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Reich, Daniel S., Ferenc Mechler, and Jonathan D. VictorFormal  estimates the overall rate of information transmission in a set of
and attribute-specific information in primary visual cortdxiNeuro- responses to a single stimulus.

physiol85: 305-318, 2001. We estimate the rates at which neurons inggylier studies on neurons in primary visual cortex, based on
the primary visual cortex (V1) of anesthetized macaque monkeyg, | fluctuating stimuli, report information rates an order of

transmit stimulus-related information in response to three types 0 . . .
visual stimulus. The stimuli—randomly modulated checkerboard pépagnltude lower (Gershon et al. 1998; Heller et al. 1995;

terns, stationary sinusoidal gratings, and drifting sinusoidal gratingsM-ecmef et al. 1998b; Richmond and Optican 1990; Tol_hurst
have very different spatiotemporal structures. We obtain the overd®89; Victor and Purpura 1996). These studies use a variety of
rate of information transmission, which we cédirmal information, methods other than the direct method to calculate the informa-
by a direct method We find the highest information rates in thetion rates in responses to sets of stimuli that vary along some
responses of simple cells to drifting gratings (median: 10.3 bits/s, 0.82ticular parameter, such as contrast or spatial pattern. All of
bits/spike); responses to randomly modulated stimuli and station kse methods calculate information as a measure of the degree

gratings transmit information at significantly lower rates. In gener . . . g
simple cells transmit information at higher rates, and over a IargH Vglhéf;sgeezponses can be clustered into the appropriate stim

range, than do complex cells. Thus in the responses of V1 neuro : L g .
stimuli that are rapidly modulated do not necessarily evoke highercompa”ng these and similar results, Bias@and Albright
information rates, as might be the case with motion-sensitive neurdd999) argue that neurons, especially cortical neurons, more
in area MT. By an extension of the direct method, we parse the forneffectively convey information about stimuli with rich tempo-
information into attribute-specificcomponents, which provide esti-ral structure than about stimuli with simpler structure. This
mates of the information transmitted about contrast and spatiotempegument is incomplete, however, because the two sets of
ral pattern. We find that contrast-specific information rates vary acraggdies use qualitatively different approaches to measuring
neurons—about 0.3 to 2.1 bits/s or 0.05 to 0.22 bits/spike—byhnsmitted information, both in terms of the richness of the
depgnd little on stimulus type. Spatiotemporal pattern-spgcﬁm |nfcgﬁ uli and in terms of the analysis method. It is therefore
mation rates, however, depend strongly on the type of stimulus % possible to draw conclusions about the types of stimulus that
\Y

neuron (simple or complex). The remaining information rate, typical ke the hiah inf . f h .
between 10 and 32% of the formal information rate for each neurdn’OK€ the highest information rates from such a comparison.

cannot be unambiguously assigned to either contrast or spatiotempbt@l€ We link the results of these two sorts of studies by
pattern. This indicates that some information concerning these ti@cording the responses of V1 neurons to a battery of stimuli of
stimulus attributes is confounded in the responses of single neuronglifferent spatiotemporal structure and by analyzing the re-
V1. A model that considers a simple cell to consist of a lineaponses in a uniform fashion (a variant of the direct method).
spatiotemporal filter followed by a static rectifier predicts higheDur major finding is that the overall rate of information trans-
information rates than are found in real neurons and completely faji§ssion—which we dub formal information—does vary with
to replicate the performance of real cells in generating the confoundggijus type but that responses to rapidly modulated stimuli
information. do not necessarily convey the most information, particularly in
the case of simple cells.

Next we draw a distinction between formal and attribute-
INTRODUCTION specific information rates. Formal information concerns all

) . _ aspects of the response that depend on the stimulus. Attribute-

Recent studies of the responses of visual neurons to stimfiecific information concerns only aspects of the response that
with rich temporal structure, such as flickering checkerboagliow the discrimination between stimuli that differ in some
patterns and drifting gratings that abruptly change directioparticular attribute, such as contrast, in the face of variation in
have pointed to overall information transmission rates of bgther attributes, such as spatiotemporal pattern. The attribute-
tween 5 and 100 bits/s (Berry and Meister 1998; Basaet al. specific information is a measure of the degree to which
1998; Reich et al. 2000a; Reinagel and Reid 2000; Ruyter vgsponses to different stimuli cluster according to a particular
Steveninck et al. 1997). The sensory systems analyzed in theggulus attribute and is thus more comparable to the informa-
studies range from blowfly lobula plate to primate cortex. Thgon measured in the second type of study mentioned above. By
information calculations are based on tlirect method presenting each type of stimulus at multiple contrasts and
(Ruyter van Steveninck et al. 1997; Strong et al. 1998), which
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appropriately modifying the direct method, we parse the formaith a mean luminance of approximately 150 cd/and a frame rate
information rate into attribute-specific components relating & 270.329 Hz.

contrast and spatiotemporal pattern. Here, spatiotemporal pat-

tern refers to a broad category of stimulus attributes thiit-sequence stimuli

includes temporal fluctuations as well as variations in spatial

phase. . . . . _stimuli have been extensively described (Reich et al. 2000a; Reid et
Overall, we find that information about contrast is transmiy 1997; Sutter 1992). In the experiments reported here, we use two

ted at a significantly slower rate than information about spagch stimuli: a 12th-order m-sequence (4,095 stimulus frames) mod-
tiotemporal pattern, although not for every type of neuron anghting 249 stimulus checks and a 9th-order m-sequence (511 frames)
stimulus. The rate of contrast-specific information transmissiomdulating 25 checks. In both cases, each frame lasts for 14.8 ms
depends little on stimulus type. Contrast-specific informatidfour monitor refreshes), so that the total 12th-order stimulus lasts
rates estimated by the direct method are very similar to coff2.6 s and the Sth-order sequence lasts 7.6 s. Individual checks
trast-specific information rates estimated by a method basedigtically span 16x 16 arc-min of visual angle and are arranged in a

computing the distances between pairs of spike trains (Vic uare. The size and orientation of the array are sometimes adjusted
and Purpura 1996) ased on the neuron’s spatial-frequency preferences, but only in cases

We find that contrast- and spatiotemporal pattern-specifh%?n;? adjustment is expected to produce a dramatically larger
a

information rates together account for less than the full formalthe 249 checkléng) stimulus is surrounded by a black circular
information rate—typically 68-90%. This indicates that a Sigperture, and the 25-cheaipr) stimulus is surrounded by a uniform
nificant portion of the information in V1 responses relates tofgld at the mean luminance. In both stimuli, every check is modulated
confoundedepresentation of contrast and spatiotemporal pdty the same m-sequence, but the starting point in the sequence varies
tern by which the spatiotemporal pattern of the stimulus fsom check to check. The minimum offset between starting points is
encoded in a contrast-dependent fashion and the contrast of2hé ms (64 samples of the m-sequence). The use of m-sequences in
stimulus in a spatiotemporal pattern-dependent fashion. AHs way ensures that there are essentially no pair-wise correlations in
observer who is only aware of the portion of a single neuronf§€ Within individual checks, or in space across checks, that are
response that contains the confounded information cannot dr: levant to the neuron’s response. The long stimulus is presented at a

