
physics of relative phase sensitivity and discrimination, such as
the results of Burr (1980). Then the unequal Michelson contrasts
might magnify the line preference and reduce the edge prefer-
ence, leading to distributions of apparent congruence phase pref-
erence similar to those that we found. However, it is important to
note that the deviation from a uniform distribution is, at most,
moderate.

Discrimination of spatial features in V1 neurons
The analysis so far has focused on what spatial features drive V1
neurons optimally, and addressed this question via various tradi-
tional response measures. This approach demonstrated that there
is a certain degree of arbitrariness in choosing a response mea-
sure and that the optimal congruence phase may depend on this
choice. Similar problems arise when the traditional response
measures are used to address a related question: how accurately
can V1 cells report the differences in features, i.e., how well can
an observer of the spike responses of these neurons discriminate
the waveforms of pairs of compound gratings? Discrimination of
features depends on response selectivity (i.e., how sharply the
response depends on the stimulus parameter of interest), not
response size. For example, the response of an orientation-
selective neuron is maximized by a stimulus of optimal orienta-
tion (tuning peak), but the orientation discrimination sensitivity
of the neuron is maximal at the steepest slopes on the rising and
falling edge of the orientation-tuning curve (Vogels and Orban,
1990). Additionally, selectivity depends on the intrinsic vari-
ability of the response measured as trial-by-trial variability
when the stimulus parameter of interest is held constant. In
sum, it is not obvious what response measures (traditional or
otherwise) are most useful for discrimination. These problems
are largely circumvented by information-theoretic analysis that
is applied directly to the entire spike responses. This permits a
more rigorous answer to questions about feature tuning and
phase discrimination.

Shift-reduced Fourier metric
These preliminaries motivated our analysis of neuronal phase
discrimination in V1. We used a metric space method (Victor and
Purpura, 1996 1997) to estimate information from the entire spike
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response rather than just a single extracted variable such as the
spike count or any Fourier component. Furthermore, because the
stimuli were periodic, we used the variant of the metric space
analysis (Mechler et al., 1998b) based on Fourier harmonics of the
response. We applied this approach to examine discriminability
of each pair of stimuli. The method consists of three stages: first,
calculation of dissimilarity measures; second, spike train cluster-
ing; third, calculation of transinformation. The dissimilarity of
two spike trains is measured by the Euclidean distance between
the two vectors composed of n selected Fourier components of
each spike train. These vectors are of dimension 2n, because each
Fourier component has both a real and an imaginary part. The
clustering or classification of each spike train response consists of
labeling it with the stimulus that elicited the set of responses that,
on average, is closest to it. If the responses to different stimuli are
reliable and distinctive, then every spike train will be correctly
classified as to the stimulus that elicited it, but if the responses to
different stimuli are intermingled and difficult to distinguish,
many spike trains will be reassigned to the wrong stimulus. For
the joint analysis of a set of m stimuli, the correct and incorrect
tallies are summarized by an m by m confusion matrix. For a pair
of stimuli, the confusion matrix is a 2 � 2 table. The transinfor-
mation is computed from the confusion matrix in the standard
way (Cover and Thomas, 1991). We corrected the information
estimate for the small-sample bias by subtracting the average
result of a repeated analysis that used shuffled data sets that were
constructed by random reassignment of spike trains to stimuli
(Victor and Purpura, 1997). This bias was usually very small
(�0.02 bits), because there were only two stimulus categories and
75–100 repetitions of each (Treves and Panzeri, 1995).

As we saw earlier, the responses of a neuron to various com-
pound gratings often had similar magnitude and even similar
waveforms, but different phases. Thus, much of the information
present in these neuronal messages about the gratings is carried
by the absolute response phase. However, such phase information
cannot be used by an observer to discriminate stimulus wave-
forms, because the absolute phase is confounded with the abso-
lute starting time of the stimulus cycle of the drifting waveforms.
This might suggest an alternative experimental design, more
along the lines of psychophysical studies, in which the compound
gratings are presented as stationary targets. The temporal con-
found would be eliminated but in its place would be a spatial
confound: that of spatial features and absolute positional infor-
mation. Although this confound could be eliminated by a dense
sampling of stimulus position, doing so would lengthen the ex-
periment by a substantial factor.

The alternative is to recognize that in the absence of knowl-
edge of absolute starting time, discrimination of stimulus wave-
forms can only be based on intrinsic features of the response. This
provides a solution to the temporal confound, as follows. We
assume that the responses to each cycle of the stimulus are
independent and that spikes within each part of the cycle are
identically distributed across trials. That is, the absence of knowl-
edge of absolute starting time can be modeled by allowing spike
trains recorded during a single stimulus cycle (Fig. 13a) to be
wrapped around the circular stimulus cycle (Fig. 13b,c). Only
features of spike trains that can be distinguished even after an
arbitrary wrapping are available to discriminate the spatial pro-
files. That is, in the absence of knowledge of absolute starting
time, the intrinsic difference between two responses is the mini-
mum distance that can be achieved after any shift of one spike

train relative to the other around the stimulus cycle. We call this
minimum distance a shift-reduced Fourier metric (Fig. 13d).

Shift-reduced Fourier metrics can be constructed from any set
of Fourier components. Enlarging the subset of Fourier compo-

Figure 13. Construction of shift-reduced Fourier metrics. a, Two spike
trains, Sa and Sb, corresponding to a single cycle of two periodic stimuli.
Vertical dotted line and arrow indicate zero and flow of time, respectively.
b, Cyclic wrapping of spike trains, with their original temporal phases. c,
The two spike trains, after a temporal phase shift (clockwise rotation) of
Sb that minimizes the difference between the two trains for a Fourier
metric. d, Calculation of the shift that minimizes the distance between the
two spike trains for a particular Fourier metric. A vector of those Fourier
components that constitute the Fourier metric, the DC and F1 compo-
nents in the case illustrated, represent each spike train. These components
are obtained by the Fourier transform of the spike trains in the usual
manner. The DC and F1 components are shown for each spike train: solid
black for Sa and solid white for Sb. The square of the difference between
Sa and Sb (the quantity to be minimized) is the sum of the squares of the
distances between the corresponding Fourier components of Sa and a
phase-shifted version of Sb. The DC component (equal to the difference
between the solid black and white vectors on the vertical axis) is unchanged
by phase shifts. However, the difference between the F1 components (the
solid black and white vectors in the horizontal plane) is minimized when the
F1 component of Sb (solid white in horizontal plane) is rotated to have
equal phase to that of the F1 component of Sa (dashed white overlapping
solid dark in horizontal plane). When multiple harmonics are used in the
Fourier metric, each non-zero frequency corresponds to a separate plane,
and phase shifts rotate the response vectors within each plane. The phase
shift that minimizes the distance between the spike trains is the one with
corresponding rotations (in the plane of each harmonic) that minimize
the sum of the squares of the distances between the vectors for each
harmonic. An exhaustive search algorithm identified this shift.
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nents approximates a waveform increasingly well, but variations
in the response carry information about the stimulus only up to a
certain temporal precision (Mechler et al., 1998b). Thus, it is
necessary to survey how information depends on the set of Fou-
rier components on which the metrics are based. We therefore
examined truncated Fourier series including all components up to
a variable highest harmonic n. Figure 14a shows the results of this
survey for one of the more sensitive simple cells (also shown
before in Fig. 5c). The line versus edge discrimination is
optimized (i.e., information is maximized) when Fourier com-
ponents up to F8 are included in the analysis. Including finer
temporal details of the response, especially components above
F32 , worsens discrimination, indicating that these harmonics
are primarily noise.

