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Reich, Daniel S., Ferenc Mechler, and Jonathan D. VictorTem-  ponent (especially for simple cells, when the stimulus is periodic)
poral coding of contrast in primary visual cortex: when, what, an@kottun et al. 1991). However, recent studies (Gawne et al. 1996;
why. J NeurophysioB5: 10391050, 2001. How do neurons in th@yechler et al. 1998; Victor and Purpura 1996) have indicated that
primary visual cortex (V1) encode the contrast of a visual stimulus? i, -, measures may ignore an important part of the information
this paper, the information that V1 responses convey about the ¢ fout contrast that is encoded in the temporal structure of neu-

trast of static visual stimuli is explicitly calculated. These respons \ i - L . .
often contain several easily distinguished temporal componer@NS responses—that is, in the detailed timing of action potentials

which will be calledlatency transient tonic, andoff. Calculating the relative to the stimulus time course. Sutémporal codingof
information about contrast conveyed in each component and in grog@trast is more prominent in responses that have transient com-
of components makes it possible to delineate aspects of the temp@@nents, such as those elicited by drifting edges, than in responses
structure that may be relevant for contrast encoding. The resuits narrowband stimuli, such as drifting sinusoidal gratings
indicate that as much or more contrast-related information is encod@dechler et al. 1998). Moreover, much of the information about
into the temporal structure of spike train responses as into the firiggntrast is encoded into a single response variable—the latency
rate and that the temporally coded information is manifested mqghm stimulus onset to neuronal firing—that can vary indepen-
strongly in the latency to response onset. Transient, tonic, and gy of the overall firing rate as the spatial structure of the
responses contribute relatively little. The results also reveal t mulus changes (Gawne et al. 1996)

temporal coding is important for distinguishing subtle contrast differ- - .
ences, whereas firing rates are useful for gross discrimination. This-rhIS paper presents the results of a systematic study of the

suggests that the temporal structure of neurons’ responses may ext&sPonses of V1 neurons to transiently presented sinusoidal
the dynamic range for contrast encoding in the primate visual syste@fatings that vary in contrast. The goal is to characterize
aspects of the responses that are relevant for contrast represen-

tation and to determine whether temporal coding plays some
specific, identifiable role. A metric-space approach is used to
estimate information about stimulus contrast (Victor and Pur-

Stimulus contrast offers several advantages as a paradigura 1996). The full response is analyzed, as are its various
for studying the ways in which information is encoded into theemporal components, including the latency, the initial tran-
responses of visual neurons. Contrast encoding is highly nsient period of high firing rate, and the longer period of tonic
linear: the firing rate of V1 neurons tends to vary with contrating that lasts until the stimulus is turned off. The results
in a sigmoidal fashion (Albrecht and Hamilton 1982). As wittindicate that different response components can convey both
retinal ganglion cells (Shapley and Victor 1978) and lateriddependent and redundant information about contrast. The
geniculate nucleus neurons (Sclar 1987), the responses offéction of information encoded into the temporal structure, as
neurons exhibit prominent contrast gain control (Bonds 199dpposed to the firing rate, can vary from component to com-
Ohzawa et al. 1982) that may be modeled as a divisive inhipenent within the same response. Taken together, the results
itory process (Heeger 1992). Moreover, in the case of statidaad to a hypothesis for the role played by the encoding of
ary stimuli, which serve as useful substrates for the analysisioformation into the temporal structure of neuronal responses—
temporal coding (Victor and Purpura 1996), variation of stirmamely, that temporal coding allows the visual system to distin-
ulus contrast does not necessarily entail variation of spat@lish among stimuli that evoke similar firing rates.
phase, whereas variation of other stimulus parameters, such a@3ortions of this work have appeared in abstract form (Reich
orientation and spatial frequency, does. et al. 1998).

In the past, both moving and stationary stimuli have been used
to study contrast encoding. Favorite stimuli have included SinVETHOD S
soidal gratings, which may be either drifted uniformly or flashegy; i
briefly for a specified period of time. Typically, responses are o _
characterized by average measures, such as the mean firing rélf@e data presented .here. reprgsent the.act|V|ty_of smgle. neurons
(especially for complex cells) and the fundamental Fourier coyith parafoveal receptive fields in the primary visual cortices of
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sufentanil-anesthetized macaque monkeys. Experimental proceddyrdermation estimation
have been described elsewhere (Reich et al. 2000; Victor and Purpura
1998). Stimuli consist of transiently presented, stationary sinusoidalinformation theory provides a method of measuring the fidelity
gratings that have fixed orientation, spatial frequency, and spatwth which responses to similar stimuli form distinct clusters in some
phase but that vary in contrast. For each neuron encountered in tegponse space. The information-theoretic measures calculated here
experiments, the orientation and spatial frequency of the driftiraye sensitive to both the number of spikes in a response (firing rate)
sinusoidal grating that maximizes either the firing rate, for compleand the timing of those spikes. The method of estimating information
cells, or the response modulation at the driving frequency, for simptevolves embedding neuronal responses into metric spaces rather than
cells, are determined. For groups of neurons containing more than @elidean vector spaces, which tend to be sparsely populated (Victor
well-isolated individual neuron, the orientation and spatial frequeneyd Purpura 1996, 1997). Pairwise distances between individual spike
that are optimal for the best-isolated or most robustly responditigins are calculated under the spike-time metric (Victor and Purpura
neuron are used; experience and quantitative studies (DeAngelis e18P6), which computes the shortest path by which one spike train can
1999) suggest that the optimal values of orientation and spatial fiee converted into another through elementary steps that include add-
quency vary relatively little among nearby neurons. ing and deleting spikes as well as shifting spikes in time. The analysis
The third parameter of the stimuli—spatial phase—is more difficuttepends on the value of a parameter, catiedhich represents the
to choose. Spatial-phase preference can vary dramatically from @wst per unit time of moving the occurrence time of a spike during the
neuron to its neighbor, especially among simple cells (DeAngelis @nversion of one spike train into another. Whgn= 0 s %, the
al. 1999). Although a spatial-phase tuning experiment, which useéistance is the difference in number of spikes between the two trains.
stationary sinusoidal gratings, is performed for each neuron or grofip very large values ofj, the distance approaches the sum of the
of neurons encountered and although the spatial phase that evokesitiieber of spikes that do not fall at identical times in the two trains.
largest firing rate in one or more neurons is selected, it is impossil#ie intermediate values of}, the distance lies between those two
to be sure that the chosen spatial phase is actually “optimal” in aaytremes.
sense. This is true even for simple cells, which can be exquisitelyThe mutual informatiorH, calculated in bits, is a measure of the
sensitive to spatial phase (Movshon et al. 1978; Victor and Purputegree to which responses to the same stimulus are more similar to
1998): the spatial phase that evokes the largest response may noteémh other than to other responses. Clustering of responses into
example, evoke the most reliable responses. stimulus classes—the prerequisite for the information calculation—is
After fixing the orientation, spatial frequency, and spatial phasdescribed in Victor and Purpura (1997). Each response is considered
one of two possible sets of stationary-grating stimuli is presented.turn, and the median distances to the responses in each stimulus
The first set consists of a geometric series of six contrasts and tiass are calculated. The response under consideration is assigned to
second set of an arithmetic series of eight contrasts (Fig. 1). Rbe cluster associated with the shortest median distance. Here the
both sets, gratings replace a uniform field X565°) of the same median distance, rather than the generalized mean distance as in
mean luminance (150 cdAnfor a period of 237 ms, after which (Victor and Purpura 1997), is used as the basis for the clustering
the uniform field reappears for a minimum of 710 ms. The amoubecause simulations show that the median behaves more robustly for
of time between grating presentations increases as a function of tasponses with small numbers of spikes (seeenpix). When the
contrast of the preceding grating. For example, the amount of timamber of spikes is large, the details of the clustering matter less.
following the 0.5 contrast presentation is 2.84 s and following the For N equally probable stimuli, the maximum possible information
0.875 contrast presentation, 4.26 s. This strategy is used to @&plog, N. As a first step in comparing multiple data sets, information
proximate a uniform state of contrast adaptation (Sclar et al. 1989alues are normalized by the appropriate maximum value. Within
The entire series of contrasts is typically presented 100 times. Feach data set, a bias-corrected mutual informatias calculated as
each trial, the spikes that occur in the first 350 ms after stimulasfunction ofq, the cost parameter. From the plots kfversusgq,
onset are analyzed. Also analyzed are multiple 947-ms periodssefveral parameters are extractdd, the mutual information aj = 0

