
Analyzing the activity of large populations of neurons: how
tractable is the problem?
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Understanding how the brain performs computations requires

understanding neuronal firing patterns at successive levels of

processing—a daunting and seemingly intractable task. Two

recent studies have made dramatic progress on this problem

by showing how its dimensionality can be reduced. Using the

retina as a model system, they demonstrated that

multineuronal firing patterns can be predicted by pairwise

interactions.
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Review
One of the most challenging problems we face in systems

neuroscience is understanding how the brain performs

computations. Understanding this means, essentially, un-

derstanding how the brain takes a set of inputs and trans-

forms it into a set of outputs. When we study vision, for

example, we do this at many levels. We present a visual

stimulus (an input) to the photoreceptors and try to deter-

mine how it is transformed into a pattern of action poten-

tials (an output) at the level of the ganglion cells, then how

the pattern of action potentials at the level of the ganglion

cells is transformed into a pattern of action potentials at the

level of the lateral geniculate nucleus, then various levels

of cortex, until, finally, a behavior is produced.

One of the main reasons this problem has been so difficult

is that it requires accurate descriptions of the input and

output data at each level. Take the visual system again—

at each level (retina, lateral geniculate nucleus, cortex)

there are hundreds to thousands of cells in a processing

unit, and, at each moment in time, each of these cells is

either firing or not firing an action potential. Add to this
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the fact that the firing of each cell is at least somewhat

dependent on the firing of other cells, one can see right

away that the problem is very high dimensional.

So how can it be simplified? Two approaches come to

mind. One is a top-down approach. For this, one takes the

firing patterns produced when an animal performs a task

and determines the crucial features (i.e. those that are

needed to perform the task) [1]. This provides a way to

identify the relevant quantities in the firing patterns (e.g.

spike count, spike timing, temporal correlations), and

discard the irrelevant ones. The other way to simplify

the problem, the way that is the subject of this review, is

to directly parameterize the firing patterns in a low-

dimensional way. At first glance, it might seem that

any low-dimensional parameterization would be hope-

lessly inaccurate, but what is exciting, and what we review

here, is that it is not. Two recent papers show that a low-

dimensional parameterization is dramatically effective—

at least at the level of the retina.

The two papers are ‘The structure of multi-neuron firing

patterns in primate retina’ by Shlens et al. [2��] and ‘Weak

pairwise correlations imply strongly correlated network

states in a neural population’ by Schneidman et al. [3��].

We start with the Shlens et al. paper [2��]. In this study, the

authors focus on finding the simplest characterization of

the response distribution of the output cells of the retina.

Previous studies had shown that characterizing the

response distribution assuming that the cells are indepen-

dent would not suffice, that is, would not give the correct

frequency of the joint firing events of multiple cells [4–6].

This led them to take the next simplest approach, which

was to characterize the response distribution taking pair-

wise correlations into account. To carry out this, they used a

maximum entropy method (see Box 1). Their rationale was

that it gives the simplest distribution consistent with the

measured pairwise correlations.

Specifically, what Shlens et al. [2��] did was analyze the

firing patterns of clusters of seven neurons within the

retinal mosaic. They tabulated the frequency of each of

the possible firing patterns during every 10 ms period.

This comes to 27 = 128 firing patterns. (The reason the

base is 2 is that ‘firing’ was represented as a binary

quantity—that is, each neuron was designated as ‘firing’

or ‘not firing’ during each 10 ms epoch.) The question

they asked then was: Can they capture the complete set of

firing pattern frequencies using a much smaller number of

parameters—the firing frequency of each cell by itself
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Box 1 The maximum entropy principle

The maximum entropy principle [19] (see references [20,21] for

pioneering applications to neuroscience) is a method to create a

probability distribution from a limited set of measurements. The basic

idea is to determine the most random probability distribution

consistent with a set of constraints. Randomness is measured by

‘entropy’: if Pj indicates the probability that event j occurs (with
P

Pj ¼ 1), then the entropy is defined by H ¼ �
P

Pj log P j. The

maximum entropy distribution is the set of probabilities Pj that

maximize H, subject to a set of specified constraints.

Since a maximum entropy distribution is as random as possible

given a set of constraints, it provides null hypotheses for quantities

not explicitly constrained. Shlens et al. [2��] and Schneidman et al.

[3��] showed that the empirical frequency of multineuronal firing

patterns in the retina was consistent with the maximum entropy null

hypothesis generated by their pairwise firing frequencies.