Similar observations held for the discrimination of all other
stimulus pairs (Fig. 14b). Most stimulus pairs, especially nearby
elements of the feature space, evoked very similar numbers of
spikes. Thus, the DC alone allowed very poor or no discrimina-

tion of compound gratings (an ordinate of close to 0 bits at the 0
point on the abscissa). The same held for a shift-reduced Fourier
metric that included only the first harmonic in addition to the DC
(abscissa � 1). This is because the metric aligns the phase of the
first harmonic, leaving only the DC response and the first har-
monic amplitude to discriminate among the stimuli. Because
these measures often varied little across stimuli, discrimination
on their basis is necessarily poor. Discrimination increased sub-
stantially when multiple Fourier components were included in a
shift-reduced metric, because it was typically not possible to
identify a single phase shift that simultaneously brought multiple
harmonics into alignment. Thus, once multiple harmonics were
included in the shift-reduced metric, relative temporal phase can
play a role in discrimination of stimulus pairs. For most pairs of
compound gratings, discrimination information increased with
the inclusion of response components up to F8. The information
curves typically cut off above F16 , indicating that higher compo-
nents carried no independent stimulus-related message and/or

Figure 14. Discrimination of pairs of compound gratings in a single V1 simple cell, the most sensitive to congruence phase differences in our sample.
Thresholds are compared to human psychophysical thresholds obtained by Burr (1980). An asterisk marks the peak information in the line versus edge
comparison in panels a–c. a, Discrimination of a line (with corresponding congruence phase �1 � 0) from an edge (�2 � �/2). Raster plots of the spike
responses (below response histograms; they span a single stimulus cycle) were analyzed with the shift-reduced Fourier metric. Information that is
available to discriminate this pair of stimuli was plotted as a function of the highest harmonic retained in the Fourier metric (bottom). Because this is
a 2-AFC task, the maximum possible information is 1 bit. Using spike counts and the first eight harmonics together (vertical dotted line) allows for almost
perfect discrimination (open symbol ). b, Information curves obtained in the same simple cell for discrimination of the line-like waveform (reference
congruence phase �1 � 0 fixed) from the other compound waveforms (test congruence phase �2 varied around phase circle). The first eight response
harmonics together (open symbols) maximize information in most conditions. c, Neuronal threshold for line discrimination (congruence phase of
reference stimulus �1 � 0 fixed). Open symbols from b are plotted against �2 � �1 , the difference of congruence phases of the test and reference stimuli
[�2 � �1 modulo � is mapped on the [��/2,�/2) interval]. For a given reference waveform, discrimination threshold is defined as the smallest difference
of congruence phases between the reference waveform and the test compound grating for which a criterion level of information is reached (here set to
82% correct, indicated by horizontal dotted line). Threshold estimates are obtained by linear interpolation of the discrete samples of information data to
the intersection with the criterion level, done separately on both sides of self-comparison (inner pair of vertical arrows). In this example, the threshold
for �2 � �1 is slightly larger than for �2 
 �1. The shaded region enclosed by the inner pair of arrows indicates the subthreshold range of stimuli for this
neuron. In comparison, the threshold for a normal human observer (Burr, 1980) is larger (outer pair of vertical arrows). The nonlinear scaling on the right
vertical axis is a consequence of the relationship between information and fraction correct in a 2-AFC task. For example, 0.1 bit of information is
equivalent to 68% correct. d, Comparison of human psychophysical ( filled symbols) and the macaque V1 (open symbols) feature discrimination thresholds
at the 82%-correct response criterion. Difference of congruence phases between reference and test waveforms at threshold are plotted as a function of
the congruence phase of the reference waveform. The V1 neuron is the same as in a–c. The arrow marks the line discrimination threshold shown for
this neuron and the human observer in c.
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were too variable to be useful. Similar observations were made
for most neurons (with a few exceptions, where information
peaked at a lower harmonic, but the sharp decline in discrimina-
tion was above F8 ). Therefore, we used the shift-reduced Fourier
metric based on the DC and the first eight harmonic components
of the response for subsequent information calculations.

The fact that the responses of most neurons carried temporally
encoded information about the spatial waveform of these stimuli
primarily in their first eight Fourier components reflects, of
course, the temporal frequency content of the stimuli. For simple
cells, this might be considered a trivial observation, but for
complex cells it is not, because their responses do not merely
mimic the temporal modulation of the stimulus, even for standard
sinusoidal gratings. Moreover, the nontrivial nature of this ob-
servation is demonstrated by changing the drift speed of the
compound gratings while keeping the spatial frequencies con-
stant. A fourfold increase in the drift speed (12°/sec instead of
3°/sec) changes the temporal fundamental of the stimuli fourfold
(from 1 to 4 Hz). Correspondingly, the time represented by a
constant phase shift by any particular harmonic is decreased
fourfold. Nevertheless, for most neurons, the peak of the infor-
mation curve obtained with the shift-reduced Fourier metrics
remained at the eighth response harmonic of the stimulus funda-
mental. This means that the precision of the encoded temporal
detail increased fourfold “in tune” with the fourfold increase in
the temporal frequency content of the stimulus. For only 10 data
sets (20% of high speed data), information curves peaked for
Fourier metrics that used truncated series up to and including the
second or fourth rather than the eighth harmonic of the funda-
mental. The maximum precision of temporal coding of spatial
detail in these cells (defined by the half period of the fourth
harmonic) is �30 msec, and in those neurons with an information
peak that remained at the eighth harmonic truncation, the preci-
sion limit would be 15 msec or better. These numbers correspond
well to earlier reports of temporal coding of temporal phase
(Geisler et al., 1991) and spatial phase (Victor and Purpura,
1998).

Neuronal discrimination thresholds for
congruence-phase
One way to summarize the information measurements obtained
with the shift-reduced Fourier metric shown in Figure 14b is to
construct threshold functions by analogy to psychophysical
threshold functions (Fig. 14c). To measure neuronal thresholds,
neurometric functions using spike counts were used by Movshon
and colleagues (Newsome et al., 1989); a similar approach but
different response measure was used for measuring neuronal
temporal phase discrimination for auditory and visual stimuli by
Geisler et al. (1991). To establish the difference of congruence
phases at threshold in discriminating a line from other compound
gratings, we plotted information (in bits) for each pairwise com-
parison of the line-like waveform with the other stimulus wave-
forms. As a threshold criterion, we chose 0.32 bits, corresponding
to Burr’s 82% correct performance criterion (Burr, 1980) in a
two-alternative forced-choice (2-AFC) task with the two choices
a priori equally probable. Thus, the neural threshold for congru-
ence phase discrimination was defined by the abscissa of the
intersection of the performance curve (interpolated between the
eight measured values) by the criterion line. This procedure
provided two one-sided thresholds: one on each side of the
line-like waveform on the phase circle (Fig. 14c, inner pair of
vertical arrows). These two one-sided thresholds were then aver-

aged to obtain the threshold phase for the line discrimination (�
0.1� for the cell in Fig. 14c). A representative human psycho-
physical threshold (Burr, 1980) is also shown in Figure 14c (outer
pair of vertical arrows). By this analysis, this macaque V1 simple
cell appeared to be more sensitive than the human observer, at
least for the condition where the line-like waveform was the test
stimulus to be discriminated. However, this high sensitivity was
not typical of V1 neurons (see below).

In a similar manner, discrimination thresholds can be calcu-
lated with each of the other waveforms serving as the reference.
Figure 14d shows (open symbols) discrimination threshold (dif-
ference of congruence phases) as a function of the congruence
phase of the reference waveform. This threshold function sum-
marizes waveform or 1D feature discrimination for this simple
cell.

The cell shown in Figure 14 was the most sensitive to congru-
ence phase in our sample. The information content of pairwise
discrimination based on single responses was often close to the
ideal maximum of 1 bit (perfect discrimination), especially for
pairs of compound gratings with congruence phase that differed
by �/4 or more. The threshold curve, however, showed a system-
atic dependence on congruence phase: discrimination of com-
pound gratings from the line-like waveform (difference of con-
gruence phases at threshold � 0.1�) was superior to
discrimination of compound gratings from the edge-like wave-
form (difference of congruence phases at threshold � 0.18�).

Although this cell, one of the most sensitive to differences in
spatial waveform in our V1 sample, can perform phase discrim-
ination for line-like stimuli at least as well as the normal human
observer (Fig. 14d, filled symbols) (converted to our units from the
Burr study), it is well outperformed by the human observer for
discrimination of edge-like stimuli. The pattern of dependence of
threshold on congruence phase in this cell is exactly the opposite
of the human. Thus, we ask whether this discrepancy holds in V1
neurons in general. We also determine how spatial feature dis-
crimination in V1 neurons compares with that in human observ-
ers for the typical neuron and not just for the most sensitive V1
neurons.

To answer these questions, we analyzed all data that passed our
initial criterion for analysis (as stated in the first section of
Results: 121 data sets from 31 simple cells and 46 complex cells).
Within this group, we computed the phase-discrimination thresh-
old functions for all neurons in the subset that met the 82%-
correct threshold criterion. This turned out to be a stringent
criterion: only �10 % of this group (20% of the simple cells and
5% of the complex cells) met this criterion for at least one
reference phase (Fig. 15a). Of these most sensitive V1 neurons,
eight data sets from five simple cells, including the example in
Figure 14, and 1 complex cell, met the 82%-correct criterion for
all eight congruence phases used as reference. Connecting lines
of different types indicate five of these threshold curves. Only
isolated data points are plotted for the three remaining neurons,
at which measurable thresholds (at the 82% criterion) were iden-
tified for a subset of the eight reference congruence phases. The
human threshold curve measured by Burr (1980) is plotted again
for comparison (Fig. 15a, filled symbols connected with dotted
line). Neuronal thresholds were typically much larger than the
psychophysical human thresholds, even in the most sensitive sim-
ple cells. The lower boundary of the macaque data traces the
curve of the human thresholds in most conditions, but this may
be a mere coincidence. Individually, the phase-discrimination
thresholds in these most sensitive neurons display quite a varied
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dependence on the congruence phase of the test stimulus. Across
this admittedly small sample, the shape of this dependence, as
summarized by their median (Fig. 15b, connected stars) does not
match what was observed in the human observer.