uniform-field stimulation. s 1, represents the amount of information contained in the spike count
w
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Fic. 1. Timeline of contrast experimen®. geometric series
of contrastsB: arithmetic series of contrasts. Grating stimuli are
presented for 0.237 s each (pulses) and are then replaced with a
uniform field at the same mean luminance (effectively, contrast
0). The duration of the uniform-field presentation following each
grating presentation increases with contrast, as shown in the
figure, to approximate a uniform state of contrast adaptation. In
the figure, pulse heights are proportional to contrast, and the
contrast value is listed above each pulse.
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or firing rate and is calculated directly. The remaining parameters atata presented here, the two bias estimates are empirically of the same

extracted from a fit to the information curve order of magnitude.
1+ A
= Laten
Hre(a) k(l +B qb> (1) Latency

) o . o i For responses to stationary gratings,a@heet latencySestokas and
This function is chosen empirically because it gives good fits npehmkuhle 1986) is determined by a method similar to that of
because its parameters are likely to have any physiological relevanggunsell and Gibson (1992). This method identifies the earliest time,
Fitting and parameter extraction are done with the interior-reflectiyg; each stimulus, that the visual signal reaches the neuron under
Newton method as implemented by the routine LSQCURVEFIT igydy. Other methods of finding the latency (Bolz et al. 1982; Lennie
the Optimization Toolbox of Matlab 5.3.1 (The Mathworks, Natickjgg1: [evick 1973) are designed for different purposes, such as
MA). ) i . determining the peak of neuronal activation following stimulus onset.

The following parameters are extracted from the #t§e.qis the | the present method, the background spike-count distribution is
mutual information at the peak of the curve; if it occurgjat, > 0 estimated by dividing the response to the uniform field (O contrast)
s 7, there is more information in the temporal structure of the rento 1-ms bins and tabulating the observed spike counts in those bins
sponse than in the spike count alone, and the extra informationai§oss multiple repeats of the stimulus. For the response to each
given byH,...— Ho. The informative temporal precision limit (in ms) nonzero contrast, the latency is taken to be the first bin in which the
is 2,0006,,, Whereqc,, is the value at whichHs(d) = Hycad2.  number of spikes is significantly higher, in that bin and the three
Generally,qc,, is a more reliable index of temporal precision tharupsequent ones, than the background spike count. Significance is
OpeaxDecause the information curves often have no sharp peak valygiermined in a nonparametric fashion by directly comparing the
seeapPENDIX. In the expression 2,004/, a factor of 1,000 comes gpserved spike counts to the distribution of background spike counts
from the conversion of seconds to milliseconds, and a factor of tvpq by requiring that the observed spike count be in the top 20% of the
from the fact that the spike-time distance has a natural time scalegfckground spike counts in each bin. This gives a significance level of
2/g, which is the maximum separation of a pair of spikes that agepo16= (0.2 over four consecutive bins, assuming independence.
considered to have similar times (Victor and Purpura 1996). Finally, 3 few cases, robust latency values could not be obtained with this
an index of temporal codin@, the percentage of stimulus-relatedsignificance criterion for low-contrast responses, and the cutoffs had
information that is carried in the temporal structure of the neurorn{§ pe relaxed to 30%R < 0.0081) or 40% P < 0.0256). In other
response afl,cq, is given by® = 100Hca — Ho)Hpeax cases, a 10% cutofP(< 0.0001) could be used.

A similar method is adopted to find the boundary between the
transient (phasic) and tonic (sustained) portions of the responses to
stationary gratings (see Fig. 2). In this case, the estimate of baseline

Due to small sample sizes, mutual information is likely to b@Ctivity is taken to be a section of 100 ms of each response that is
overestimated (Miller 1955; Treves and Panzeri 1995). To correct tifigntified by eye to be part of the tonic response. From the beginning
bias, a resampling technique is applied to estimate the information tRhthe identified section, a backward search proceeds, bin by bin, until
would be obtained from an equivalently sized set of responses with il consecutive bins are found in which the spike counts are signif-
stimulus dependence (Victor and Purpura 1996). The resamplingG@ntly greater than the baseline spike counts. The last of these bins
implemented by estimating the information in 10 random associatiof{§e 1st one encountered in the backward search) is chosen as the
of responses with stimuli. Simulations (Victor and Purpura 199Ppundary point. Since off responses are often quite small and difficult
reveal that this resampling procedure tends to overcorrect the muti¢adélineate, they are uniformly considered to begin 237 ms (the

information estimates, which are therefore likely to be conservativ@dration of each grating stimulus) after the response onset and to have
The total amount of overcorrection is expected to be small atlge same duration as the transient response. This choice corresponds

independent of the cost (SEeAPPENDIX). to the assumption that the latency to the on (transient) response is
In addition to the bias, the information estimates themselves &¥%actly as long as the latency to the off response.

random variables and therefore have some uncertainty. This uncer-

tainty is estimated for the data in Figs. 3 and 5 by the bootstrgpesyLTs

method (Efron and Tibshirani 1998). Specifically, for each data set,

100 resamplings are made in which the spike trains are drawn fromFig. 2A shows the responses of a simple cell in macaque V1

the original data set with replacement and separately for each stimulosa series of stationary sinusoidal gratings presented at an

condition. The bootstrap estimate of standard error is arithmetic series of eight contrasts. The grating stimulus ap-

pears for 237 ms and is then replaced by a uniform field at the
SE. - \/1 i [sOc?) — ()T @ same mean luminance. Responses are presented as poststimus-

oot \lB— 1 lus time histograms (PSTHSs), binned at 1-ms resolution.
bt PSTHSs represent the average firing rate at all times after the

whereB is the number of resamplings(x*?) is the bth resampling, onset of the visual stimulus, which occurdiate Q Stimuli are

ands( - ) is the mean of the resamplings Bf_,S(x*°)/B. Error bars €ach presented 100 times.