Maximum entropy distributions arise in many familiar contexts. A

Gaussian distribution is the maximum entropy distribution con-

strained by a specified mean and variance. A Poisson process is the

maximum entropy distribution of events, constrained by an overall

firing rate. A product distribution of several variables is the maximum

entropy multivariate distribution constrained by the marginal dis-

tribution of the individual variables. The Wiener systems-analytic

formalism [22] (and, the special cases of spike-triggered averaging

and covariance) amount to modeling a system’s input–output

distribution as a maximum entropy distribution constrained by the

input–output correlations and the response variance [23].

Box 2 How well does a model fit the data?

How can one quantify the agreement of a model for the frequency of

global firing patterns (i.e. a probability model) with data? The

conceptual problem is that even if one has a correct probability

model, one may not be able to predict particular events. For

example, even though one knows the correct probability of all poker

hands, one cannot predict the results of any particular deal. The

basic strategy that Shlens et al. [2��] used was as follows. For each

reduced probability model (e.g. a maximum entropy model based on

frequencies of pairwise interactions), they calculated the likelihood

that the model would predict the observed set of global firing

patterns. They then determined the ratio of the likelihood for a

reduced model to the likelihood for the full empirical model (i.e. one

based on the experimentally determined frequency of each firing

pattern).

This likelihood ratio indicates how difficult it is to distinguish the

predictions of the reduced model from that of the full empirical

model. For example, Shlens et al. [2��] determined that it would take

about a minute of data before the likelihood of the pairwise model

and the likelihood of the full empirical model would differ by a factor

of two.

The logarithm of the likelihood ratio is closely related to the Kullback-

Leibler divergence [24], which is a principled way to measure how

difficult it is to distinguish two probability distributions. Schneidman

et al. [3��] used a conceptually similar strategy based on the related

Jensen–Shannon divergence [24].

Figure 1

Why can local interactions between pairs of neurons account for

global patterns of activity among many neurons? The basic reason is

that local interactions induce long-range correlations. In the simple

example shown here, each neuron is connected to its nearest neighbor

by a gap junction. The local interactions between neurons A and B and

between neurons B and C induce a longer range correlation between

neuron A and C. The connection strength is such that approximately

one-third of the spikes of adjacent neurons are synchronous.

Consequently, even though there is no direct interaction between

neurons A and C, approximately one-ninth of the time that neuron A

spikes, so does neuron C. The strength of the long-range correlations

induced by nearest neighbor interactions decays exponentially with

distance. Note also that even though the physical connections are only

pairwise, the interactions often induce joint firing events that involve

three (green) or more (blue) neurons. The same principle applies to

neural networks with inhibitory local interactions, or mixtures of

excitatory and inhibitory interactions, or with a more complex

connection topology.
(7 parameters, 1 for each cell) and the frequencies of the

pairwise firings (21 parameters, 1 for each pair of cells)?

They found, remarkably, that the maximum entropy

distribution constructed this way was virtually indistin-

guishable from the true 128-pattern distribution. Even

more remarkably, when they performed the same analysis

using only the nearest neighbor pairs, they could also

recover the original distribution. (See Box 2 for how they

quantified the level of agreement between the predic-

tions of the pairwise model and the observed frequencies

of the multineuronal firing events.) For a discussion on

why local interactions between pairs of neurons can

account for global patterns of activity, see Figure 1.

Note that this kind of analysis was possible because of the

recording techniques Shlens et al. [2��] used. With a

multielectrode array, they were able to record from nearly

all the ON and OFF cells of one cell class in a small region

of retina (ON and OFF parasol cells in a 4 � 8 degree

region of peripheral macaque retina). From this, they

drew clusters of more or less adjacent cells from either

the ON or OFF populations (clusters of 7 cells drawn

from 118 ON cells and 175 OFF cells).

The implications of this analysis are most striking when

we consider how they apply to a large network of neurons.

In a network of N neurons, there are 2N multineuronal

firing patterns whose frequencies must be explained. For

N = 20, this is over a million; for N = 50, it is astronomical.

In a pairwise model, N + N(N � 1)/2 parameters (the

individual neurons’ firing frequencies and their pairwise
Current Opinion in Neurobiology 2007, 17:397–400
firing frequencies) suffice to account for the multineur-

onal frequencies; the parameter count has now been

reduced substantially (210 for N = 20, 1275 for N = 50).

The further reduction provided by the nearest neighbor
www.sciencedirect.com
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model reduces the parameter count to approximately 4N:

Each of the N neurons has approximately 6 nearest

neighbors in a retinal mosaic, so there are 6N/2 = 3N
nearest neighbor interactions and N individual firing

rates. The number of parameters that need to be

measured is then proportional to the number of neurons.

That is, if nearest neighbor interactions determine the

full correlational structure, the complexity of the model,

and the length of time required to measure its parameters,

becomes greatly reduced.