The close agreement between the human thresholds and the
lower boundary of the data in Figure 15a is consistent with a
winner-take-all mechanism in V1 that could account for the
psychophysical thresholds (Parker and Newsome, 1998). How-
ever, our analysis focused on the most sensitive individual neu-
rons (as defined by a somewhat arbitrary threshold criterion) and
ignored the bulk of the population. The stringent threshold cri-

terion excludes most neurons in V1 that have phase-sensitive
responses, simply because they would not suffice to signal con-
gruence phase in isolation. To consider the contributions of the
less sensitive neurons, we relaxed the threshold criterion from 82
to 68% correct, from the equivalent of 0.32 to 0.1 bits of infor-
mation. This 70% drop in the equivalent information at criterion
resulted in a fourfold increase in the size of the most sensitive
subset of V1 neurons. Approximately 40 % of the analyzed data
(for both simple and complex cells) met this relaxed threshold
criterion at least at one test phase condition (Fig. 15b). The
median threshold across neurons (connected stars) reaches the
maximum possible relative phase near the edge-phase, because
even with this lower criterion, half of the neurons had nonmea-
surable thresholds. Again, median dependence on congruence
phase is different from what is seen for the human observer. Thus,
to account for the pattern of the human thresholds, V1 activity
must be “read out” in a manner that does not just sum up the
activity of individual neurons and most likely involves phase-
specific processing.

Varieties of feature discrimination in V1 cells
Figure 15 summarizes, for single neurons and for an arbitrary
threshold level, the dependence of phase discrimination on the
reference congruence phase. However, there is no guarantee that
phase discrimination is a uniform and monotonic function of
phase difference. Rather, the phase discrimination capabilities of
a single neuron may be a more general function of the congru-
ence phases of the two stimuli to be discriminated. Indeed this is
the case, as the discrimination functions for six cells, representa-
tive of our V1 sample, show (Fig. 16). The x- and y-axes of these
plots represent the congruence phase (i.e., position in feature
space) of the two compound gratings in a discrimination pair.
The height of the surface is phase discrimination, measured as
information obtained with the shift-reduced Fourier metric. Per-
fect discrimination of two stimuli corresponds to 1 bit, the max-
imum possible information in paired comparison. The trough
touching zero bits on the diagonal represents self-comparison
(i.e., the absence of discrimination of two identical stimuli).
Because the feature space has period �, these plots also have
period � in both x and y. The plots are necessarily symmetric
across the main diagonal, because our measure of discrimination
is independent of which grating is considered the reference.

In these plots, feature-selective discrimination corresponds to
elevated surfaces (peaks or ridges) in the narrow vicinity of the
congruence phase of the selected waveform. Discrimination that
is a monotonic function of phase difference would result in a
surface that increases monotonically in height with increasing
distance from the diagonal (and its periodic repeats at intervals of
�); this behavior is seen in Fig. 16a–d but not e or f. The ideal
energy operator would respond equally vigorously to each of the
waveforms and thus would be associated with a flat surface at
zero, because its response provides no discrimination.

Figure 16a shows a sensitive simple cell and Figure 16b shows
a sensitive complex cell. The information surface for both cells
has a prominent off-diagonal ridge (near maximum offset in
feature space, i.e., the locus x � y � �/2). The ridge is of
approximately uniform height, and along the axis perpendicular
to this ridge the information surface is roughly symmetric. This
signifies equal discrimination of all pairs of stimuli that are
equally offset in feature space and maximal discrimination of
pairs that are maximally offset in feature space (separated by �/2
congruence component phase). For such neurons, only the rela-

Figure 15. a, Phase discrimination thresholds in all the 13 V1 data sets (9
from simple cells, 4 from complex) that had measurable thresholds at the
82%-correct response criterion for at least at one reference phase. The
most sensitive simple cell (large open circles connected by solid line) is the
same as in Figure 14. Seven more data sets from simple cells [4 of these
are shown with different open symbols (small circle, triangle, square, dia-
mond) connected by distinct line types], and one complex cell ( filled
triangles connected by solid line) met the criterion at all test phases, and
five other data sets (from 4 neurons) had measurable thresholds at some
but not all test phases (isolated data points). Stars connected with the thick
line depict the median neuronal threshold. Human thresholds were re-
plotted from Figure 14 as filled symbols connected by dotted line. b, Phase
discrimination thresholds in the 46 data sets from 34 V1 neurons (17 from
12 simple cells, 29 from 22 complex cells), �40% of all data analyzed in
both cell class, that had measurable thresholds at the less stringent
68%-correct response criterion. For clarity, threshold functions of indi-
vidual cells are not highlighted by connected lines. Connected stars depict
the median neuronal threshold. Nonmeasurable thresholds (difference of
congruence phases �� 
 �/2 rads) are not shown but were considered for
the population median. Human phase discrimination thresholds (connect-
ed open circles) are reproduced from Figure 14 and correspond to the
82%-correct criterion.
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tive positions in feature space of the compared stimuli matter.
Because these cells discriminate equally different pairs of wave-
forms equally well, they are tuned only for differences in wave-
form. Therefore, we could describe them as feature-nonselective
opponent. Within our sample, these cells are the least noisy and
the most sensitive (in terms of bits of peak information) units that
show this kind of behavior.

The simple cell in the middle left (Fig. 16c; this is the paradig-
matic simple cell of Fig. 2–5) has a different behavior. Rather than
diagonal ridges, the information surface has ridges parallel to the
coordinate axes, with peaks on the lines �1 � 2�/8, �2 � 2�/8 and
falling to near zero at intermediate positions. This behavior is
most evident from examination of the contour lines (replotted
separately in inset). This pattern in the information surface
approximates an “X-OR”-type phase discriminator; namely, there
is substantial discrimination between a pair of features when one
feature is near � � 2�/8 and the other is not. Other cells in our
sample displayed X-OR pattern tuned to various congruence
phases.

The last three examples (Fig. 16d–f) all have one or more

prominent discrete peaks (plus their periodic replicates as re-
quired by the symmetry and periodicity of the plot) rather than
ridges. The complex cell in Figure 16d has a single peak at (�1 �
0�/8, �2 � 4�/8), exactly on the maximally offset off-diagonal. On
the basis of the responses of this neuron, edge-like and line-like
compound gratings are discriminable, but all other pairs of com-
pound gratings would be confused. This behavior could thus be
called feature-selective opponent. Interestingly, this neuron was
recorded simultaneously with the complex cell of Figure 5e that
responded only to the full edge but not to the four-component
compound gratings.

The last two cells in Figure 16 show another narrowly tuned
behavior, which could be called feature-selective nonopponent.
Remarkably, they are tuned to discriminating pairs of waveforms
that are very similar to each other (i.e., occupy nearby positions in
feature space and form near-diagonal positions in these plots),
but they do not discriminate stimuli that are in opponent posi-
tions in our feature space. The simple cell (Fig. 16e), with its
single discrimination peak at (�1 � 0�/8, �2 � 1�/8), resolves the
differences between two similar line-like waveforms but confuses

Figure 16. Examples of the information available in the responses of six representative V1 neurons for discriminating pairs of compound gratings.
Information estimates, obtained with the shift-reduced Fourier metric truncated at the eighth Fourier harmonic (F8 ) of the response, are plotted on the
vertical axis (in units of bits) as a function of the congruence phases of the discrimination pair (�1 and �2 in units of �/8 on the horizontal axes). Note
the different vertical scales used for different neurons. For clarity, contour plots of the surfaces for each cell are replotted separately in insets. Stimulus
space is periodic in congruence phase (with mod �): therefore, axis labels 0 and 8 (i.e., � � 0, � � 8�/8) both refer to the line-like stimulus, and label
4 (i.e., � � 4�/8) refers to the edge-like stimulus. a, c, e: simple cells; b, d, f: complex cells. a, b, Neurons, broadly tuned feature-nonselective opponent
discrimination. c, Neuron approximating an X-OR-type phase discrimination (this is the simple cell of Fig. 2–5). d, This neuron distinguishes a line from
an edge pair but ignores all other feature pairs, i.e., its discrimination could be described as feature-selective opponent. e, f, Narrowly tuned neurons that
could be described as feature-selective nonopponent.
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all other pairs. The complex cell (Fig. 16f) performs a similarly
narrow discrimination on not one but two pairs of waveforms,
with one peak at (�1 � 3�/8, �2 � 4�/8), a pair of edge-like
waveforms, and another at (�1 � 5�/8, �2 � 6�/8), a pair of
waveforms intermediate between edge and line. The relatively
low sensitivity (as measured by the small information values near
peak) of this cell is typical of the V1 population as a whole.