in Figs. 3 and 5 arbias-corrected root-mean-square erroabtained Despite the simple appearance-disappearance time course of

by combining the bias and the bootstrap standard error as follothe stimulus, the PSTH has a complicated temporal waveform

Bias in the information calculation

(Efron and Tibshirani 1998) (Ikeda and Wright 1975; Movshon et al. 1978). At least four
st I - distinct components of the response can be discerned. The
ias-corrected— \/>Eboot division of the unit-contrast PSTH into these four temporal

Note that the bootstrap procedure itself can provide an estimate for gmponents—denotetatency transient tonic, and off—is

bias (Efron and Tibshirani 1998). The bias correction based on ra10Wn in Fig. B. Boundaries between the components are
dom association of stimuli and responses is preferred here becauséfi@sen as described ueTHops. Without seeking to determine
properties in the context of metric-space information calculatioige biophysical and physiological mechanisms underlying the
have been extensively investigated (Victor and Purpura 1997). For tlistinctions among response components, or even whether they
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contrast increases quickly after the response onset and remains high for
0125 B 40-50 ms before declining to a tonic level that is relatively
A e sustained until after the stimulus has been turned off. The
decline in firing rate has been thought to reflect a process of
Ml 0.25 short-term adaptation, perhaps involving synaptic depression
s o mct il 0408 277 320 (Chance et al. 1998; Mier et al. 1999b). After the tonic
0.375 [' I } " tonic  off response ends, at around 277 ms, a brief off response appears.
I transient The off response is much smaller than the transient response,
latency even though the change in contrast is identical (0 to 1 or vice
W‘ 0.5 versa). In this simple cell, the relative size of the transient and
. & off responses is largely a function of the spatial phase of the

190 o =0 stimulus (not shown). This neuron’s response is similar to that
of the “nonlinear simple cell” recorded from cat V1 and de-
picted in Fig. 5 of Movshon et al. (1978).
Of the 50 neurons analyzed here, only 20 had distinct
transient and tonic response components that were easily sep-
arable by eye and by the boundary-search methodvsee
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§3oo D 80 ops). The other neurons had responses that decayed slowly

P o over time or else remained constant until after the grating was
Q . .

= e 60 removed. Thus conclusions about the contrast-encoding prop-

® 0 erties of the response latency are based on data from 50

r I 40 - o neurons, whereas conclusions about the contrast-encoding

) 100 200 300 0.0 0.5 1.0 properties of the transient, tonic, and off responses are based on

msec contrast data from 20 neurons.
Fic. 2. Response of a simple cell to stationary sinusoidal gratidgs.  Fig. 2, C and D, shows different scalar measures of the
poststimulus time histograms (1-ms bins) of the response of a V1 simple cgbntrast responses, plotted against contrast. In Fy.tRe
(35/1 s) to sinusoidal gratings presented 100 times at 8 contrasts. The stirmllhg rate is pIotted on a Iogarithmic scale separately for each

appear atime Oand are turned off at 237 ms. Response onset is abrupt, w _
a latency that decreases as a function of contBagtypical responses can be iemporal response component. The fll’lng rate for the full

divided into 4 components: the onset latency, the transient period of high ﬁriﬁgSponseEO has a dynamic range of about 40 spikes/s, but
rate, the elevated tonic firing that follows the transient and persists until theost of that range is evoked by contrasts of 0.5 and lower.
Sommiare vston xpones oo & domeiins et € g Ve Ihs contrast, he fiing rate salurales, making it very
rate vs. contrast for eachpresponse Eomponent: full respo}]&eahsient@% C!nfﬂcult to dIStmgUI.Sh hlgh-contrasg Stl.mu“ on the basis of
tonic (), and off (7). D: onset latencys) and median first postlatency spike fifing rate alone. This type of saturation is a common feature of
time (8) as a function of contrast. many V1 neurons’ contrast response functions (Ahmed et al.
1997; Albrecht and Hamilton 1982; Maffei and Fiorentini
are generated by discrete mechanisms in the first place, 11%73; Tolhurst et al. 1981), and it is prominent in all temporal
analysis that follows examines the degree to which each teaomponents of the response.
poral component encodes the contrast of the visual stimulus. Figure D shows the dependence on stimulus contrast of
The latency (Maunsell and Gibson 1992) is defined as tteency @) and median first postlatency spike tin®@)( The
amount of time between stimulus onset and the beginning lafency is a PSTH-based measure of the earliest time that the
the neural response. In V1 neurons, its duration reflects, at tegponse rises above the baseline firing rate. Like the firing
very least, the time required for a response to be evoked in age, both of these response measures change rapidly at low
photoreceptors and for the neural signal generated in the pbontrast and less rapidly at high contrast, though the degree of
toreceptors to pass through the various retinal cell layers agaturation is arguably less for latency and first spike time than
the lateral geniculate nucleus. Latency in V1 neurons decreaf&diring rate. The decrease in response latency as a function of
as the contrast of the visual stimulus increases (Gawne etantrast has been proposed to be a primary way in which visual
1996; Sestokas and Lehmkuhle 1986), a phenomenon thahésirons represent contrast (Bolz et al. 1982; Cleland and
related to the temporal phase advance of responses to driftitgroth-Cugell 1970; Gawne et al. 1996; Wiener et al. 1999).
gratings with increasing contrast, in both the retina (ShapleyThe relative contribution of each temporal response compo-
and Victor 1978) and cortex (Albrecht 1995; Dean and Tokent to the encoding of contrast is assessed by comparing the
hurst 1986). The decrease in latency can be appreciatediffprmation conveyed by subset spike trains that consist only
scanning down the column of PSTHSs in Figh @nd observing of spikes within a particular response component with average
that the onset of the response becomes progressively earlielagsncy information either left intact or removed. In the fol-
contrast increases. lowing sectionsfull responserefers to spikes that occur be-
The transient portion of the response is the relatively brielkeen the onset latency and a cutoff time 237 ms later. For
period of intense firing that begins when the visual signal firsésponses that include a clear transient component (20 of 50
reaches the neuron. The bulk of the stimulus-related informa@eurons), the full response is extended by the duration of the
tion in neuronal responses has already been transmitted byti@sient so as to include the off response regardless of its
end of the transient component (Buaacet al. 1998; Heller et actual size or duration. Latency is determined independently
al. 1995; Miller et al. 1999a; Purpura et al. 1993). In thdor each contrast but assumes a fixed value for all spike trains
responses of the neuron presented in Fig. 2, the firing rateorded at that contrast since it is a measure derived from the
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average response at each contrast. Only contrasts that evoke a 20- A
clear response onset are considered, so that the full set of
contrasts is not necessarily analyzed for each neuron. For each

neuron, approximately 100 responses are recorded at each 15E# -
contrast. r

104
Latency

5_

Latency and firing rate, a priori, are independent response
measures. As shown in Fig. 2, both measures covary with
contrast. Across all 50 neurons in the sample, stimulus contrast
is correlated with both firing rate (median PearsdR’s 0.94)
and latency R = —0.78), and, consequently, the correlation
between firing rate and latency is higR & —0.86). The
degree of correlation is nearly twice as high as what is found
in cat retinal ganglion cells for stimuli that vary in spatial
position within the receptive field (Levick 1973).