Schneidman et al. [3��] performed a similar analysis and

also found that maximum entropy models based on pair-

wise interactions could account for retinal ganglion cell

firing patterns. Their paper, though, uses the analysis for

an additional purpose—to make inferences about the

neural code. Here we briefly discuss what the inferences

are and whether or not they are justified.

The main proposal the authors put forth is that the

pairwise interactions present in the firing patterns imply

that the retina uses an error-correcting code. Briefly, an

error-correcting code is one in which the signals in a

system are correlated so that messages can be correctly

decoded in the face of noise (see Box 3 for an example).

The possibility of error correction occurring in the retina

is reasonable. Ganglion cell firing is noisy, so one could

imagine that some correlation in the system might be

useful for ensuring reliable information transmission.

(The benefits, though, must be weighed against a poten-

tial loss of efficiency [7].) What the authors propose,

though, is that there is much more correlation than one

would have thought, and from this they conclude that

error correction is a dominating coding mechanism.

There are two problems with this proposal. The first

concerns the method they used to determine the extent

of the correlations, and the second concerns the source of

the correlations.
Box 3 Error-correcting codes

An error-correcting code is a means for obtaining reliable signaling

from unreliable components. To see how an error-correcting code

works, we consider a toy sensory system and environment. The

environment consists of a stimulus that is present half of the time.

The sensory system is built out of neurons that signal the presence or

absence the stimulus by the presence or absence of a spike—but do

so incorrectly with probability P. If there is only one neuron in the

sensory system, then the probability of an incorrect message is P.

The error probability can be reduced by adding identical neurons that

observe the same stimulus and by decoding the message by a

majority vote. For example, with three neurons, errors will occur only

when all neurons signal incorrectly (probability P3) or when two

neurons are in error and one is not (probability 3P2(1 � P). The total

chance of an error (P3 + 3P2 (1 � P)) is less than P. With sufficiently

many neurons, this majority-rule code can achieve any desired

degree of accuracy.
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To determine the extent of the correlations, Schneidman

et al. [3��] used an information-theoretic measure. They

applied the measure to analyses of subsets of N observed

neurons within the retinal mosaic. For each N-neuron

subset, they compared an estimate of the entropy of the

observed pattern of responses, SN, with the entropy of a

network of independent neurons, S1. The difference be-

tween these two quantities, IN = S1 � SN, is a measure of

the total amount of correlation. Correlations are considered

to dominate network behavior when IN approaches S1

because at this point, the correlations are so strong so as

to reduce the entropy of observed firing patterns, SN to 0.

Using the pairwise maximum entropy model, Schneid-

man et al. [3��] determined these quantities for small N
and extrapolated to the whole network. In their extra-

polation, IN approaches S1 for N � 200, that is, corre-

lations dominate. However, the data that form the

basis for the extrapolation stop at N = 15. At this point,

IN is only one-tenth of S1, which means that correlations

are far from dominating. Thus, their conclusion that error

correction dominates is built on an extrapolation that

extends an order of magnitude beyond the limits of

the data. What is troubling is that the rationale for the

form of the extrapolation they used is unclear [25�]. Many

other extrapolations would also have fit the data but

would have led to different conclusions.

The second issue is the source of the correlation. The

authors use natural scenes as their stimuli. This makes

sense in that the goal is to determine if error correction

occurs with behaviorally relevant stimuli. The problem is

that natural scene stimuli themselves have correlations

[8], and this is not controlled for. As a result, it is not clear

whether correlations in the ganglion cell output reflect an

error correcting mechanism in the retina, or merely cor-

relations in the stimulus. As the authors agree (Elad

Schneidman, personal communication), this could be

addressed experimentally.

In sum, two recent studies show that the problem of

characterizing the activity of large populations of neurons,

at least in the retina, can be dramatically reduced. In the

first study, Shlens et al. [2��] found, using a maximum

entropy model, that the activity could be accounted for by

pairwise interactions. Moreover, nearest neighbor inter-

actions sufficed. Schneidman et al. [3��] used the same

approach and also found that pairwise interactions sufficed.

They used their analysis, though, for a different purpose: to

assert that the retina uses an error-correcting code. The jury

is still out on whether their data support this conclusion.

The success of maximum entropy methods in achieving a

striking dimensional reduction opens the door to further

applications of this approach, in retina and beyond (Ohior-

henuan et al., abstract III-90, CoSyNe, Salt Lake City, UT,

February 2007; Tang et al., abstract II-62, CoSyNe, Salt
Current Opinion in Neurobiology 2007, 17:397–400
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Lake City, UT, February 2007; Yu et al., abstract I-16,

CoSyNe, Salt Lake City, UT, February 2007). Further

applications could also consider firing patterns distributed

over time [9–16] and how firing patterns might be con-

tingent on the stimulus [4,17,18]. Both kinds of extensions

are straightforward, at least in principle.
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