Every cell in our V1 sample had, in pure form or in some
combination, features displayed by one of these three examples.
Most neurons had a ridge (indicating some form of nonselective
behavior). In most cases, the ridge was near the maximum offset
in feature space (the off-diagonal locus x � y � �/2), i.e., feature-
nonselective opponent behavior, whereas a few displayed X-OR
like rectangular crossed ridges. The information surface in ap-
proximately half the neurons had a peak, either in isolation (the
narrowly tuned feature-selective opponent or feature-selective
nonopponent behavior) or superimposed on a ridge. The peak
location along the ridge (i.e., the position in feature space that
maximizes discrimination) varied across neurons.

The average discrimination, taken as the information surface
averaged across neurons, displays a mixture of these features.
Figure 17a shows the average waveform discrimination in V1
simple cells, calculated across 43 data sets. The average informa-
tion is dominated by the feature-nonselective opponent ridge (at
maximum offset in feature space). Superimposed on this ridge
near (�1 � 0�/8, �2 � 4�/8) is a slight elevation, indicating a mild
population bias for the selective line versus edge-type opponency.
At this peak, discrimination in the average simple cell reaches
0.125 bits, or 70% correct. (Here, information is converted to the
equivalent fraction correct in a 2-AFC paradigm, as defined at
Fig. 14.) The complex cell average (N � 78) is shown in Figure
17b. This exhibits very similar features to the simple cell average
(same major ridge, same location for the superimposed elevation)
but has approximately half the simple cell sensitivity: 0.056 bits
(64% correct) at peak discrimination. The overall V1 average
(Fig. 17c) also has the same features, with levels of discrimination
intermediate between the average simple and complex cells
(�0.08 bit, or 66.6% correct at peak). That is, the typical V1 cell,
but not the most sensitive ones, when considered in isolation,
does not reach 70% correct and cannot reliably distinguish any of
these compound gratings.

Unimpressive as these information values are in the average V1
neuron, the levels of selectivity and the variety of patterns
exhibited by the V1 neurons most tuned to phase discrimina-
tion—and these include complex cells, not just simple cells—
are all the more impressive. The observed selectivity patterns,
such as the selective and nonselective opponency, X-OR, and
nonopponent selectivity, can be considered as the elementary
operators of a “feature algebra.” That is, combining these
behaviors via addition and multiplicative interactions could
give rise to genuine narrowly tuned detectors and discrimina-
tors of arbitrary 1D spatial features, which would be found
most likely at an extrastriate stage.

Finally, we address the relationship between the optimal con-
gruence phase defined as the tuning peak (predicted by the fitted
functions such as in Fig. 6 or the ellipses in Fig. 9) and the
congruence phase of the features corresponding to the discrimi-
nation peak (identified by the maximum information on the
information surfaces such as those in Fig. 16). Within the domain
of orientation, the relationship between tuning and discrimina-
tion is straightforward: it is determined by the slope of the tuning
function, however, for the problem at hand, the relationship is
more complicated. For example, consider the simple cell in Fig-
ures 6 and 9 again. The optimal congruence phase was �opt �
0.65�, with the precise value depending on which scalar measure
or Fourier harmonic is used. The congruence phase of the max-
imally discriminable feature was �pk � 0.25� (Fig. 16c). Note that
this phase corresponds to the minimum response size, not the
maximum absolute value of the derivative of the tuning curves in
Figure 6 or the maximum rate movement of the response along
the ellipse loci in Figure 9. There are many other examples of
such discrepancies in our sample. The existence of multiple
response measures per se is not the basis for this discrepancy,
because the response measures often have similar tunings.
Rather, to provide for feature discrimination that is independent
of absolute spatial position, interrelationships between these re-
sponse measures (e.g., the relative phase of Fourier components)
must be used, and the reliability and sensitivity of such interre-
lationships need not be tightly linked to the individual tuning
curves. This line of reasoning is clearly sufficient only to provide
an intuitive basis for understanding their existence.

Figure 17. The information (bits on vertical axis) available in the average V1 neuron for discriminating pairs of 1D spatial waveforms. N indicates the
number of averaged data sets. The information analysis and plotting convention are the same as in Figure 16. a, Simple cell data sets (N � 43); b, complex
cell data sets (N � 78); c, all V1 data sets (N � 121).
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Spatial phase discrimination: comparison of simple
and complex cells
Finally, we analyze the relationship between sensitivity to spatial
features and the traditional simple/complex classification of V1
neurons. The traditional view, based largely on conventional tests
with bars and simple grating stimuli, holds that the quasilinear
nature of simple cells allows them to convey precise positional
and spatial phase information, whereas the nonlinear spatial
integration that distinguishes complex cells markedly reduces the
positional and phase information that they can transmit (Mov-
shon et al., 1978b). An alternative view is that the simple and
complex cells form a functional continuum, rather than a dichot-
omy. Within the context of the latter view, the class-averaged
positional (spatial phase) sensitivities are considered to be well
segregated for the two traditionally defined cell classes, although
the distributions might have a considerable overlap.

We examined whether these notions extended to discrimina-
tion of spatial features, which requires both spatial phase sensi-
tivity (considered to be characteristic of simple cells) and spatial
nonlinear interactions (considered to be characteristic of complex
cells). The conventionally used quantitative classifier of V1 neu-
rons is the modulation ratio (Skottun et al., 1991), which is
calculated as the ratio of the response amplitude at the funda-
mental frequency of an optimal grating over the mean spike rate.
We examined the correlation of the modulation ratio with two
measures of neuronal spatial feature sensitivity in our V1 sample.
The first measure that we used was the peak of the information
surface of a cell’s discrimination of pairs of compound gratings,
such as shown in Figure 16. This is a measure of the peak
discrimination sensitivity of the cell for spatial congruence phase.
We included in this analysis 159 data sets that consisted of the 121
data sets used in all preceding analyses presented in Results (all
that passed the original d� criterion for analysis), plus some of the
data sets that contained well isolated but poor responses (ran-
domly selected subset of those that did not pass the d� criterion).
The rationale for including these additional data sets was to
analyze a more realistic sample of V1 neurons, rather than a
subset biased toward neurons of high feature sensitivity. As a
second measure, we used the lowest phase discrimination thresh-
old. This was calculated as the minimum, across all test congru-
ence phases, of the difference of congruence phases of the spatial
waveforms that the cell could discriminate from the test wave-
form at the 68%-correct threshold criterion (i.e., the minimum
within each cell of the thresholds shown in Fig. 15b). Only about
one-third (N � 52) of the data sets used for the first measure
qualified for this analysis; for the remainder, no pair of congru-
ence phases could be discriminated at this criterion level.

Figure 18 shows the relationship of the modulation ratio to the
two measures: peak sensitivity (Fig. 18a) and lowest threshold
(Fig. 18b). The top panels are scatter plots of either measure
against the modulation ratio, considered as an index of cell
classification. A positive correlation was expected if simple cells
possessed significantly greater feature discrimination sensitivity
than complex cells (Fig. 18a). Conversely, a negative correlation
was expected if simple cells possessed significantly lower feature
discrimination thresholds than complex cells (Fig. 18b). In fact,
neither scatter plot shows any significant dependence of these
measures on the index of cell class (r � 0.1). Additionally, the
data show no evidence for a dichotomy in feature discrimination
along the class index, either at the class boundary (a modulation
ratio of 1) or anywhere else. Most V1 neurons, whether simple or