To evaluate the separate contributions of firing rate and
response latency to the coding of contrast information in V1, it
is useful to compare the information transmitted by the full
response with the information transmitted by two derived re-

01 10 100 1000

H (% maximum)
N
ot
w

sponses. The two derived responses are complementary: one 0 g % <
contains only the latency information and the other removes 01 10 10 1000
latency information entirely. This means that if the sum of the

contrast-related information in the derived responses exceeds q (sec'1)

the contrast-related information in the full response, the two _ o _
1. 3. Information transmitted in the onset latency. Contrast-related infor-

derived responses can be said to convey redundant mforrpét_ion in the full response), in the response with latency removeg,(and

tion. Altemati_vely, if .th.e derive_d responses convey indepefrthe 1st spike alonex]. Transmitted information is evaluated by the spike-
dent information, their information curves are expected to Suftetric methodA: simple cell from Fig. 2 (35/1 sB: complex cell (38/2 s). —,

to the information curve of the full response. If one of thempirical fits to the data points (semTHops). Information values are repre-

derived responses conveys more information than the fgfinted as a percentage of the maximum possible informationiloghereN
IS the number of stimuli), after an estimated bias due to limited sample size is

reSponse’ then _the addmopal Teatureslm the full response GBbtracted (seeeTHODS). Error bars represent 1 SE of the mean and are
be said to provide confusing information about contrast (&lerived from a bootstrap resampling procedure (seei0Ds).

though in that case they may provide information about other
stimulus features, such as spatial phase). contrasts were perfectly distinguishable. This maximum value,
The first derived response is obtained by subtracting tiebits, is log, N, whereN is the number of stimulus conditions.
contrast-specific (but not trial-specific) latency from all spik@ll information estimates (both actual and normalized) are
times recorded at each contrast. This preserves the relathegrected for the small-sample bias by subtracting the infor-
spike times within and across trials at a single contrast buation expected from chance clustering. Individual points are
removes the overall latency shift across contrasts. The resultfiigo an empirical five-parameter curve as describeeidm-
derived response, which contains the same number of spikesas The parameters .. (peak information, possibly equal to
the original response, as well as the same interspike intervdle spike-count informatiofd,), ® (temporal coding index),
is used to evaluate the amount of contrast-related informatiandq,,; (temporal precision limit) are extracted from these fits.
contained in aspects of the response other than latency. THigitself is estimated directly.
information could be carried by spike counts and by aspects ofFigure 3A shows the information curves for the simple cell
temporal pattern other than the time of the first spike (faf Fig. 2. Essentially all of the information in the full response
example, the time of the second spike or the occurrence (8) is encoded in the spike courtiy is 14%=* 1.4% (SE of the
“bursts”). The second derived response is obtained by selectingan derived from 100 bootstrap resamplings), whelras,
only the first postlatency spike in each trial of the full responsis. 16% (derived from a fit to the information curve; see
Trials in which no spikes are fired are ignored so that each trisTHoDS). Although approximately® = 8.5% of the contrast-
in the derived response has exactly one spike. This removesttlated information is transmitted by a temporal code, this
confounding effect of differences in spike count since spik&alue is not significantly different from zero. The same is true
free trials are more likely to occur at lower contrasts. The resit the derived response with latency information removed (
is a derived response that is used to evaluate the amoun®of= 2.5%, not significantly different from 0). For this derived
contrast-related information encoded specifically into the reesponset, is by construction equal te, of the full response
sponse latency. (up to discrepancies in the estimate of information bias; see
Figure 3 shows the results of applying the spike metrieeTHoDS) since the number of spikes in each trial of the full and
method to the full and derived responses for two separd@tency-free responses is the same. Remarkably the informa-
neurons. For each cost information is expressed as a pertion in the first spike aloneX) is as high as the information in
centage of the maximum information that would have bedhe full responseH,.., = 15%), which means that the infor
obtained from the set of responses if the responses to differgmtion contained in the time of the first spike is redundant with
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the information contained in the spike count. For the first spike A 80
alone, Hy is 0% by construction: all trials in the derived
response have exactly one spike so that no information at all is + 1
transmitted by the spike count. g 401

In addition to showing the amount of contrast-related infor- e é ; é
mation transmitted by the first spike compared with the full 0
response, the information curves in Fig\ @rovide insight into %

the informative temporal precisionf spikes in the full and B 100 %%
derived responses. As discussed in #weenpix, this is a © 2z
measure of the precision with which spike times can be used to

32

distinguish one stimulus from others, but it is not explicitly 95 50
related to the reliability of spike times across trials for partic-
ular stimuli. One measure of the temporal precision limit is 0
Ocue the value ofg at which the fitted information curvdy;(q)
reachesd,..¢2. For the full responsey,,is 110 s1 giving an C
informative temporal precision limit of 2,00, = 18 ms.
The temporal precision limit of the response with latency
removed is similar (20 ms). These values represent a kind of
average over the entire response. However, when the analysis
is limited to the first spike alone, the temporal precision limit
(assuming there is at least 1 spike in the response) is about B2
twice as fine (10 ms). %

Figure 3 shows the corresponding information curves for a EY
complex cell. When the latency information is removed from °
the response of this neuron, less than half of the contrast- 2000/q_ . (msec)
related information remainsi,,.,0f the derived response with out
latency removed is only 44% dfi,., Of the full response. D
Whereas 62% of the information in the full response is tem- 100
porally coded, the percentage declines to 15% when the latency
information is removed. In this neuron’s response, the first
spike alone ) transmits far more information than the full
responsed), meaning that later spikes actually impair contrast
discrimination. However, the temporal precision limit of the
first spike (40 ms) is coarser than the temporal precision limit 1
of the full response (24 ms). Indeed the responses of this 1 10 100
neuron highlight the difficulty of interpreting the temporal
precision limits derived from the information curves: even Fic. 4. Summary of contrast-related information in the response latency
though the temporal precision limit is lower for the first spik@_istributions are derived from the responses of 50 V1 neurons to stationary