USi bout trast tiot | patt .. single contrast (1), and the short stimulus is presented at each of five
conclusions about contrast or spatiotémporal pattern in 1So, sometrically spaced contrasts (0.0625, 0.125, 0.25, 0.5, and 1). Both
tion. The possibility still exists—though it is not addressed i

g - - andard and contrast-inverted (reversed dark and light checks) se-
this paper—that the confounded information may be parsg@ences, each repeated 12-16 times, are presented in the long stim-
into individual components by considering the simultaneougus. Standard and inverted sequences within a repeat are separated by
responses of additional neurons. a period of 23 s during which a uniform field at the mean luminance
We ask whether a basic model of a V1 simple cell can presented; repeats are separated by 18 s. For the short stimulus, no
account for our results. This model consists of a linear spativerted sequences are presented. Contrasts are presented in increas-
temporal filter, which we derive from the responses of a refig order, separated by uniform-field presentations lasting 10 s, and
neuron, followed by a static rectifier and a Poisson Spii]ge entire of set of contrasts is repeated 25-100 times with 10 s
generator. The responses of such a model to the same sti giyveen repeats.
presented to real neurons transmit formal information at rates,_ ) o
comparable to, but higher than, those of real responses. Hdwifting-grating stimuli
ever, unlike in the responses of real neurons, all of the formalye yse “optimal” sinusoidal gratings with spatial frequency, tem-
information in model responses can be parsed into attribugral frequency, and orientation chosen to maximize either firing rate
specific components: the model does not confound the enc@dr complex cells) or response modulation at the driving frequency
ing of contrast and spatiotemporal pattern. We have shown tifat simple cells) (Skottun et al. 1991). For simultaneously recorded
this discrepancy is not due to differences in the underlyirggurons, we optimize the gra_ltings for at least one of the cells, usually
dynamics of Spike generation, which do not Strong|y determiﬁ@? one_w_lth the most distinct _extrace_llularly rgcorded wavgform
information rates (Reich et al. 2000a). Instead, the discreparfé§ice this is the neuron most easily monitored during the experiment).
occurs because this basic model lacks certain features of rt .Fr)ﬁlr:mgttigh:r'gfnse?;s;ﬂ:t” tgeléeﬁgoengzeor‘: g;]'gscsr']' %ﬁ:\':?%’hteor
. . mi Wi \Y
cortical neurons, such as CpmraSt gain control (thawa etifﬁmsultaneously Pecorded neurons lzDeAngeIis et al. 1999), as we
1982), contrast normalization (Albrecht and GEIsl_er_ 199 ccasionally verified empirically. We present the gratings4a at
Heeger 1992), and pattern gain control (Carandini et @jch of six geometrically spaced contrasts (0, 0.0625, 0.125, 0.25, 0.5,
1997a), by which variations in one stimulus attribute can affeghd 1). We repeat the entire set of contrasts five to eight times, with

The principles and methodology of the m-sequence checkerboard

the encoding of another. the order of contrast presentation randomized within blocks. For 4-Hz
Portions of this work have appeared in abstract form (Reighatings, this yields 80—-128 stimulus cycles at each contrast. Within
et al. 2000b). each block, grating presentations at different contrasts are separated

by presentation of a uniform field of the same mean luminance for 8 s,

METHODS and blocks are separated by presentation of the uniform field for 13 s.
We present data from recordings of individual neurons in tr@tationary—grating stimuli

primary visual cortices of sufentanil-anesthetized macaque monkeys.
Our detailed experimental procedures have been described elsewheWe present stationary sinusoidal gratings at the same spatial fre-
(Reich et al. 2000a; Victor and Purpura 1998). We use three typesgoiency and orientation as the drifting gratings. The spatial phase of
stimulus: flickering checkerboards modulated by m-sequences, drifie stationary gratings is the one that maximizes the neuron’s firing
ing sinusoidal gratings, and transiently presented, stationary sinugaie in response to stationary gratings of unit contrast. For each
dal gratings. All stimuli are presented on a Tektronix 608 monitareuron, we present in increasing order either seven geometrically
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spaced (0, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1) or nine arithmetically A
spaced (0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) contrasts.
Gratings replace a uniform field of the same mean luminance for a
period of 237 ms, after which the uniform field reappears for a
minimum of 710 ms. The amount of time between grating presenta-

tions increases as a function of the contrast of the preceding grating.

For example, the amount of off time following the 0.5 contrast

presentation is 2.84 s and following the 0.875 contrast presentation is H I=H H
4.26 s. This strategy is used to approximate a uniform state of contrast a — 4Ly < a>
adaptation (Sclar et al. 1989) prior to the presentation of each different

grating. The entire series of contrasts is usually presented 100 times.

We analyze only spikes that occur between 30 and 300 ms after

stimulus onset. B %

Information rates

We use extensions of the direct method of calculating information
rates (Ruyter van Steveninck et al. 1997; Strong et al. 1998) to
evaluate the responses to all three types of stimulus. This method is
based on a comparison of the response variability across time to the
response variability across trials. The underlying principle behind the
approach is that the portion of variability that cannot be explained by
intrinsic variations in the response to a particular stimulus must
represent stimulus-related information. bin o

contrast S

H, g

Iformal = H-,- _<Ha,ﬂ>

L = H..—(H. )
The straightforward application of the direct method, diagrammed contrast e “h
in Fig. 1A, evaluates what we call the formal information rate. The I = H —<H >
spike train recorded during each trial is divided into time bins, and the pattern — " e a,e
spike counts in each bin are tabulated. These spike counts are CORis. 1. Direct methodof information-rate estimation. Stimulus-related in-

sidered letters in the neuron’s response alphabet. Several letters jg@asion | is calculated as the difference between the response variability
row constitute a word, and each word has a probability, possibi¢ross timetptal entropy, H or H, ) and the response variability across trials
stimulus-dependent, of being “spoken” by the neuron. In this papef,stimulus conditionsrise entropy. A: straightforward application of the

we choose one-letter words (single time bins) because our data si@tst method to multiple trials of a single stimulus in which the noise entropy
are not typically large enough to obtain reliable multi-letter-woré calculated as the average entropy in each Hip) (Ruyter van Steveninck
information estimates. Based on others’ results in different systeﬁ{s’ﬂ. 1997).B: modification of the direct method for calculation of attribute-
(Reinagel and Reid 2000; Strong et al. 1998), as well as on ana|y§?§0i_ﬁc information in an experi‘ment with multiple contrasts. The Fotal entropy
of a limited number of V1 neurons from which large amounts of dafde S unchanged, but the noise entropy depends on the particular type of
were collected, we estimate that information rates are likely to diffg]j ormation being estimated (formal or attribute-specific).