Figure 18. a, The dependence of phase discrimination sensitivity, mea-
sured by peak information in surface plots of the type shown in Figure 16
(vertical axis) on cell class (indexed by the modulation ratio, F1 /DC, for
the optimal drifting sine grating). Dotted lines indicate the conventional
simple/complex class boundary. Top, Scatter plot of the modulation ratio,
F1 /DC versus information peak. They are uncorrelated (r � 0.089). The
neurons most sensitive to spatial features occupy the top part of the plot.
Middle, Distribution of peak information (marginal distribution, along the
vertical axis, of data in scatter plot at the top). Histograms are fraction of
data sets separately from simple cells (red) (N � 59; median � 0.088) and
from complex cells (blue) (N � 100; median � 0.092); the two distribu-
tions are not different (Kolmogorov–Smirnov test; d � 0.13; p � 0.533).
The most sensitive cells fall to the right of the heavy arrowhead. Bottom,
Conventional simple/complex classification of V1 neurons based on the
modulation ratio. Our sample of neurons analyzed in a (marginal distri-
bution along the horizontal axis of scatter plot at top) exhibits the well
known bimodal distribution. b, Similar analysis to that shown in a, but
sensitivity to congruence phase, quantified by the lowest congruence
phase difference in each neuron that met the 68%-correct (0.1 bit equiv-
alent) criterion, is analyzed instead of peak information. Only a subset of
the data analyzed in a met this criterion. Top, Scatter plot of the modu-
lation ratio, F1 /DC versus lowest threshold; they are uncorrelated (r �
�0.194). The neurons most sensitive to spatial features occupy the bottom
part of the plot. Middle, Data sets from simple cells (red), (N � 21;
median � 0.973) and from complex cells (blue) (N � 31; median � 1.652);
the two distributions are marginally different (Kolmogorov–Smirnov test;
d � 0.368; p � 0.046). The most sensitive cells fall to the lef t of the heavy
arrowhead. Bottom, Bimodal distribution of the modulation ratio within
this subset of the V1 neurons.
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complex, exhibit weak discrimination of congruence phase. The
most sensitive neurons (top half of the scatter plot in a, bottom
quarter in b) form a small but nondistinct minority within the
continuum of the overall V1 population. Although the simple
cells (left half of each scatter plot) seem slightly over-represented
among the most sensitive neurons, the most sensitive neurons also
include complex cells (right half of each scatter plot).

The middle panels in Figure 18 show the marginal distribution of
each measure of feature sensitivity. For either one, the
Kolmogorov–Smirnov test did not reject the null hypothesis that
the simple and complex samples came from the same distribution.
However, the similarity of the distributions in simple and complex
cells comes with an apparent relatively higher abundance of simple
than complex cells among the most sensitive neurons. Is this
significant? For the analysis in Figure 18a, we selected 159 data sets
of a total of 226 recorded (59 of 74 simple, and 100 of 152 complex).
Of these, only 21 data sets (10 simple and 11 complex data sets)
exhibited peak sensitivity of 0.2 bits or higher (an arbitrary thresh-
old for high feature sensitivity, indicated by the arrow in the middle
panel of Fig. 18a). This translates to a higher proportional repre-
sentation of simple than complex cells, 14% (17%) of all (ana-
lyzed) simple data sets versus 7% (11%) of all (analyzed) complex
cell data sets, but not to a statistically significant degree ( p 
 0.1 by
2 � 2 
2). The higher proportional representation of simple cells
evaporates for less stringent criteria. We mentioned in connection
with Figure 15 that the proportion of simple and complex cells that
passed the 68%-correct threshold criterion, a wider subset of neu-
rons, was practically identical (�20% of all data sets and 36% of
data sets analyzed, within each cell class). Thus, depending on the
criteria, only �10–20% of V1 neurons exhibit notable feature
sensitivity. Complex cells make up a smaller fraction than simple
cells of this subset, but nevertheless are well represented even in
the subset of most sensitive cells.

The distribution of the modulation ratio in both samples (Fig.
18, bottom panels) exhibits the well known bimodality with the
usual dip near 1. Thus our sample, as conventional classification is
concerned, was typical of the results of others (Skottun et al.,
1991). The ratio of the simple/complex population size was,
depending on the subset analyzed, �1:2–2:3, also in the range
usually observed in the macaque V1 overall (Skottun et al., 1991).

Summary
We used compound gratings consisting of a fundamental and its
first three odd harmonics the congruence phase of which was
varied systematically. This stimulus set was well suited for disso-
ciating linear and nonlinear mechanisms (only odd harmonics
were present), and also for dissociating phase-specific nonlineari-
ties from those sensitive only to stimulus power (all waveforms
were of equal energy). Moreover, the use of compound gratings
containing several harmonics, and the choices of relative phases,
facilitated an interpretation in terms of extraction of simple
features (i.e., the phase coherences typical of lines and edges).
With these stimuli, we obtained a number of novel findings:

(1) Phase-specific nonlinear interactions, up to fifth and higher
orders, are present with similar strength and harmonic composi-
tion in both simple and complex cell responses. In simple cells,
odd harmonic responses were of slightly higher gain then even
harmonics, but they were equally selective for spatial feature. In
complex cells, even harmonics were of much higher gain, but the
odd harmonics were more selective.

(2) The preferred congruence phase in phase-tuned V1 neu-
rons is relatively poorly predicted by the spike count, but equally

well predicted by other scalar (e.g., energy) and vector (significant
Fourier harmonics) response measures.

(3) Cells were encountered that are tuned to edges, lines but also
intermediate stimuli with mixed symmetry. Although a few cells that
approximated a phase-insensitive energy operator were also encoun-
tered, even most complex cells were tuned to congruence phase.

(4) Although the distribution of the preferred congruence
phase in V1 was broad, with all congruence phases represented,
the population as a whole, regardless of cell class, displayed a
slight bias toward lines and possibly edges. This may represent a
genuine relative abundance of even symmetry preference among
V1 neurons.

(5) Feature preference and selectivity also varied within a local
cluster of V1 neurons.

(6) Information analysis using a method that was insensitive to
absolute phase or position (the shift reduced Fourier metric)
revealed that V1 neurons encoded relative phase in the entire
frequency band present in the stimuli (as limited by the pass-band
of the linear filter of the receptive field).

(7) The envelope of feature discrimination thresholds, estimated
from information analysis, in the most sensitive V1 neurons (5% of
complex cells and 20 % of simple cells) matched the human psycho-
physical thresholds, but the dependence of feature discrimination
threshold on congruence phase showed many patterns in single V1
neurons, and most differed from the pattern in human observers.

(8) The responses of most cells were rather noisy and displayed
low sensitivity to relative phase. A minority of V1 neurons that
included both simple and complex cells were highly sensitive and
selective. The peak discrimination sensitivity of the average V1
neuron does not reach the level of 70% correct. Simple cells on
average were twice as sensitive at peak as complex cells. However,
the distribution of peak feature sensitivity and the lowest thresh-
old of feature discrimination were both indistinguishable be-
tween simple and complex cells and indicated a continuum in V1.

(9) The existence, among sensitive neurons, of nonlinearities
tuned to feature pairs or feature differences, suggests that a
subpopulation of V1 neurons does more than simply pass on the
relevant information necessary for spatial feature detection to a
downstream stage.

DISCUSSION
Visual perception relies on the successful identification and lo-
calization of features such as lines and edges that define the shape
and boundaries of objects. These features arise from spatial phase
congruence, the local agreement of spatial phase of multiple
harmonic components of an image. However, despite their im-
portance, the neural computations underlying detection and dis-
crimination tasks based on relative spatial phase are unclear.
Because feature extraction requires phase-selective nonlinear fil-
tering, the earliest stage at which this operation is likely to occur
along the visual pathway is in the primary visual cortex. Our
experiments were designed to test whether V1 neurons can ac-
count for the specificity of feature extraction for lines and edges
by studying their sensitivity to relative phase.

Physiology: comparison with other studies
Only a few studies have examined the sensitivity of single neurons
in the primary visual cortex to relative spatial phase or phase
coherence. In anesthetized cats, De Valois and Tootell (1983)
recorded the responses of striate cortical neurons to rigidly drift-
ing compound gratings composed of pairs of spatial sinusoids,
one of which was always near the optimal spatial frequency. These
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authors noted large suppressive or facilitative interactions in most
simple cells and in one-third of complex cells. Their analysis,
however, was restricted to the Fourier amplitude at the funda-
mental frequency for simple cells and to the mean firing rate for
complex cells, and thus ignored response phase and waveform.
Our results indicate that limiting the analysis to those response
components could miss most of the phase-specific frequency
interactions. Also in striate cortex of the anesthetized cat, Levitt
and colleagues (1990) recorded the responses to f � 2f-type
spatial compound gratings that were presented both drifting as
well as in counter-phase modulation. Although they emphasized
that the temporal response properties of neurons could confound
their spatial selectivity (Dean and Tolhurst, 1986), they did no
attempt to analyze the receptive field nonlinearities. Any attempt
to do so would have been difficult because responses to f � 2f
stimuli would confound stimulus components with low-order non-
linear interaction frequencies. Pollen and colleagues (1988), in
monkey V1, did attempt to analyze the nonlinearities contribut-
ing to feature selectivity and used drifting f � 3f compound
gratings, more appropriate for this purpose. They concluded that
responses of simple cells were fully explained by filtering by their
linear receptive field followed by a nonlinearity (threshold). To
account for the responses of complex cells they advanced an
energy-operator model that sums simple cell responses in appro-
priate (quadrature) phase combination. As pointed out above, an
energy model such as this cannot account for our findings in
complex cells. We are currently working on more elaborate mod-
els that could account for the major findings presented here.