. ; ; ; inusoidal grating stimuli. Information parameters are taken from fits to infor-
than for the full response, the first spike transmits more info ation curves such as the ones shown in Fig. 3. Box plots depict medians (box

mation about contrast than does the full response at any giV@hters), interquartile ranges (box boundaries), data within 1.5 interquartile
temporal precisiond). range of the medians on both sides (whiskers), and 95% confidence intervals
The information curves across all 50 neurons are sumn®the medians (notches}., outliers within the displayed vertical-axis range.
; i i i iotrihSince none of the information parameters can take on values less than 0 and
[:Sﬁg Ior} I;Iagchll] n‘?’: :&Zﬁgﬁspg?;rﬁé?; ';8rr?r?éii(ﬁn:etshsoglssglgﬁaace one of them®) is bounded aboye by 10_0%, boxes and whiskers may
4 . rge at these extreme valués.peak information valuesH,,), expressed
the two derived responses. As expected (Fij), 4nore con- as a percent of the maximum possible informatBrestimated percentage of
trast-related information is conveyed in the full response (migformation that is represented by a temporal cod® Because allst-spike
dian Hoea: 8,6%) than in the response with laency removel e Lo o ot o et s pesioen
(3.9%,P < O'QOJ" direct comparison with ]?’000 paired b_ooifmitpof 1stpspike alone \;s. inform.:-’ltive ltje;"np.oral precision IimIth offuﬁl response
strap resamplings). However, the first spike alone typically; each neuron.
conveys more information than the full response (1245
0.001). Not surprisingly, then, the sum of the informatioprimarily through a temporal code: the median temporal coding
conveyed by the two derived responses (right-most distribfiaction @) is 61%. Most of this is due to latency variations,
tion, 16%) is also larger than the information conveyed by trend the temporal coding fraction declines to 19% when those
full response P < 0.001), indicating that the contrast-relatedariations are removedP(< 0.001). This confirms that most of
information in the two derived responses is redundant (Gawtie temporally coded information is in the response latency as
et al. 1996). There are no significant differences betweérdexed by the time of the first spike. Again there are no
simple o = 22) and complexr( = 28) cells in the median significant differences between simple and complex cells in
value of H,., for either the full response or the two derivederms of the median value @.
responsesR > 0.05, direct comparison with 1,000 unpaired Figure 4C depicts the distribution of informative temporal
bootstrap resamplings). precision limits (2,00@(,,) across all neurons. The full +e
Figure 8B shows that contrast is encoded in the full responsponses have a median temporal precision limit of 20 ms,

2000/qcut (msec)

H (0]

(@) o o
i\gﬁe\e\om

10+ 7%

first spike

full response
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significantly finer than the temporal precision limits of the 20
responses with latency removed (median: 24 khs; 0.004)
but not significantly different from the temporal precision 151
limits of the first spikes alone (23 mB, = 0.06). Figure D
shows that the temporal precision limits for the full response J
and the first spike alone are correlated (Spearman’s rank cor- 10';- 5
relation coefficient: 0.51P = 0.002, direct comparison with g
1,000 paired bootstrap resamplings). There are no significant
differences between simple and complex cells with respect to
Qeut

It is important to reiterate that in the context of the results
described here, the informative temporal precision limit gives

H (% maximum)

an estimate of the time differences that are relevant for distin- 50, B
guishing between different contrasts and not of the reliability
of a particular spike time within a response across repeated 40
trials (although the two numbers may be correlated). As dis-
cussed in the preceding text, the temporal precision limit 30+
cannot be considered in isolation from the overall information,
which is typically significantly higher for the first spike alone 20,
than for the full response. 10
ol T T e e+ . st ~ W
Transient, tonic, and off responses 0%, AR x < o U A Rep X
01 10 100 1000

In the responses of 20 of the 50 neurons, transient, tonic, and
off components are clearly delineated. To analyze the contrast- q (SeCJ)
enC-Oding properties of each temporal compqnent Separat-ely'e. 5. Information curves for full response and response components. Full
derived responses are constructed that consist only of Sp'ggionseﬁoy transient ©), tonic (1), and off (o). Details are as in Fig. 3
that occur during one of the response components. From eaglpie cell (35/1 s), same as Figs. 2 arl 8: complex cell (43/11 s).
spike time, the starting time of its associated response compo-
nent is subtracted. For example, the contrast-specific latencgspecially the off response encode substantially less contrast-
subtracted from all spike times in the transient response at eaelated information than the latency or overall spike count, at
contrast. This subtraction means that the comparison of teast for the set of contrasts used here. The median peak
sponse components is not confounded by differences in fhéormation H,..) is significantly lower for each response
onset times of those components; without the subtractiaTgmponent than for the full response or the first spike alone
responses would be extremely easy to distinguish and inf¢® < 0.001; distributions not shown). A more appropriate
mation values would be spuriously high. comparison, though, is the one shown in Fig\, 6/here the
Figure %A shows the information curves for the simple celinformation-parameter distributions for the full response with
of Figs. 2 and B; O's are taken directly from Fig.8 and latency removed are presented in the first column. This is
represent the contrast-related information conveyed by the fo#icause the responses derived from the three response compo-
response, whereas's represent the transient response, whichents also do not preserve latency variation, as discussed in the
conveys at most 63% of the peak contrast-related informatipreceding text.Hp., for each of the three components is
in the full response and does so with an informative temporgignificantly lower tharH ., for the full response with latency
precision limit of 10 ms. The\’s represent the tonic responsefemoved P < 0.004). However, when the values Idf,.are
which conveys 71% as much contrast-related information ssmmed across the three response components separately for
the full response with a temporal precision limit of 22 mseach neuron, the result is significantly greater tHag,, of the
Within the range of decoding schemes parameterizeg| Hye response with latency removed (medians: 11 vs. 7.1%, respec-
information contents of the full, transient, and tonic respongwely, P < 0.001). This means that the information about
are most easily evaluated by counting spikes. Finally,&ig contrast conveyed by the three response components is sub-
represent the off response, which is relatively weak in th@&antially redundant.
neuron at this spatial phase (see Figy).2Not surprisingly,  To the extent that the different response components do
contrast is least well encoded by the off response. encode contrast, the transient is significantly more effective
Figure 8B shows the information curves for a complex-cel(higher H,.,) than either the tonic or off componer® (<
response with very prominent transient and off response coh©04). The timing of spikes within the transient and tonic
ponents and a tonic response close to the background firt@mponents is not likely to play a primary role in the encoding
level. For this neuron, the individual response componenifcontrast (Fig. 8), although the time at which the transient
encode contrast poorly, whereas the full response encodes;anponent begins—equivalent to the latency—is clearly im-
its peak, 41% of the available information about contrast. Thigrtant. Figure € shows that spikes are significantly more
information is almost exclusively = 89%) temporally coded precise in the transient than in the tonkR € 0.02). The fine
and is conveyed in the latency rather than in the tempoiaformative temporal precision estimate for the off responses is
structure of the response components (not shown). most likely an artifact of poor fits to the information estimates,
Across all neurons, the transient and tonic responses asin Fig. A\. Finally, among the neurons with responses that
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contrasts may evoke similar responses. The balance of these
effects determines whether the transmitted information is
. larger or smaller when responses to more contrasts are in-
] 10 T . cluded. Also of interest is whether changing the stimulus set
= determines the aspects of the responses that are most informa-
g & tive in discriminating among contrasts—in particular, whether
the information is primarily encoded in the spike count or spike

B 100 + + + times and with what precision.
Figure 7A shows the dependence of spike count on contrast