by at most 25% in the two cases, but that the qualitative results

a,e

Direct method

(formal vs. attribute-specific information and amount of confounded =
information) are not likely to change greatly. H =~ plog, p, €3]
We perform our calculations at a variety of bin (letter) sizes, n=0

ranging from 0.9 to 59.2 ms. We choose the bin size that yields theThe second quantity that we extract is th@ise entropywhich is
highest information rate. This choice is justified because the act@aineasure of the response variability across trials at a fixed time—that
information rate cannot decrease as the bin size decreases (Strorig, ¢he uncertainty in spike count in bins at a particular time. Unlike
al. 1998), even though our information-rate estimates may not itie situation with total entropy, which is derived from all bins taken
crease because of limitations set by the amount of available data. itaigether, the number of noise-entropy estimates is equal to the number
important to emphasize that the quantities estimated here are infairtime bins in a single trial. The set of bin-specific entropielg ) is
mation rates for brief samples of the responses (single bins or lettemjtained from the distribution of spike counts at fixed time hins

not the total information contained in an extended response. In gewyoss trials (dark gray in Fig.Al and Shannon’s formula. The
eral, the conversion between information-rate estimates and infornr@nsmitted information is taken to be the difference between the total
tion estimates over extended responses is subadditive, in part becameopy and the averaged noise entrapy: Hg — (H,). Information

the information encoded at different times in the response may wa&ues are calculated in bits, which are normalized by the bin size to
redundant (DeWeese and Meister 1999). obtain bits/s and by the total spike count to obtain bits/spike.

From the set of binned spike counts, we extract two quantities. TheAn important caveat of the direct method is that it is only sensitive
first, called thetotal entropy (H;), is a measure of the responseo fluctuationswithin an analyzed response. If there is little variation
variability across time—that is, the uncertainty in spike count acrossthe local spike-count distribution during the course of a response,
all bins. We calculateH+ from the distribution of spike counts in then the direct method yields a low information rate. Such is the case
individual bins across all time and trials (represented by the light gréyr complex cells when the stimulus is a drifting sinusoidal grating at
rectangle in Fig. A). We obtain a direct estimate of the probabilitiegixed contrast. Since complex cells respond to these stimuli primarily
p, thatn spikes are observed directly from the spike count statistidsy elevating their discharge rates (Skottun et al. 1991), the direct
We then apply Shannon’s formula (Cover and Thomas 1991) to obtamethod only detects information if the analyzed response includes
the entropy both background and stimulus-driven firing, because the appearance
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of the stimulus causes a change in firing rate. In this chapter, tte two attributes are independently represented. Proof of this state-
unit-contrast drifting-grating responses, unlike the unit-contrast staent and further background concerning attribute-specific informa-

tionary-grating responses, do not include any period of backgroution can be found in theppPENDIX.

firing. In the past, the direct method has always been applied to the

responses of neurons to rapidly varying stimuli, which typically eVOkigias in the information estimates

a wide range of firing rates that fluctuate over time (Bamet al.

1998; Reinagel and Reid 2000; Ruyter van Steveninck et al. 1997)Because we only have access to a limited amount of data, our
However, there is no a priori reason to limit the application of thestimates of the total and noise entropies are both subject to a
direct method to rapidly varying stimuli, and we will show that thelownward bias. This is a generic property of information estimates

method can yield useful results even when applied to other sortsf@im limited data sets (Carlton 1969; Miller 1955). Since the trans-

responses. mitted information is the difference between these two entropies, the
resulting information rate will be either underestimated or overesti-
Attribute-specific information mated depending on the relative magnitude of the bias in the two

entropy estimates. When the probabilities of each word are directly

The formal information rate calculated by the direct method evagstimated from the observed probabilities, an asymptotic estimate
uates the overall rate of information transfer about all time-varyingf the bias is kK — 1)/2N In (2), wherek is the number of distinct,
aspects of the stimulus. It does not evaluate the rates at whibserved words (here, spike counts per bin) lnsl the total number
information about individual stimulus attributes is transmitted withoudf observations (Panzeri and Treves 1996; Victor 2000). Bedduise
the confounding influence of other attributes. We refer to these lattarge for the total entropy (number of bins times number of trials), the
quantities as the attribute-specific information rates, and we nagrrection is quite small (for m-sequence responses, about 0.01%). On
describe an extension of the direct method that allows us to estimtte other hand, in the calculation of the individual bin-specific noise
them. In our experiments, we concentrate on contrast and spatiotemtropies,N can itself be small (as low as 12 for m-sequences),
poral pattern, but the idea can be applied to any situation in which twtaking the correction much larger (sometimes on the order of 10% or
(or more) attributes are varied independently. As used here, spatitere).
temporal pattern is an omnibus term that refers to aspects of thdn many cases, particularly with short bins, only one distinct spike
stimulus that do not change as the contrast is varied. Our stimuli @@int—zero—is observed. These bins contribute an entropy of 0 to
completely defined by contrast and spatiotemporal pattern: indedtg averaged noise entropy, even with the asymptotic bias correction
each stimulus is defined by a spatiotemporal pattern and a contipgicausek = 1). Because these bins are so common and because
value by which it is multiplied. entropy is a logarithmic function of probability, askiy. 1, the noise

As shown in Fig. B, attribute-specific information is calculated byentropy is potentially severely underestimated. This can result in an
a procedure that elaborates on the one depicted in RigThe total overestimation of the transmitted information. We address the prob-
entropyH, o is an overall quantity that represents the uncertainty iem of the zero-count bins by assuming that the noise entropy varies
spike count across all bins in the entire data set—that is, across tislewly when the number of spikes is very low. This assumption allows
trials, and contrasts—and is used in both formal and attribute-speciii€ to group several consecutive bins together to generate a single
information calculations. When restricted to a single contrelgt, estimate of the bin-specific noise entropy. Specifically, when we
reduces tdH+, the total entropy from Fig. A. [We use the dot®) encounter a bin with no spikes in any trial, we sequentially consider
notation to denote inclusion of either all time or all contrasts in theubsequent bins until we find one that has at least one spike. For these
information calculations.] To obtain the overall noise entropy used m bins, we calculate the noise entropy as described, applying the
the calculation of formal information rates, we average together all thealytic bias correction witl, the number of observations, equal to
estimates of the noise entropl, , taken from spike counts measuredn times the number of trials. We then assign this value of the noise
on different trials at fixed timesof and contrastsQ) (dark gray entropy to each of the bins that are grouped together in this way. The
region). This is a direct extension of the procedure used when onlyiral value of the noise entropy is again the average of the individual
single stimulus type is presented, as in Fig\, In which H, z is  bin-specific entropies, where some of those entropies have been
equivalent toH,,. calculated by grouping several bins together. This grouping occurs