Spatial feature discrimination in simple and
complex cells
We characterized discrimination of elementary features (on the
basis of relative spatial phase) according to several measures and
found little if any correlation between these measures and the
simple/complex distinction. This result is unexpected from the
traditional view of the phase sensitivity of simple and complex cells.
High versus low spatial phase sensitivity in simple versus complex
cells is widely held as one of the clearest and most quantitative
indicators of a functional dichotomy between these neuronal
classes (Movshon et al., 1978a,b; De Valois and De Valois, 1980;
Hamilton et al., 1989; Skottun et al., 1991); however, the usual class
distinctions based on phase sensitivity are derived from responses
to simple gratings or bars. Here, we obtained a very different view
about simple and complex cells by using more complex stimuli.
Spatial phase sensitivity alone does not suffice to provide for spatial
feature discrimination; joint processing of spatial phase across
multiple spatial frequencies combined by a spatial nonlinearity is
required as well. Spatial phase sensitivity is generally considered to
be more prominent in simple cells, whereas spatial nonlinearities
are generally considered to be more prominent in complex cells.
Viewed in this manner, it makes sense that spatial feature discrim-
ination does not fall squarely into the province of one cell type or
the other. Indeed, the need for both aspects of receptive field
structure for this very crucial operation of early vision provides a
rationale for an organization of cortex not into two distinct classes
but into a continuum (Dean and Tolhurst, 1983; Chance et al.,
1999; Mechler and Ringach, 2002).

Correspondence with psychophysics of feature
detection and discrimination
The psychophysics of absolute and relative spatial phase discrimi-
nation has been amply studied [for a review of much of the early

work see De Valois and De Valois (1980)]. Relative phase discrim-
ination threshold was studied, among others, by Burr (1980). A
static f � 3f compound grating was presented to the observer with
variable relative phase. At moderate (�10%) contrasts, phase
discrimination thresholds were �30°. This was relatively constant
across almost the full range of test congruence phases, except that
phase discrimination thresholds were markedly elevated for line-
like waveforms, and somewhat elevated for edge-like waveforms.
This last point was given a tentative explanation based on the
steepest slope principle in conjunction with the widely held as-
sumption [supported by several psychophysical studies reviewed by
Burr (1980)] that phase-selective mechanisms of the visual system
are predominantly tuned to edge-like and line-like waveforms.

Our results on neuronal phase discrimination thresholds ob-
tained at the 82%-correct equivalent criterion are consistent with
the notion that a winner-take-all mechanism among the V1 neu-
rons most sensitive to relative phase can account for Burr’s
psychophysical thresholds, but this explanation carries several
caveats: (1) we used five times higher contrast than was used for
the psychophysics; (2) we optimized fundamental spatial fre-
quency for the bandwidth of the cell, but psychophysics was done
with a fixed 3 c/° fundamental, which was near optimal for the
observer but presumably not for all of his V1 neurons; (3) we used
four harmonic components ( f � 3f � 5f � 7f), making richer and
potentially more salient waveforms than the two-component ( f �
3f) stimulus that was used in psychophysics. All of these differ-
ences act to favor the neuronal thresholds; without them, even the
best single neuronal thresholds would be expected to be higher
than human psychophysical thresholds.

Computational implications for the functional circuitry
in visual cortex
Although the most sensitive simple and complex cells (e.g., those
of Fig. 15a) show discrimination approaching psychophysical lev-
els, the correspondence with human thresholds typically did not
hold for all test phases for any single neuron. Thus we must
consider the possibility that pooling of signals from several single
neurons is necessary to account for the psychophysical thresholds.
Across V1 neurons, we observed a wide variety of pattern in the
dependence of threshold on test phase; most were different from
the dependence observed in human thresholds. Furthermore,
unlike the situation for orientation and spatial frequency, the
observed variation in phase selectivity among nearby neurons is
considerable. Thus, although spatial pooling likely plays a con-
siderable role, it must be phase specific, rather than locally
indiscriminate.

We encountered V1 neurons with a phase discrimination func-
tion that was tuned to feature pairs (e.g. selective feature-
opponent) (Fig. 16d–f), selective presence of a feature (X-OR)
(Fig. 16c), or feature differences (nonselective feature-opponent)
(Fig. 16a,b). Their existence raises the possibility that V1 neurons
actively participate in feature detection and discrimination and
do not merely act as linear filters that pass on the relevant
information to downstream detector mechanisms. On the other
hand, because (as we have shown) V1 neurons do not account for
the pattern of feature sensitivity, later stages must do more than
merely improve thresholds.

It is unclear how these precursors of feature discriminators in
V1 could be constructed, within the known functional circuitry of
V1. Creating nonselective feature-opponent cells by pooling sig-
nals from many variously tuned selective feature-opponent cells
encounters some difficulty, given the observation that both simple
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and complex cells can act as nonselective feature-opponent dis-
criminators. On the other hand, building nonselective feature-
opponent cells from selective ones with the aid of selective
inhibition leaves open the question of where the selectivity of
inhibition arises. One way to resolve these difficulties might be to
invoke feedback from extrastriate visual areas, such as V2, rather
than to attempt to build these properties solely from the intrinsic
circuitry of V1, but this must be considered speculative at present.
These and other questions, such as those related to the cortical
processing of 2D shape information, should motivate experiments
in extrastriate cortex that could expand on these efforts.

APPENDIX
A formalism for compound grating stimuli
We consider general compound grating stimuli, and then special-
ize to the particular drifting compound gratings used in these
experiments. This approach adds little notational inconvenience
and clarifies what is generic to compound gratings and what is
specific to our choice of stimuli.

We assume that the compound gratings are composed of L
sinusoidal components, each at integer multiples of a common
fundamental frequency f. The set of integer multiples are denoted
{k(1), k(2), . . . , k(L)}, and the corresponding frequencies are
denoted {Fk(1) , Fk(2) , . . . , Fk(L)}. Thus Fk(j) is the frequency of
the jth component, which is the k( j)th harmonic of a common
fundamental, i.e., Fk(j) � k( j)f. We use the vector k� as a compact
notation for the set of components {k(1), k(2), . . . , k(L)} and use
similar vector notation for other analogous sets of indices below.

Each single sinusoid of a compound grating can be written as a
sum of a complex exponential and its complex conjugate pair.
This decomposition allows for convenient tracking of the phase
and frequency of nonlinearly interacting components. Corre-
spondingly, a sum of sinusoids Wk�(t) corresponding to a com-
pound grating of components k� can be written as a sum of
exponential terms and their complex conjugate pairs, one for each
temporal frequency component:

W�k �t� � �
l��L

L

ak(l)ei2�Fk�l� tei�k�l�, where
(A1)

k� � l � � � k�l �

F�k � � Fk

��k � � �k

a�k � a� k.

Here, the indexing is extended into negative frequencies to ac-
commodate the complex notation, and all quantities with a zero
index are equal to 0 by convention. The multipliers ak and their
complex conjugates a�k are the amplitudes of the sinusoidal com-
ponents and may depend on contrast, spatial frequency, and
space. Complex conjugation for negative components guarantees
a real sinusoid at each of the positive frequencies. The convention
that a0 � 0 indicates that only contrast, but not the mean level of
light intensity, is considered a part of the stimulus. The �k(l)

denote the relative phases of the components.

Frequencies and phases in the linear response
The essence of a linear system is that its response contains com-
ponents only at frequencies that are present in the stimulus and
that the phase of each component of the response has a constant

offset with respect to the phase of the corresponding component of
the stimulus. Thus, a linear response, Rk�

1 (t), to a compound grat-
ing Wk� (t) i s described by a linear combination
(i.e., the sum of complex multiples) of the exponential terms
e i2�Fk(l) t e i�k(l) and their complex conjugates present in the
stimulus:

Rk�
1(t)� �

l��L

L

bk(l) ei2�Fk(l)tei�k�l�

(A2)

b�k � b�k, b0 � 0

Here, the bk complex amplitudes and their conjugate pairs are
constant for fixed contrast and spatial frequency, but they differ
from the multipliers ak in Equation A1 because of the filtering
properties of the system.