9 for a V1 simple cell stimulated with stationary sinusoidal
5 50 gratings. The response increases over the entire range of con-
trasts but shows signs of saturating at the highest contrasts. The
0! information curves derived from this neuron’s responses to all
C g 60 A
w _—
o 4
£ g 50
i 30 r
S % 2
3 0 = 25]
Y 2 % 3 o )
° ) 2 = ~
5 0% ° @
R =
- £ 0 ' 0 75 100
FIG. 6. Summary of contrast-related information in the temporal response 0 25 50 5
components. Distributions are derived from the responses of 20 V1 neurons to contrast (%)
stationary sinusoidal gratings. These responses all have distinguishable tem- B @ 08
poral components (transient, tonic, off). Box-plot details as in Fig. 4. 0.6 A a8
il A S oa
could be clearly divided into transient, tonic, and off compo- ~ a =
. N . P N
nents, there were no reliable differences between sinmpie ( = 0.3l S 2 g\g g o5
7) and complex cellsn( = 13) in any of the information S VOP 5 gD 0 TR 5 contrast ratio
measures. X ~
: . _ 0
Information estimates depend strongly on the sampling 0
range and density of stimulus contrast C
) ) ) 1.0 100,
For each neuron tested, the stimulus set consisted of station- [ =
ary sinusoidal gratings at either an arithmetic series of eight ﬁ , & s
contrasts or a geometric series of six contrasts. The results @
presented in Figs. 3—6 are derived from responses to contrasts g 0,5—/ Y%
that evoked a robust change in each neuron’s firing rate in g contrast ratio
which response-component boundaries could be estimated. &
Thus the number of contrasts and the particular contrast values Iz

analyzed differ from neuron to neuron. To make across-neuron 0'6“," 10 100 1000
comparisons, information values are normalized by the maxi-
mum information available in the stimulus set (i.e.,Jag the -1
number of stimulus categories). q (sec )

However, the calculated information values depend stronglysic. 7.  Information about contrast depends on the set of stimuli. Responses
on the particular contrasts that are analyzed and not just on gha V1 dsim)ple ?ell (43/10 s) to sftationary ?ratings of 4 contLasts (0.125, 0.25,

i ; . +f.R, and 1).A: firing rate as a function of contrast. Error bars represent 2

number of Co.mraStS' In.tUItlvely’ this makes good S.ens.e' ts ndard errors of the meaB:. information curves (bits) and empirical fits for
greater the difference in contrast between two stimuli, th& pairwise combinations of contrasts. Symbols and line type indicate the
easier to distinguish them and, by extension, to distinguishcéntrast offset in the pair. Solid lines and open squares: factor of 2. Dashed
neuron’s responses to them. Thus the information transmittiegs and open circles: factor of 4. Dotted lines and open triangles: factor of 8.
about a pair of stimuli at contrasts 0.125 and 0.25 is expect ickness indicates the lower contrast in each pair; thin: 0.125; medium: 0.25;
to be | th the inf ti t ' itted .b t . ck: 0.5.Inset mean value oH,..for fixed values of the ratio of higher to
O_ € _Ower an tne information transmitted about a pair @, e; contrastc: fits from B, each normalized to its own maximum. In this
St|mu!| at contrasts 0-125 and 1. As more contrasts are ad_deﬁ’emesentation, the information @t = 0 s * is the fraction of the total
the stimulus set, two things happen. First, the maximum inforformation that is contained in the spike count or firing rate (i.e=, ®/100).
mation that can be transmitted in response to the entire &his plot reveals that spike count plays a relatively more important role when

; : s contrasts are sparsely sampled (contrast ratio 8); conversely, temporal
increases because the number of stimuli is Iarger. Second, ﬂi: ?ﬁ"ng is more important when the contrasts are densely sampled (contrast

is a greater potential for confusing the various contrasts bq lo 2). Inset mean value of the temporal coding fracti®nfor fixed values
because there are more of them and because the particti@fe contrast ratio.
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six pairwise combinations of the four contrasts (0.125, 0.2B,., increases with contrast ratid® (< 0.0001, Kruskal-

0.5, and 1) are shown in FigB7Here information is given in Wallis nonparametric ANOVA). On the other hand (Fid3)8

bits rather than percentages, and the maximum possible trathg- relative amount of temporal coding in the response is
mitted information is 1 bit. Line thickness indicates the lowesargest when the contrasts are closely spaced (low contrast
contrast in the pair—thin for 0.125, medium for 0.25, and thickatio) and smallest when the contrasts are far apart 0.03).

for 0.5. Solid lines and squares represent pairs in which the the informative temporal precision limits of the spikes that
contrasts differ by a factor of two, dashed lines and circles lepntribute to distinguishing contrasts does not change signifi-
a factor of four, and the dotted line and triangle by a factor @fntly with contrast ratio (Fig.®; P = 0.15). On the basis of
eight. these results, it is proposed that a major role of temporal coding

Intuitively, one expects that closely spaced contrasts desto enable the visual system to distinguish among stimuli even
difficult to distinguish and that information estimates calcunhen there is little change in firing rate. Ultimately, of course,
lated from neuronal responses to pairs of closely spaced cas-the difference between the two contrasts is decreased, even
trasts should consequently be low. This intuition accounts ftire temporally coded information must fall to zero, and the
the clustering of information curves by line type (solid, dashegrecision of coding is then undefined.
or dotted), corresponding to different contrast ratios of the
stimuli, along the vertical axis in Fig.Bl The mean value of , < -yss|on
Hpeax increases with theontrast ratio(ratio of the higher to
lower contrast; Fig. B, inse}. Unexpectedly the fraction of The results in this paper address two important issues re-
temporally encoded informatior®(100) decreases with thegarding contrast encoding by V1 neurons. First, they provide
contrast ratio. This can be seen in Fig:, Which plots the fits insight into the detailed temporal structure of responses to
from Fig. 7B, each normalized to its own maximum. Thestationary sinusoidal gratings and the degree to which infor-
fraction of information that is encoded in the firing rate€1 mation about contrast is encoded in each distinct temporal
0/100) is given by the value of each curvecat= 0 s %; this component. Second, they suggest a hypothesis for the role
fraction is greatest when the contrasts of the two stimuli aptayed by temporal coding in contrast discrimination.

0.125 and 1 and least when the contrasts are 0.125 and 0.25.
Thga mean vaIue; dd are plotted as a function of the contraskg|e of different response components
ratio in Fig. IC, inset.

The neuron of Fig. 7 is typical of the population. This is The temporal structure of the spike-train response of a visual
summarized in Fig. 8, which shows the distributions of theeuron can be shaped by a number of factors. Most impor-
three key response statistics as a function of the contrast ratemtly, perhaps, the temporal structure of the response can
Figure 8\ shows that the peak contrast-related informatiodirectly reflect temporal changes in the stimulus. However,

information about static features of the stimulus (for the stimuli
A 1 considered here, contrast, spatial frequency, and orientation)
can be multiplexed into the temporal structure of the response
(McClurkin et al. 1991; Victor and Purpura 1996). For stimuli
that vary rapidly in time, these two sources of temporal mod-
ulation in the response are likely to be confounded. The tem-
0 poral modulation in the stationary stimuli—here, sinusoidal
gratings that, after an abrupt onset, are present for 237 ms and

B 100 5 g Q then replaced by a uniform field at the same mean lumi-

0.5

H_. (bits)

pea

nance—is relatively simple. This makes it possible to study the
ways in which stimulus contrast, per se, affects the responses
of V1 neurons. Consistent with previous reports, the results
indicate that contrast is encoded in both the firing rate and
temporal structure of stationary-grating responses.