Attribute-specific information rates are obtained by averaging overost commonly in the calculation of the formal noise entropy for
one or another stimulus attribute and over trials. Intuitively, by igahich the number of observations is simply equal to the number of
noring the value of one stimulus attribute, we are considering stimuluigls. The effective number of trials in the calculation of the spatio-
variations along the ignored attribute to be a source of “noise.” Thismporal pattern-specific noise entropy is higher because time bins are
potentially adds variability to the spike count and could reduce tlyggouped together across contrasts. The effective number of trials in the
ability of stimulus-induced variations in spike count to transmit inealculation of the contrast-specific noise entropy is vastly higher
formation about the nonignored attribute. To obtain the contragtecause time bins and trials are grouped together at a single contrast
specific noise entropyd, z, We consider spike counts recorded aso that we never encounter a bin with only one type of spike count.
contrastB, regardless of time bin or trial number (medium gray), and We have verified that our assumption—that the noise entropy varies
then average those entropy estimates across contrasts. This essensiallyly when the number of spikes is very low—allows us to obtain
represents the uncertainty in spike count at each contrast, averageclrate information-rate estimates for synthetic spike trains that are
across all contrasts. The contrast-specific information is then tBgamples of modulated (inhomogeneous) Poisson processes with
difference between the total entropy and the averaged contrast-dpever than half the number of trials that would otherwise be required
cific noise entropy:H,s — (He ). TO obtain the spatiotemporal (simulations not shown). Indeed, for long stimuli (such as the
pattern-specific noise entropy, ., we average across time bins them-sequences), accurate information estimates can sometimes be ob-
entropies derived from spike counts at timeregardless of contrast tained with as few as four trials of the stimulus—we typically have at
(light gray). This corresponds to the uncertainty in spike count at ealetast 16. For briefer stimuli (such as the gratings), more trials are
time relative to the stimulus, averaged across all times. The spatiequired. Because real neuronal responses are not examples of mod-
temporal pattern-specific information is the difference between thiated Poisson processes (Reich et al. 1998), we impose an additional
total entropy and the averaged spatiotemporal pattern-specific naisiéerion to eliminate data sets that do not contain enough trials. In
entropy:He ¢ — (H, ). The sum of the two pattern-specific informa particular, we insist that the formal information rate obtained from
tion rates cannot exceed the formal information except for measuhalf the data (randomly chosen) be within 10% of the corresponding
ment errors, and equality can only hold under circumstances in whictiormation rate obtained from the full data set. This requirement is
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quite strict and eliminates between 20-50% of the neurons recordedremely close to the ones obtained by applying the method de-

with each stimulus type. The neurons that are retained tend to congeyibed in the preceding text for real data; indeed, this similarity is

information at slightly higher rates. the primary justification for the applicability of our bias-correction
Finally, to obtain an estimate for the scatter of individual informamethods.

tion estimates, we use the jackknife procedure (Efron 1998). Specif-

ically, for each data set, we sequentially reméweof the trials and

recalculate the information rate%ies is chosen because we have? ESULTS

access to only 16 trials for some m-sequence data sets. From mal information rates

resulting distribution of information rates, we estimate the standar

error of the information rate obtained from the full data set. The Figure 2 shows the responses of a complex cell in monkey

jackknife estimate of the standard error is V1 to the three different stimuli used in this paper, each
presented at unit contrast. Response histograms, obtained by

goo NZ1 i 0= yp @ averaging the number of spikes across all trials in consecutive

’ N < ' 7.4 ms bins and then normalizing by the binwidth, are pre-

A sented atop raster diagrams that show the spike times following
where N is the number of trials (16) and| is the ith jackknife stimulus onset in each trial. Thep panelpresents results from

information-rate estimate. a flickering checkerboard stimulus, in which the time course of
contrast modulation in each check is determined by a binary
Simple-cell model m-sequence (seeeTHops). The stimulus lasts 60.6 s and is

) o ) _repeated 14 times; here, we only show spike times that oc-
To help explain our findings about formal and attribute-specifigyrred between 32 and 33 s after stimulus onset.
information rates—in particular, the confounded information rate (see p striking feature of these responses is that spike firing tends
ResuLT9—we model a V1 simple cell as a linear spatiotemporal filtgf, 1o ¢|ystered at particular times, which presumably follow
the output of which is subject to a static nonlinear rectification and sient changes in the stimulus However since the stimulus

Poisson spike generating mechanism (Carandini et al. 1996). Rat ; . .
than assuming any particular form for the linear filter, we use firsghanges every 14.8 ms (67.6 times during th s display

order kernels derived from responses of real V1 neurons to urig€riod), it is clear that not all stimulus transitions are followed
contrast m-sequence stimuli (Reich et al. 2000a; Reid et al. 199 a consistent change in firing probability—that is, only some
Sutter 1992); the calculation of this kernel, as well as its normalizaf the changes, such as the one that causes firing shortly before
tion, is extensively discussed in the references. The subset of 32.5 s, are effective in driving the neuron. This event-like firing

neurons modeled here includes five simple and six complex cells. response to stimuli of this sort has been noted in other
Complex cells, which often yield significant linear kernels (Reich et

al. 2000a), are modeled here in exactly the same way as simple cells. M-Sequence
However, because we only use the linear kernels in the model and 100 spikes/sec

because the model does not include any full-wave rectification (Movs-

hon et al. 1978a), the model neurons derived from complex cells } | || h || i
respond like simple cells. Although we only model neurons with 0

robust linear kernels or receptive-field maps, we verified that these Mo ! ; a
neurons have firing and information rates not significantly different T T R |

[ e M
n | a [ I

from the firing and information rates of the entire population of simple NI I do

cells, for unit contrast responses (Kolmogorov-Smirnov test> ft e R
0.05). 32,000 32,500 33,000
To derive the parameters of the rectification (threshold and linear
gain), we first predict the linear response by convolving the first-order . o
kernel with the unit-contrast m-sequence stimulus. We then find the Stationary Driftin
constant offset and linear gain that, when applied to the predicted 100y, ;100
linear response histogram, yield the best least-squares fit to the his- |
togram of the observed unit-contrast m-sequence response for the
neuron being modeled. We present the model neurons with the same
three stimuli that we present to real V1 neurons: m-sequences, sta-
tionary sinusoidal gratings, and drifting sinusoidal gratings. Kernels
and stimuli are binned at 1.8-ms resolution (half of a single display
frame for the actual visual stimuli). Because the spatiotemporal pat-
terns in grating stimuli—particularly drifting gratings— change faster .
than the spatiotemporal pattern in m-sequences (even though such time (msec)
changes are not necessarily detected by the neuron), we integrate thg. 2. Responses of a representative complex cell to three types of stim-
gratings over each m-sequence check and time bin before presentilog at unit contrast. Cell 44/9s. Each panel shows response histograms (7.4-ms
them to the model neuron. bins) atop raster diagrams that depict the spike times fired during each trial.
The model yields a response histogram that serves as the moduiRe flickering binary checkerboard pattern modulated by an m-sequence. The
tion envelope of an inhomogeneous Poisson process, which is tigBHre sequence lasts 60.6 s. Only spikes that occur in the 1-s period between