Nonlinear interaction frequencies in the response
The R(t) response of nonlinear system to a sinusoidal sum Wk�(t)
can typically be well approximated by an appropriately chosen
sum, R�t� � �n�1

N Rk�
n(t), of the nth-order response contributions

(Bedrosian and Rice, 1971; Victor and Knight, 1979), where N is
the order of the approximation. Each term in this approximation
depends on the frequency content of the stimulus. In particular,
for each 1 � n � N, the nth-order response Rk�

n(t) is a sum of all
possible products of n frequency components, each of which is
selected from the set of components present in the stimulus. This
generalizes the description of the linear response (in Eq. A2),
which corresponds to the sum of first order terms, n � 1, to
nonlinear responses of finite order:

Rk�
n(t) � �

{m1,m2, . . . ,mn}

cm1,m2,...,mn�
l�1

n

ei2�Fk(ml)tei�k(ml) � �
m�

cm� ei2�Fk(m� )tei�k(m� ),

(A3)

Fk(m� )��
l�1

n

Fk�ml� 1��ml��L

�k�m� � � �
l�1

n

�k�ml�

c�k�m� � � c�k�m� �.

Here, the summation over the vector index m� is compact notation
for a summation over each of its n component indices, where each
component index ml runs through all negative and positive values
up to L. This in turn selects all combinations of n components of
k� and their negatives, with negative values denoting complex
conjugation as in Equation A1. The compact notation for the n th
order response frequency Fk(m� ) indicates that it results from a
sum of the n frequencies labeled by m1 , m2 , . . . , mn: Fk(m� ) �
Fk(m1)

� Fk(m2)
� . . . � Fk(mn)

. Note that the response frequency
Fk(m� ) depends on the component frequencies specified by the
frequency n-tuple m� , and also on their signs, because each com-
ponent index can reference positive or negative frequencies. A
similar dependence holds for the phase of the response.

Distinct frequency n-tuples in Equation A3 (i.e., n-tuples of the
same order n with indices m� and m� � that differ by more than merely
a permutation, and perhaps n-tuples of distinct orders n and n�)
may give rise to the same output frequency. However, as we show
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below, these output components will generally have different de-
pendences on the phases of the input frequencies and thus may be
separated. The compact notation of Equation A3 has another
potential ambiguity. Frequency n-tuples m� that differ only by a
permutation are separately listed in Equation A3; despite the fact
that they reflect identical interactions (and necessarily have iden-
tical dependences on the phases of the input frequencies). Elimi-
nating these multiple listings is important for normalizing nonlin-
ear kernels (Victor and Knight, 1979) but not for the present
purpose of tracking the interaction frequencies and their phases.

Permitted intermodulation frequencies and their
phases in our stimulus design
Our compound grating stimuli are constructed from the first four
odd harmonics of a fundamental f, namely, k� � {1, 3, . . . , 2L � 1}
and L � 4. Moreover, each component has the same congruence
phase, �, fixed to a value specific for the stimulus. Using the sign
convention established above, the properties specific to our com-
pound gratings are summarized as:

k�m� � sign�m��2�m� � 1�, 1 � �m� � 4
(A4)

Fk�m� � k�m� f

�k�m� � sign�m��.

We look for nonlinear responses at output frequencies F(m� ) �
Fk(m1 ) � Fk(m2 ) � . . . � Fk(mn ) that are the r th harmonics of the
fundamental temporal frequency in the stimulus: Fm� � rf � rF1.
If a response at the frequency rf can occur as part of an n th order
nonlinearity, then:

r 	
Fm�

f
� �

l�1

n

k�ml�. (A5)

The specific integer 3 odd-integer index mapping in our choice
of input frequencies (Eq. A4) puts constraints, via Equation A5,
on the range of harmonics that the response frequency may span
for a given n. In particular, since the largest harmonic is seven
times the fundamental and all harmonics are odd, we must have
r � {�7n,�7n � 2, . . . , 7n � 2,7n}. That is, odd-order nonlin-
earities only contribute to odd harmonics of the fundamental
temporal frequency because a sum of an odd n number of odd
numbers, the k(m), is always odd. Conversely, even-order nonlin-
earities will only contribute to even response harmonics, because
the sum of an even n number of odd numbers is always even. As
a special case, only even-order nonlinearities can contribute to the
0th harmonic (DC) component of the response.

Contributions to any given response harmonic r may include
nonlinear interactions of the same parity but with different orders
n, and for each n there may be many alternative n-tuples of
stimulus frequencies that all sum to a given r. These several
contributions to the same frequency component of the response are
not equally weighted for three reasons: (1) the contrasts of the
components in the stimulus, ak , are inversely proportional to fre-
quency, (2) interactions at lower orders of nonlinearity are likely to
be larger than interactions at higher orders of nonlinearity, and (3)
the tuning of the neuron is likely to have different sensitivities to
each of the component gratings. On the basis of only the generic
considerations 1 and 2, the interactions due to n -tuples composed
of a small number of low-frequency harmonics are expected to be
larger than those composed of high-frequency harmonics, or a
larger number of harmonics. For example, of the many contribu-

tions to the first harmonic response, F1 , the third order contribu-
tions from the triplets f � f � f and �f � f � 3f are expected to be
much stronger than the third order contribution to F1 from the
triplet 3f � 5f � 7f, and both are likely to be stronger than the fifth
order contribution to F1 from the quintuplet f � f � 3f � 5f � 7f.
The several nonlinear contributions to a specific response fre-
quency are not only weighted differently, but they also have differ-
ent but lawful dependence on the congruence phase � that de-
scribes the stimulus. This phase signature is explored below.

By design, the relative phases of the components are fixed in
each of our compound gratings at the congruence phase. That is,
�k � � for k 
 0 and �k � �� for k � 0. Consequently, according
to Equations A3 and A4, the phase �k(m� ) of the n-th order
nonlinear response at the frequencies Fk(m� ) � rf will be an integer
multiple p of the congruence phase � of the components. The
value of this multiplier p depends only on the number of � and �
signs with which the component frequencies are summed in the
n-tuples in Equation A5. That is:

p 	
�k�m� �

�
� �

l�1

n

sign�k�ml�� � �
l�1

n

sign�ml�. (A6)

Thus, the range of values of the phase multiplier p for a given
order of nonlinearity n is p � {�n, �n � 2, . . . , n � 2, n}. That
is, the parity of p must match the parity of n within the {�n, n}
range. Moreover, only some of the possibilities within the full
range permitted for a given n may be realized at a particular rth
harmonic frequency, because the selection of frequencies k� is also
constrained by Equation A5. The consequences of these con-
straints are summarized in Table A1. The table has several
important general patterns. (1) The response harmonic r must
match the parity of n, the order of nonlinearity. That is, odd-
harmonic response frequencies carry odd-order nonlinear contri-
butions (and, at the input frequencies, also the linear response),
whereas even-harmonic responses are purely nonlinear and carry
only even-order nonlinear contributions. This leads to the overall
checkerboard pattern of the table. (2) The response phase mul-
tiplier p must match the parity r of the response frequency. That
is, the phase multiplier p necessarily jumps in steps of 2 when one
of the signs of the interacting component n-tuple is changed. (3)
Certain n-tuples may not be realized for a given r response
harmonic. For example, an all-negative sign pattern never leads to
a formally positive output frequency. Consequently, the bottom
line within each (n, r) check is never filled.

The phase signature of nonlinear responses
We now describe how, for a given response harmonic r, the realized
set of phase multipliers p (organized in a column under p in Table
A1 across all n orders of nonlinearity) determine the geometry of
the locus of responses on the complex plane. As the congruence
phase � varies, the phase of the contribution of a response with
phase multiplier p varies as p�. For example, a response compo-
nent with multiplier p � �1, whether it is linear or nonlinear, has
the same phase offset with respect to the stimulus cycle, indepen-
dent of �. Thus, as � varies on the [0, �) half-circle, the contribu-
tion of this component to the response also runs a half circle on the
complex plane, in the same direction as the stimulus. A nonlinear
response with p � �2, however, will describe a full circle on the
complex plane, and this trajectory is in the opposite direction to the
rotation of stimulus phase. Independent of the order n of nonlin-
earity, response components with the same phase multiplier p will
have a relative phase that varies in the same way with �. Thus, it
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suffices to consider the geometry of each of the p-fold “wrappings”
of the circle and how these contributions add.