The summary distributions plotted in Figs. 4 and 6 show

9
< 50
@

0

C Tg‘ 80 + + that, for these stimuli, nearly all the available information

g + + about contrast is contained in some combination of firing rate

= 40 and latency and that at least some portion of that information
s° is encoded redundantly into both aspects of the response. That

g % neurons encode contrast-related information into these two
2 0 response parameters has been known for some time (Hartline

2 4 8 1938). The present results show that latency, the variation of

contrast ratio which can depend precisely on contrast, conveys significantly

FiG. 8. Summary of information parameters for responses to pairs of cdfiore contrast-related information than does firing rate in the
trasts. Parameters derived from fits to the information curves. DistributioR€@Sponses of monkey V1 neurons. In this context, it is impor-
across 50 neurons. Box plots as in Fign4= 29 for contrast ratio 8p = 63 tant to point out that although the method provides an estimate
f(OHr C‘l’)"tras‘ fatio & ana 11 for conirast ratlo 2% peak ":fo(rmattiont of the informative temporal precision limits in these responses,

, expressed in bits, greatest for widely separated contrasts (contrast rafi e
8).pf3a: temgoral coding fra?ction@), greates¥f0rpclosely separated contrast: aoes no_t prove that.SUCh.te.mporal. precision 1S .aCtua”y used
(contrast ratio 2)C: temporal precision limit (2,008, generally (but not PY the brain. To examine this issue directly, experiments would

significantly) finest for closely separated contrasts (contrast ratio 2). need to be performed in which the perceptual or behavioral
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consequences of manipulating the fine temporal precision Rble of temporal coding in the representation of contrast

V1 neurons’ responses are examined. . -
From a clinical point of view, the results may be relevant for Prévious work has explicitly evaluated the role of temporal
ding in the representation of stimulus contrast. Victor and

understanding aspects of visual loss in multiple-sclerosis p%? , . I
. , o rpura (1996) find that contrast is encoded with higher tem-
tients, who ter]d to have_ defects in contrast sensitivity that §ral precision than other stimulus attributes: between 10 and
out of proportion to their loss of visual acuity (Regan et a

. ; . . 0 ms. In a related study, Mechler et al. (1998) confirm that
1977).' The major pathophyS|_olog|c§1I effect of ghrqn|c dem¥:’0ntrast can be encoded into the temporal structure of spike
elination—the primary lesion in multiple sclerosis—is slowin

) ¢ ) ) i %ain responses but demonstrate that the temporal structure
of conduction, which could easily disrupt the finely tuned,nyeys more information when stimuli have transient com-

variations in response latency that are so informative about thgnents than when they do not. Thus temporal coding is
cpntrast of visual stimuli. Thus it is reasonable to speculate ”ﬁbminent in the responses to drifting edges or square wave
disturbances of the temporal structure of responses may playratings, just as it is when stimuli appear and disappear
critical role in the visual defects seen in demyelinating disruptly, but less prominent in the responses to drifting sinu-
eases. soidal gratings. This is perhaps surprising given that the re-
It is not immediately clear that cortical neurons casponses to drifting sinusoidal gratings exhibit a prominent
actually obtain an accurate measure of latency, which isphase advance (Albrecht 1995; Dean 1981), which should be
necessary prerequisite for decoding the contrast-related iaflected in the information measurements. That the phase
formation encoded therein. Determination of latency rexdvance does not give rise to substantial contrast-related infor-
quires a comparison of response onset to stimulus onset, M@tion suggests that the variability in the response phase when
the response onset itself is actually the neuronal represéte stimulus has no.tra}nsient overwhelms the informative con-
tation of stimulus onset. A number of solutions to thi§ast-dependent variation. .
problem can be proposed. One possibility is that there is an! he present results extend the analysis of contrast represen-
overall population activation in V1 that occurs regardless &tion by demonstrating (Figs. 7 and 8) that temporal coding
the particular visual stimulus. Latency information could/2ys @ refatively (but not absolutely) more important role as
then be extracted through a comparison of the respontgé contrast ratio decreases._Thls agrees Wlth f_mdmgs in the
times of particular neurons to the time of this generapcust olfactory system in which precise spike times make it
activation. In all likelihood, the characteristics of the genR0SSible for the animal to discriminate among odorant stimuli
eral activation change with stimulus contrast, just as they et evoke similar firing rates (Stopfer et al. 1997). In V1,
for individual neurons. In this case, latency informatioﬁe,mporal coding can better be used to dlstlngplsh contrasts that
could potentially be extracted by downstream neurons tHaffer by a factor of two than by a factor of eight. This is not
measure the distribution (in particular, the variance) of tH8 S&, Of course, that contrasts beyond the saturation point,
onset times of responses in an ensemble of nearby neur(ﬁig'?h give rise to responses with similar firing rates, can be
Additionally, if latency is correlated with the degree o listinguished as efficiently as lower contrasts even when spike
synchrony across multiple neurons, postsynaptic “coindiming |nf<_3rmat|on is taken into account—in fact,_ the opposite
dence detectors” would be able to extract the informatidn f'ue (Fig. 8). Nonetheless the important implication is that
contained in the latency (Singer 1999). Finally, neurori§Mporal coding—in particular, variations in response latency—
might be able to measure response latency through a cdextends the dynam|c range of V1 responses W|_th respect to con-
parison of response onset to the time of occurrence oftgst representation beyond what would be available from differ-
preceding saccade, which could be taken as a sign that a rf&ges in firing rate alone.
stimulus is present. Each of these solutions can in principle
be tested explicitly, although to do so would be a challengepenD1x
to current experimental techniques. ) o ) o
Beyond firing rate and latency, V1 neurons transmit ver In this Appendix, simulations are presented to test the suitability of

little information about the contrast of transiently presentd® Metric-space method for calculating information when there are
visual stimuli. This is consistent with the results of 0the?nly one or two spikes per trial. This is akin to the situation, described

. T C\nr in,RESULTS in which derived spike trains that contain only the first
investigations (Gawne et al. 1996; Wiener et al. 1999) AW\ike in a response are evaluated. More general simulations that test

raises the question of why the responses to stationary gratigSmetric-space method under a variety of conditions are presented in
contain such.promlnent temporal variation, reflected in th@ctor and Purpura (1997).

transient, tonic, and off response components. The presenthe simulated response sets analyzed in this appendix each consists
results, together with earlier work, suggest that these respongavo stimulus conditions. Within each condition, the spike times are
components may primarily transmit information about otheirawn from either one or two Gaussian distributions, one spike per
stimulus parameters such as orientation, spatial frequency, distribution. The means and SDs of the distributions and the overall
spatial phase (Victor and Purpura 1996). For simple celis, §ifset of the distribution means between conditions are the parameters

particular, the timing and magnitude of the transient, tonic, a t are varied in the simulations. For each condition, a fixed number
! ! ' rials are simulated, each of which contains the same number of