used to determine the spike times in each trial. For the purpose3gfand 33 s after the start of the stimulus are shown. 14 tifom left

calculating information rates, the response histogram and the Poisgr?ﬁonary sinusoidal grating presented at the cell’'s optimal orientation, spatial

ti fficient. b K ina the firi te i h uency, and spatial phase. The stimulus appeaimatOand is removed
assumption are suthcient, because knowing the Tirng rate in each iy s |ater; solid vertical lines mark these times. Spikes occurring between

gives us the full spike-count probability distribution in that bin. Thugg ang 300 ms after stimulus onset (dashed vertical lines) are analyzed. 100
for model responses, we obtain exactvalue for the information rate trials. Bottom right drifting sinusoidal grating presented at the cell's optimal

in one-letter words. In practice, these exact information rates argentation, spatial frequency, and temporal frequency. 40 trials.

0 400
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species and visual areas as well (Bair and Koch 1996; Berry et Simple Complex

al. 1997; Ruyter van Steveninck et al. 1997). As estimated by g, A 80, D
the direct methodMeTHoDS), the response to the m-sequenceg I
conveys 7.8 bits/s (0.75 bits/spike) of stimulus-related info& T [ T
mation, which is within the range reported both for MT neug *° 401
rons (Burdas et al. 1998) and for salamander and rabbit retinal é I—T—|
ganglion cells (Berry and Meister 1998) in responses to similar © + - o= =
stimuli.

Figure 2 also shows the responses of the same neuron to 1065; B - 81 E
presentations of a stationary sinusoidal grating of optimgl 401 | 404
orientation and spatial frequency. The grating appedimat0 £ I
and disappears 237 ms later (times marked by solid vertiGal?°] ’—]—‘ 201 | |
lines). The response histogram reveals three distinct firing  |bE== T M= T
levels. High firing rates begin abruptly 40—45 ms after the i ' ' '
stimulus is presented and reappear at about 310 ms, after the, 35
grating is removed. In between, the firing rate decays to a lower C e F
level that is still higher than the baseline. The high firing rate® |
that occur in the response transients resemble, in terms of pgak4] 1]
rate and duration, the brief periods of high firing rate in the é 1 !
m-sequence response. However, the neuron spends a great deal—— = % 04— = =
more time firing spikes at the lower rate than at the higher rate. %@@9 %, %, o"&% %, 7%,
This results in a lower information rate of 4.3 bits/s (0.14 O%Q % © "@ooo £ °?

bits/spike), despite the fact that the mean firing rate is 72%
higher than for the m-sequence response (29.8 vs. 17.3 spikes/
s). Although both total and noise entropy are higher in the
stationary-grating response, the noise entropy, which reflects
the spike count variability across trials at particular times, is
subject to a proportionately greater increase than the total
entropy. Thus the variability in firing is larger for the station-
ary-grating response than for the m-sequence response, and the
stimulus-induced modulation is relatively small. Note that in-
formation-rate calculations on stationary-grating responses
only involve spikes that occur from 30 to 300 ms following ‘
stimulus onset (dashed lines), meaning that the off response of 04 r'e . .
this neuron is effectively ignored. 0 1 2
The third stimulus is a sinusoidal grating, again presented at m-sequence
the optimal O”entatlon. and spatial frequency, that drifts uni-cs. 3. Summary across V1 neurons of firing and information rates in
formly at 2.1 Hz. For this neuron, we recorded the responsesdgyonses to three types of stimulus. Al stimuli are presented at unit contrast.
40 cycles of the drifting grating. The analysis treats individuaedian values and population sizes are given in Tabla-1C: simple cells.
cycles of the grating as separate stimulus trials. As is the c&s€: complex cellsA andD: mean firing rate, spikes/8 andE: information

e ; te, bits/sC andF: information rate, bits/spike. Boxes represent the 25-75%
forl most (I:((Ijmple()j( (I:etllsd thsekrettspon?e 'I:O j[_l’glzfrlftlng %:atmg %nge of the data, whiskers represent the 5-25% and 75-95% range, and
only weakly modulate ( otwn et al. )’ an € MORLizontal lines represent the media@. information rates (bits/spikes) for

prominent feature is an elevation of the mean firing rate (Comeurons that conveyed significant amounts of information in response to at
pare the average response level intthb&om-right paneto the least two stimuli. Filled symbols: simple cells. Open symbols: complex cells.
response level just afte stimulus onsel. in ettomleft o1 e st aseutes o vt
pane). There. are no periods of abruptly I.ncreased flrlng ra poni‘e to :gll three stimulus types. I%ata?from individual cells, plottesi, in
because, unlike the m-sequence and stationary-grating stlmﬁow the population trends evident i-F.
the drifting-grating stimulus contains no temporal transients.
The information rate in the drifting-grating response is 4.dxperiments performed on our entire population of V1 neurons,
bits/s (0.11 bits/spike). This is in the top 15% of informatiomll at unit contrastPanels A—Fsummarize across-neuron re-
rates measured in bits/s in our sample of 43 complex-cslilts, andG shows within-neuron comparisons for the neurons
responses to drifting gratings but near the median informatitimat convey significant information rates in response to at least
rate measured in bits/spike. The firing-rate elevation that tiwo of the stimuli. The results reveal that differences between
such an important feature of the responses of complex cellssiople and complex cells are most pronounced in the responses
drifting sinusoidal gratings does not contribute to the informae drifting gratings, which evoke the highest information rates
tion rate calculated by the direct method, which reflects onig simple cells but the lowest information rates in complex
reproducible modulations in the spike count probability duringells. For simple cells (Fig. 3:3—C), the unexpected finding is
the course of the response. Such slow modulation, superitinat information rates are higher in drifting-grating responses
posed on a relatively high overall firing rate of 41.5 spikes/s, ian in m-sequence responses (Fi@, 3illed triangles are
evident in the response histogram. typically above the line of equality). This is evidence against
Figure 3 and Table 1 summarize the results of similéine hypothesis that high information rates in V1 neurons are

O,"
44
o |
Y- °l a
a

grating (stationary or drifting)
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TABLE 1. Summary of unit-contrast firing and information rates m-sequence responses in Figs. 2 and 3. Most stimulus sets used
in neurophysiology experiments can be classified along two (or