As described in the main text, we plot responses in the complex
plane, after rotating their phases backward by an amount �h� for
some integer h. Typically, h � 1 (as in Fig. 9a,c) or h � 0 (as in
Fig. 9b,d). The rationale is that response components with phase
multipliers p � 1 (which includes the linear part) will, in the
absence of noise, be plotted as a single vector independent of �.
More generally, response components with phase multiplier p will
generate contributions the phases (on these plots) of which vary
as ( p � h)�. It suffices to examine the contributions of such
components for phase multipliers p and nonlinearity orders n that
are of the same parity as the response harmonic r. Each response
component with p � h determines a response, which after the
phase adjustment of �h� is a constant vector, and thus the sum of
these responses is a constant vector as well. All contributions with
p � h � 2 will together determine a circle, because the amplitude
of each component is independent of �, and the phases (in this

plot) will covary as 2�. All contributions with p � h � 2 also trace
out a circle. These two circles may have different radii and starting
phases, and the responses move in opposite directions around
them. The geometric locus on the plane of the vector sum of
pairs of points in phase correspondence, on two concentric full
circles that are traversed in opposite directions ( p � h � 2 and
p � h � 2), with possibly different amplitudes and starting
phases, is an ellipse. Tilt and eccentricity of the ellipse depend
on the difference in the parameters of the two circles. Addition
of the contributions with p � h simply shifts this ellipse away
from the origin.

To see that these circles indeed sum to an ellipse, consider the
(x, y) coordinates (the real and imaginary parts, respectively, on
the complex plane) of the points that are in phase correspondence
on the two circles. The (x, y) coordinates of the p � h � 2
trajectory, parametric in phase �, can be represented as x � r�
cos(2� � ��), y � r� sin(2� � ��), where r� is the amplitude of
the (vector-sum) total contributions of the nonlinearities with p �

Table A1. Consequences of the rules (Eq. A4–6) that govern the pattern of nonlinear frequency combinations of intermodulating stimulus
components and their phase signature in our special stimulus design.

The table is truncated to nonlinearities of order n � 5 but suffices to illustrate the main patterns of frequency and phase combinations. Columns are also restricted only to
harmonics 0 � r � 5; formal negative response harmonics and those positive response harmonics that are between F5 and F7n are also present in the response but omitted
from the table. Shaded areas indicate combinations of order of nonlinearity n, phase multiplier p, and response harmonic r that cannot occur with our stimulus set. The integer
parameter h is used for phase corrections in plotting the complex responses, as explained in the text of the Appendix.
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h � 2 and �� is its phase. Correspondingly, the (x, y) coordinates
of the trajectory on the p � h � 2 circle can be represented as x �
r� cos(2� � ��), y � r� sin(2� � ��). By substituting a � r� �
r�, b � r� � r�, � � (�� � ��)/2, �0 � (�� � ��)/2, coordinate
summation will result in Equation 5 of the main text, which is a
parametric form for an ellipse. This completes the proof that any
combination of responses with �p � h� � 2 will generate an elliptic
locus on the complex plane, as the congruence phase of the
stimulus spans the [0, �) half-circle.

Nonlinear responses with �p � h� 
 2 will generally contribute
to distortions of the ellipse (such as concavity or symmetry
breakdown). We will show below that an elliptic fit to the phase
plot of the response harmonics at output frequencies up to the
third harmonic F3 provides an adequate approximation to non-
linearities of orders up to and including the fourth. Conversely,
significant departures in the DC, . . . , F3 data from an ellipse
(when plotted parametric in the congruence phase of the stimu-
lus) indicate the presence of nonlinearities of order 5 or higher.
Significant high-order nonlinearities identified in the responses of
a neuron suggest the existence in the neuron’s receptive field
mechanism of a static nonlinearity with a singularity, such as
half-wave rectification.

F1: The response measured at the fundamental temporal fre-
quency F1 includes all components listed in Table A1 under the
column r � 1, including but not necessarily limited to a linear part
(n � 1). When plotted with h � 1, the contribution from the linear
part will be stationary. That is, its phase multiplier is p � 1, and
�p � h� � 0. The third-order contributions (n � 3), as seen from
Table A1, are characterized by phase multipliers p � {� 1, � 1},
so p � h � {0, 2}. Thus these terms can produce a circle but not
an ellipse. The fifth-order contributions (n � 5) are characterized
by p � {� 3, �1, �1, �3}. The first three of these, p � {� 3, �1,
�1,} or �p � h� � {0,2}, thus could produce an ellipse. However,
p � �3 corresponds to �p � h� � 4, and an intermodulation of
three frequency components with this sign pattern leads to a
distortion from an elliptical locus. Still higher odd-order nonlin-
earities (n � 5, 7, . . .) will contain additional components with
�p � h� � 2, and also �p � h� � 4. Thus, when F1 responses are
plotted with the phase correction h � 1, the parameters of the
best-fitting ellipse reflect the combined influence of third-order
and higher-order responses, but the distortion is attributable
solely to fifth and higher odd-order nonlinearities.

F3 , F5 , etc: Plots of these higher harmonic responses with the
phase correction h � 1 will also yield, at worst, an ellipse, unless
nonlinearities of order n � 5 or higher are present. For example,
the response measured at the temporal frequency F3 includes all
components listed in Table A1 under the column r � 3. These
include a linear component (elicited by the F3 grating, in the n �
1 row) and also nonlinear responses (in the rows n � 3 and n �
5; and for higher n, data not shown). For h � 1 and n � 3, only
terms with p � {� 3, �1, �1,} are present, i.e., �p � h� � 2 for all
terms up to third order. Fifth-order nonlinearities (n � 5 row)
include a single term F7 � F1 � F1 � F1 � F1 with p � �3.
Because �p � h� � 4 for this term, it can produce a distortion of
the locus from an ellipse. A similar analysis holds for F5 (r � 5
column of Table A1) and higher odd harmonics. Note, however,
that responses at odd harmonics higher than F7 will not have a
linear component, because such components were not present in
the stimulus by design, and intermodulations for certain patterns,
such as p � �3 for (n, r) � (5,5), are not possible to realize
because of constraints presented by Equation A5.

F2 , F4 , etc: The responses at the even harmonics of the fun-
damental temporal frequency do not contain a linear part. For
this reason, plotting their responses with a phase correction
h � 1 is no longer natural. Rather, one could choose to reference
even harmonic responses to the phase of the second order (lowest
even order) contributions. Second order contributions to all even
harmonic response frequencies come in one of two intermodula-
tion patterns: either with difference frequencies ( p � 0; e.g., F5 �
F1 in column r � 4 of Table A1) or with sum frequencies ( p � 2;
e.g., F1 � F1 for r � 2). Compensating for the phase of either of
the difference or sum patterns (h � 0 or h � 2, respectively) seems
to be an equally valid way to examine the even harmonic re-
sponses. Either way, the second-order intermodulations with the
pattern chosen for phase compensation would appear stationary,
whereas intermodulations with the other pattern would define the
radius of a circle (because �p � h� � 2). Specifically, h � 0 makes
difference-frequency components stationary and h � 2 makes
sum-frequency components stationary. Fourth-order nonlinear
contributions to F2 (row n � 4 and column r � 2 of Table A1) are
restricted to p � {�2,0,�2,}. Choosing h � 0 leads to �p � h� � 0
or 2, and thus, at worst an elliptical locus, but choosing h � 2 may
lead to �p � h� � 4, and thus, to distortions of an ellipse. However,
fourth-order nonlinear contributions to F4 and higher-order even
harmonics (row n � 4, and columns r � 4 and higher of Table A1)
include permitted patterns that allow for �p � h� � 4, no matter
what is chosen for h (e.g., for r � 4, F1 � F1 � F1 � F1 has
p � 4 so that �p � h� � 4 if h � 0, whereas F7 � F1 � F1 � F1 has
p � �2 so that �p � h� � 4 if h � 2). Therefore, a distortion of the
locus from an ellipse is expected in the plot of such nonlinear
components. Using arguments similar to those in the discussion
of the odd harmonics, one can show that nonlinearities of fourth
and higher even-orders contribute to the elliptical locus and also
to distortions from an elliptical locus for all even harmonics,
except for the DC component.

DC: The spike count is a special case of even harmonics
because it only has a real part. That is, every term in Equation A3
is accompanied by its complex conjugate. A plot of the DC
response, a scalar, is equivalent to plotting the DC response as a
complex value with h � 0, and projecting it on the real axis. Table
A1 (column r � 0) shows that contributions to DC from second-
order nonlinearities (n � 2) all have p � 0, and are thus inde-
pendent of the congruence phase �. Contributions from fourth-
order nonlinearities (n � 4 of Table A1) include terms with
p � 0 and also p � �2. The former terms are phase independent;
the latter terms correspond to the projection of motion around an
ellipse onto the real axis, i.e., a sinusoidal function of congruence
phase � (see Eq. 4 in Results).
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