Ol\f/lf reshpons? (:lonfg;)gentsdsttrrlongfly depend on spat;a(lj pflh‘g éf<es (either 1 or 2). The simulated spike trains are subjected to the
(Movshon et al. ) an ereiore convey a great dea tric-space analysis, and the results are compared with the results of

information about that stimulus attribute (Victor and Purpurg, anaysis in which a simulated response is assigned to the stimulus
1998). This would follow naturally if different response comcategory that has the highest likelihood of giving rise to spikes at the
ponents reflect the contributions of distinct receptive-field subbserved times (Cover and Thomas 1991). The latter analysis is
units, as has been suggested (Movshon et al. 1978). performed on 10,000 simulated spike trains from the same underlying
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A o050 0.50- (inverted open triangles). The — shows the actual information (0.37
N bits) calculated analytically. For low values of the calculated
oo W&Aﬁ information is close to the actual information at least when there are

o oot 025 a sufficient number of trials. For higher valuesgpfthe information

I \ declines to zero, which is expected because spike times measured with

0 0 - extremely high temporal precision do not provide information about
; T 500 h 5 500 the stimulus (Victor and Purpura 1997).
A # trials Figure AlA, right, shows estimated information plotted against the
alsec) number of trials simulated for four different values gf 1 (open
B squares), 8 (open circles), 64 (open triangles), and 512 (open inverted
100 o~ triangles) S*. When the number of trials is on the order of 100 —the
1.0 £ s 3 o number of trials at each contrast in the real data described in this
g ° o £ 0 ,./// o paper—the calculated information approaches the actual information
‘D;Bo.s d / whenq is sufficiently low. The similarity of the curves for different
T S values ofq indicates that the accuracy of the bias-correction method
ol - ° = & 01 - ° does not depend strongly @ even though it can do so in principle
1 10 100 1 10 100 (Victor and Purpura 1997).
Figure A1,B-D, shows the results of varying the mean separation
C 1001 —_ and standard deviation of the Gaussian distributions. [&figpanels
1.04— = 2 5 1. = plot H,ea(the maximum calculated information), and tight panels
0 ° ° ° é 104 — ° plot 2,0006,, (the measure of informative temporal precision used in
<05 : . T el this paper). Both parameters are derived from fits of the information
= g P curves (se®EeTHoDs). Different symbols correspond to different ratios
ol = Bl & & o1 T of mean separation to standard deviation: 1 (open squares), 4 (open
1 10 100 1 10 100 circles), and 16 (open triangles). For each condition, 100 simulated
. spike trains are created. Solid lines in the left panels correspond to
D 100 ) = likelihood-ratio information measures. Slanted lines in the right panels
1.0 S 5 o o correspond to estimated temporal-precision limits, which are related
) o o g 10 _ /A/ to the mean separation between distributions used in the simulations.
= % - They are independent of the standard deviations (horizontal lines)
I§05 § ! C‘/"/A/ because the informative temporal precision corresponds to reliable
o F = o & Q o . variations in spike timing across stimulus conditions that can provide
1 10 100 ! 10 100 information about the stimulus rather than jitter of particular spike
|4t,-44,| (msec) lit,-1,] (msec) times across trials within a condition. The estimated temporal preci-

Fic. Al. Metric-space results for simulated data. Test of the suitability 1ons for the. stimuli used in these simulations are expected to fall at
the metric-space method for estimating information and temporal precisi llntersectlons of the horizontal and §Ianted Ilpes.
when the number of spikes per trial is lof. bias-corrected information as a  Figure AIB shows the case of one spike per trial; a subset of these
function of the cost (left) and the number of simulated trialght). Left ~ data is plotted, in more detail, in Fig. AlFigure AXC shows the case
different curves represent different numbers of simulated trials: 16 (opefi two spikes per trial, where the individual spike-time distributions
squares), 64 (open circles), 128 (open triangles), and 1,024 (inverted opgithin each trial are separated by 32 ms. Figur®Ahows the results
triangles). Right different curves represent different values @f1 (open  of extracting the first spike from each of the trials in Fig.@and
squares), 8 (open circles), 64 (open triangles), and 512 (inverted open trigarforming the metric-space analysis; this corresponds to extracting
gles) s . B-D: peak informationi,.,) and temporal precision limits (2,000/ the first postlatency spike at each contrast in real data. The results
Ge,,) derived from fits to the information curveiseft solid lines show expected j, i a1 that the estimated information values for 100 trials are gen-

information values from a likelihood-ratio analysRight solid lines show I | h ) dl fh .
expected temporal precisions for different mean separations (slanted lines) gfyly very close to the expectation, regardless of the mean-separation-

standard deviations (horizontal lines) of the Gaussian distributions that dfsStandard-deviation ratio, in all three simulatioteft]. Moreover,

used to generate spike times. Symbols correspond to different ratios of m#a@ calculated temporal precision limits fall near the intersections of
separation to standard deviation: 1 (open squares), 4 (open circles), andhi® horizontal and slanted lines in thight panels,indicating that the

(open triangles)B: 1 spikeftrial. C: 2 spikes/trial; spike-time distributions temporal precision is recovered relatively accurately by the metric-
within a trial have a mean separation of 32 s 2 spikes/trial (same data as space method. Together with the results of Victor and Purpura (1997),
in C) but only the 1st spike in each trial is analyzed. the simulations reveal that the metric-space method, as used here, can

o . . ) accurately estimate information and informative temporal precision
distributions—100 times more trials than are available from real dajgnits from spike data.

In cases when there is only one spike per trial, it is easy to calculate
the inf_ormation expli_citly from the _pro_bability d_istributiops; the in- \we thank B. Knight and K. Purpura for many helpful comments.
formation values derived from the likelihood-ratio analysis match the This work was supported by National Institutes of Health Grants GM-07739
true information values very well. and EY-07138 (D. S. Reich) and EY-9314 (J. D. Victor).

Figure AlA shows the effects of varying the cost parametend
the number of simulated trials on the estimated information. In thi§cFerencES
example, there is only one spike per trial. The separation between )
distribution means across conditions is 16 ms, and the distributiofyg“ED B, ALLisoN JD, DoucLAs RJ, ANb MARTIN KA. An intracellular study
have a standard deviation of 8 ms (so that there is considerabl fotrrt‘:X%Q”Stg%St?fge{‘ggpce of neuronal activity in cat visual coflereb
overlap_that can _Iea(_j to ambiguity in assigning responses to tRLeBRECHT DG. Visuallcortex neurons in monkey and cat: effect of contrast on
appropriate stimuli). Figure A4, left, shows the bias-corrected infor-" 4,0 snatial and temporal phase transfer functitfis.Neuroscil2: 1191—
mation values as a function offor four different sets of simulated 1210, 1995,
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