Median more) attributes: one (or more) features, such as contrast and
Stimulus Type n  spikes/s bits/s (RE) bits/spike SPatial phase, that are explicitly varied from one stimulus
presentation to the next; and the time course of the stimulus
m-sequence zi(;?nprl)tleex % ﬂ.g% i.ﬂéé ((%%3583))1: %-fjg; ?tself. For responses to 'these sorts of stimulus, straightforward
' simple 12 2369 7.29 (0.16) 0.25% |mplemgntat|on Qf the dlrect. mgthod measures only the overall
stationary complex 26 23.15t 4.38% (0.20) 0.195 rate of information transmission, which we call the formal
simple 25 1014 10.28 (0.13) 0.92* information rate, and not information rates for individual stim-

drifting ; . e .
complex 43 = 16.16f  1.58%(033)  0.088 |ys features, which we call the attribute-specific information
Table gives medians of distributions plotted in Fig. 3. Median values thﬁ"fl?esj Earlier methods, k_)ased on firing rates (TOIhurSt_1989)*
differ significantly between simple and complex cells are shaded gtay ( principal components (Richmond and Optican 1990), stimulus
0.05, Mann-WhitneyJ test). Medians of distributions that vary significantlyreconstruction (Bialek et al. 1991), and time structure of indi-

with stimulus type are denoted by symbols (*, 1, ,< 0.05, Kruskal- ; \/i _
Wallis nonparametric ANOVA). RE: relative error, or standard error derive\éIdual responses (Panzeri and Schultz 2000; Victor and Pur

from jackknife resamplings (seeetHops) divided by information rate from Pura 1996), are expressly designed to measure attribute-spe-
the full data setn: number of neurons in data set. cific information.

more likely to be evoked by stimuli that change rapidly in time Here, we focus on contrast and spatiotemporal pattern. For-
than by stimuli that change slowly, as might be the case in tial information rates are parsed into components specific to
motion-sensitive area MT (Bu“ras' and Albright 1999; Bu- contrast and spatiotemporal pattern. Responses to five contrasts
racas et al. 1998). Complex-cell responses to drifting gratiné%‘rgflzss’ OlsleZdS"r?.chSé %fﬁt?ggt le) argr?ﬁ:?:zzeg'S‘Thhoertg'r'sfq#rﬁgce
behave differently: the filled triangles in FigG3are typically imulus u : Xper : , funning

below the line of equality. This is because complex Celléor?ﬁs instead of 60.6 s and modulating 25 checks instead of
: 49,

unlike simple cells, transmit very little information about th Figure 4 shows the responses (raster diagrams and histo-
aspect of the drifting-grating stimulus—its spatial phase—that 9 P ; 9 L
ams) of a second complex cell, which has a maintained

varies during the course of the experiment. We found (Table charge (response to a uniform field at the mean Iuminance)

that stimulus type has a significant effect on firing and info f 2.4 spikes/s. For all three tvpes of stimulus. the responses
mation rates for complex cells but only on information rates in_ = P : YPES. ' esp
nerally become more reproducible as contrast increases.

bits/spike for simple cells. However, we believe that the lack ome features. such as the spikes that occur around 7.100 ms
significance for simple cells is simply due to the smalle ’ P '

number of simple cells in the sample in the m-sequence response, or Fhe transie_nt firing-rate eleva-
’ tion at the beginning of the stationary-grating response, are
particularly reproducible and give rise to peaks in the histo-
grams.
The direct method is usually applied only to neurons’ re- Figure 5A plots the neuron’s firing rate as a function of
sponses to rapidly modulated stimuli, such as the unit-contrasntrast for all three stimulus types. Clearly, the curves are

Attribute-specific information rates

M-Sequence Stationary Drifting
60
ﬁol. e e
Yo,
N e
[Ze) [

Fic. 4. Responses of a representative complex
cell to three types of stimulus at five contrasts.
Raster diagrams and response histograms (7.4-ms
bins). Cell 45/2s. Contrasts 0.0625, 0.125, 0.25,
—— 0.5, and 1Left 1-s snippets of the responses to 25
: presentations of a 7.6-s m-sequence checkerboard
stimulus.Middle: responses to 100 presentations of
a stationary-grating stimulus, showing the first 350
ms after stimulus onseRight responses to 192
cycles of a sinusoidal grating drifting uniformly at
M 8.4 Hz.

7000 0 T8

time (msec)
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B The results of the contrast and spatiotemporal pattern exper-
6 ' iment over the population of neurons are shown in Fig. 6 and

8 4 Table 2. Here, we have combined data from simple and com-

%2 i plex cells for m-sequence and stationary-grating responses
¥ 1L I because we could not find significant differences among the

% % % distributions, probably due in part to the limited number of

% Y simple cells in our sample. Overall, as with unit-contrast re-
sponses, drifting gratings evoke the highest formal information
rates in simple cells but the lowest formal information rates in
complex cells. The same is true for spatiotemporal pattern-
specific information rates.

The strikingly high formal and pattern-specific information
rates in simple cell responses to drifting gratings are explained
by the fact that simple cells are exquisitely sensitive to spatial
phase (Hubel and Wiesel 1962; Movshon et al. 1978b; Victor
and Purpura 1998), which is the only aspect of the stimulus that
Fic. 5. Firing and information rates for the responses of the neuron frofyries at fixed contrast. The spatial-phase variation causes the

Fig. 4.A: mean firing rate (spikes/s) as a function of contrast: m-sequesiges ;- . . .
stationary sinusoidal gratingss); and drifting sinusoidal gratingss)( Error Iring rate to be deeply modulated, which results in hlgh

bars represent two standard errors of the mBaimformation rate (bits/s)C: ~ SPatiotemporal pattern-specific, and hence formal, information
information rate (bits/spike). Error bars BiandC represent estimates of the rates. This is emphatically not the case for complex cells, as
s_tandard error derived from jackknife resampling (8egeHoDs). D: informa-  discussed above. On the other hand, simple and complex cells
tion rate (% of total). All 5 contrasts are used for these calculations, except E?énsmit contrast-specific information at the same rates in re-
the bars labeled “unit contrast only” i andC. e . e
sponse to drifting gratings. Indeed, the contrast-specific infor-
quite similar, to within the error bars (95% confidence limits ahation-rate distributions are relatively independent of stimulus
the mean). As shown in Fig. B,andC, the formal information type, measured either in bits/s or bits/spiRex 0.05, Kruskal-
rate is 3.2 bits/s (0.58 bits/spike) in the m-sequence responggallis ANOVA).
1.8 bits/s (0.28 bits/spike) in the stationary-grating response For the neuron presented in Figs. 4 and 5, the attribute-
and 1.2 bits/s (0.06 bits/spike) in the drifting-grating responsepecific information rates do not account for all the formal
Responses to lower contrasts can contribute extra informatiaformation in the neuron’s response. This is also the case for
as well as extra variability so that including them in theéhe population results (Fig. @ight). The median confounded
information calculations can both raise and lower formal innformation—the portion of information that cannot be re-
formation rates. In this example, including those contrastglved into contrast- or spatiotemporal pattern-specific compo-
decreases the information rate measured in bits/s (but mehts—represents a substantial fraction of the formal informa-
bits/spike) in the m-sequence responsmey, (increases the

spikesisec >
g
o o

&%
N —

0 041 1 @%%’)

contrast

information rate measured in bits/spike (but not bits/s) in the formal contrast pattern confounded
stationary-grating responseg&i)( and leaves virtually un- 50
changed the information rates in the drifting-grating respons% 20
(0). ®
10

To isolate the relative amount of information transmitted”
about different aspects of the stimulus, we modify the direct o
method by selectively changing our definition of noise entropy
while leaving unchanged the definition of total entropy (se%L

METHODS). For these stimuli, information is conveyed abouts
contrast and spatiotemporal pattern. Spatiotemporal patte
refers to aspects of the stimuli that affect the response variation

1

o
-k

across time at a fixed contrast. The results are displayed inFig. ~ 3 2 2 3 .
5, B and C, together with error estimates derived from jack- ‘.E § 55
knife resampling (se@eTHODS). g g 3 z ’g
The information rates due to contrast and spatiotemporgd| 3 SOé%—Ié $ é
pattern alone do not sum to the full formal information rate, as = # %,

they would if the two stimulus features were encoded indepen- 0
dently (seeappenDIX). Instead, for this neuron, the sum of the ric. 6. Summary across V1 neurons of overall and attribute-specific infor-
two attribute-specific information rates fails to account fopation rates. Data taken from 44 neurons (m-sequences); 50 neurons (station-

19—46% of the formal information rate, depending on stimul &Y gra_mngs); 31 simple cells and 118 complex cells (drifting gratln'gs). Data
fom simple and complex cell responses to m-sequences and stationary grat-

type. We call the information not accounted for by the ajsgs are collapsed together because their distributions are not significantly
tribute-specific information ratesonfoundedThe presence of different from one another. Boxes represent the 25-75% range of the data,
confounded information means that the dynamics of contrawtiskers represent the 5-25% and 75-95% range, and horizontal lines repre-

and spatiotemporal pattern-encoding are interdependent. B e Bo TSt e o o & percentage of the
confounded mf_ormatlon cannot be used to determine em}%jmal information rateFirst column formal information rateSecond col-
contrast or spatiotemporal pattern based on the response of §hi$ contrast-specific information rat@hird column pattern-specific infor-

neuron alone. mation rate Fourth column confounded information rate.
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TABLE 2. Summary of five-contrast formal and attribute-specific information rates

Median Information Rate

bits/s bits/spike percent
Stimulus Type n F C SP CNF F c SP CNF C SP CNF
m-sequence all 35 3.23 0.83 1.50 0.68 0.46 0.14 0.21 0.086 30.3 45.8 16.6
stationary all 29 1.84 0.59 0.63 0.74 0.28 0.087 0.12 0.08 35.2 35.2 221
drif simple 27 5.18 0.69 3.31 0.76 0.85 0.085 0.64 0.092 11.3 72.6 12.5
riung complex 57 1.86 1.31 0.30 0.34 0.23 0.11 0.028 0.045 62.0 13.8 20.0

Values are medians of distributions plotted in Fig. 6. Simple and complex cell results were indistinguishable for m-sequence and statianeegpgnasies
and are therefore combined. Medians of distributions that vary significantly with stimulus type are shaded gray05, Kruskal-Wallis nonparametric
ANOVA, simple- and complex-cell drifting-grating responses separately compared with m-sequence and stationary-grating respaomsies).of neurons in
data setf: formal; C: contrast-specificSP. spatiotemporal pattern-specifiENF. confounded.

tion. Indeed, across all neurons and stimulus types, theFigure 7 shows the responses of a real simple tat) @nd
confounded information rate typically accounts for 10-32%s corresponding model neurohdtton) to the three types of

(interquartile range) of the formal information rate. stimulus, each presented at unit contrast. Despite the rudimen-
tary nature of the model, it successfully captures many of the
Information transmission in a model V1 simple cell features of the real data. In particular, the model replicates the

. . logation of the peaks in the m-sequence response and the
The model described here considers the responses of Adistence of a transient period of elevated firing rate at the

simple cell to derive from a linear spatiotemporal filter 1EOlbe inning of the stationary-grating response. Notable differ-
lowed by a static rectifier and a Poisson spike generator (seneges especially in the grating responses, do exist. For exam-
METHODS). The shape and size of the filter, as well as th%é?, the transient portion of the stationary-grating response is
parameters of the rectifier, are drawn from the responses %efer in the real data than in the model, and the drifting-

actual neurons to the long m-sequence stimulus at unit contr rdating response is narrower in the model than in the real data.
esponses of sl neurons 10 various Kids ofSmul (CHTe0ve e tnct b perad of ver o frng rate et
randini et al. 1996), even though it is well known that V y P

neurons, even simple cells, display many features that arenéf gcr)gr?é)elsg;a;gngoltssil?sEg;tnfror?véhnetmic;o{ﬁlesnr%sapeclmyr;seé;rrlﬁes_e
captured in the model, including nonlinearities of spatioteny- P 99 P

poral summation (Movshon et al. 1978a) and contrast respo@ rs are fit to the linear part of the m-sequence response and not

: $he grating responses.
(Albrecht and Hamilton 1982). The similarities and differences between real and model

Similar models have been used in the past to describe

200 m-sequence stationary driing  f€sponses are also reflected in the rates of information trans-
I mission. The m-sequence response of the real neuron transmits
@ o M I._‘
2 ) W n W NS formal contrast pattern confounded
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FIG. 7. Comparison of model and simple-cell responses. Cell 35/1s, un
contrast stimuli. Model parameters are derived from the m-sequence respoPse - — é
of the real neuron. The model consists of a linear spatiotemporal filter, a static
rectifier, and a Poisson spike generator (seeHoDs). Each panel shows o
response histograms (7.4-ms bins) atop raster diagiaeftsflickering binary FIG. 8. Summary across 11 model neurons of information rates in the
checkerboard pattern modulated by an m-sequence. The entire sequence flesg®nses to three types of stimulus. Boxes represent the 25—75% range of the
60.6 s, and only the spikes that occurred ia fhs period between 1 and 2 sdata, whiskers represent the 5-25% and 75-95% range, and horizontal lines
after the start of the stimulus are shown. 16 trisM#ddle: stationary sinusoidal represent the median$op information rate, bits/sMiddle: information rate,
grating presented at the cell's optimal orientation, spatial frequency, ahiis/spike.Bottom attribute-specific information rate as a percentage of the
spatial phase. The stimulus appearsrae Oand is removed 237 ms later. 100 formal information rateFirst column formal information rate Second col-
trials. Right drifting sinusoidal grating presented at the cell’s optimal orienumn contrast-specific information rat&hird column pattern-specific infor-
tation, spatial frequency, and temporal frequency (8.4 Hz). 256 trials. mation rate Fourth column confounded information rate.
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TABLE 3. Summary of five-contrast formal and attribute-specific information rates

Median Information Rate

bits/s bits/spike percent
Stimulus F C SP CNF F C SP CNF C SP CNF
m-sequence 13.1 &5 9.5 0.10 1.9 0.52 14 0.015 27.1 72.4 0.77
stationary 13.6 9.1 85 0.077 0.86 0.63 0.23 0.004 73.2 26.5 0.55
drifting 21.7 6.4 13.6 0.23 2.1 0.62 1.4 0.022 30.1 69.2 1.3

Data forn = 11 model neurons. Medians of distributions plotted in Fig. 8. Compare to the data in Table 2. Medians of distributions that vary significantly
with stimulus type are shaded gray € 0.05, Kruskal-Wallis nonparametric ANOVA). Abbreviations as in Table 2.

information at a rate of 15.5 bits/s (1.6 bits/spike), comparéd response to high-contrast, drifting-grating stimuli. The same
with 19.2 bits/s (2.5 bits/spike) for the model. In response ®iimuli evoke the lowest information rates in complex cell
the stationary and drifting-grating stimuli, the real neuroresponses because those responses are not modulated in time.
transmits 24.2 bits/s (0.43 bits/spike) and 49.4 bits/s (0.92

bits/spike) of information, respectively, whereas the modglo cortical neurons transmit information at high

neuron transmits 20.8 bits/s (0.42 bits/spike) and 90.8 bitg/slow rates?

(1.2 bits/spike). It should be noted that the information in this

real neuron’s response to the drifting grating is at the top of the©OUr results are surprising in light of the fact that compari-
;:Lgns of information rates in a variety of neural systems suggest
t

range of such information rates, even among simple ce o i ;
(Fig. 3) at stimuli that change rapidly in time drive neurons to encode
S lpformation at rates often more than an order of magnitude

Figure 8 and Table 3 show that these results generalize to . ; e
population of 11 neurons that we modeled: the results sho her than the correspondlng rates for slowly changing stimuli
Bura@s and Albright 1999). Based on the formal and at-

be compared with Fig. 6 (noting the sometimes-different ve

tical scales) and Table 2. Typically, the information rates ¢fiPUte-Specific information rates calculated for V1-neuron re-
model responses are higher than the information rates of regPnSes to different types of stimulus, it is likely that the major
responses. As is the case with the simple cell modeled in Fi§iuse Of this discrepancy is not simply the rate of variation of
7, and with real simple cells, the model neurons convey tHa€ Stimulus, as some have argued (Basaand Albright
most information about drifting gratings. The low spatiotem:299)- MoLeover, the cause Idoes hot lie in tﬂe number of
poral pattern-specific information rates in the modeled statiofignsient changes in a stimulus, because suc transients are
ary-grating responses correspond to the low spatiotempofpent from drifting gratings (which evoke the highest infor-
pattern-specific information rates in the responses of real ndtion rates in simple cells) but present in both m-sequences
rons to these stimuli. However, unlike in real neurons, tH&/hich evoke the highest information rates in complex cells)
contrast-specific information rate conveyed by the model nedf?d Stationary gratings. .
rons does depend significantly on the type of stimulus. . Instea_d, the results suggest that the magnitude of a measured
The most striking difference between real and model rglfqrmatlon rate has a comphcated dependenc;e on the type of
sponses is in the confounded information rate, which is neaggnbute-spemflc information that is being estimated and the

zero in model responses. In model responses, contrast gsitivity of the neuron under study to that stimulus attribute.

spatiotemporal pattern can be independently determined fro@ €xample, a stimulus (such as a drifting grating) that con-
sts of rapid changes in spatial phase evokes high spatiotem-

the response time course and depth of modulation. The pro 3 . U
ral pattern-specific information rates in simple cells and low

inence of the confounded information in real responses sug= < e . .
tiotemporal pattern-specific information rates in complex

gests that an interaction between the coding of contrast | imul h heck h
spatiotemporal pattern constitutes one of the primary diffef€!S, buta stimulus (such as an m-sequence checkerboard) that
ences between real and model neurons. consists of rapid changes in luminance evokes indistinguish-

able information rates in simple and complex cells.

DISCUSSION Information rates and channel capacity

We used three types of stimulus to evaluate the ways inThe information rates for complex cells can be compared
which the spatiotemporal features of a stimulus affect the rategh estimates of the channel capacities of complex cells in the
at which V1 neurons transmit information. The first stimulus isupragranular layers of alert monkeys, which range from 6.7 to
based on pseudo-random m-sequences and appears as a ra@iflligits/s (Wiener and Richmond 1999). The channel capacity
modulated checkerboard pattern, in which the spatial pattesna measure of the maximum information rate that a commu-
changes every 14.8 ms. The second stimulus is a sinusoidiaations channel can transmit (Cover and Thomas 1991). In
grating at the cell’s optimal orientation, spatial frequency, andsponse to the stimuli used here, which differ from the stimuli
spatial phase; it appears abruptly and is removed 237 ms latesed by Wiener and Richmond, complex cells transmit infor-
The third stimulus is a sinusoidal grating that drifts at the cellimation at approximately half of this estimated channel capac-
optimal temporal frequency and has the same orientation atd Since our stimuli were not designed to evoke information
spatial frequency as the stationary grating. We find that \fates that approach the channel capacity, we consider this result
simple cells typically transmit information at the highest rate® be rather impressive.
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Relevance of the confounded information straightforward to do this by an extension of the direct method
for visual processing to the responses of multiple neurons recorded together.

Our use of the direct method to calculate both formal ang)
attribute-specific information rates reveals a hitherto-over-
looked aspect of the information conveyed by V1 neurons. WeWe evaluated the degree to which a simple model of V1
found that a substantial fraction of the information (typicallgimple cells can replicate our experimental results. This model
10-32%) cannot be attributed to either contrast or spatiotetd-quasi-linear and therefore fails to account for many of the
poral pattern alone. This portion of the information, which witeresting nonlinearities displayed by V1 neurons, particularly
call confoundedarises from an interdependence of contra§Pmplex cells (Movshon et al. 1978a) but also, to some extent,
and spatiotemporal pattern in generating neuronal respons@&ple cells (DeAngelis et al. 1993; Mechler et al. 1998a). In
Confounded information is not present in the model responsB&rticular, the model does not account for contrast-specific
where there is no such interdependence fseenpix). In other nonlinearities (Albrecht and Hamilton 1982; Carandini et al.
words, the amount of confounded information quantifies tHg2/P: Déan 1981). We find that this model significantly

effects of changes in the spatiotemporal profile of the stimuigyerestimates the magnitude of formal and attribute-specific
INformation rates, in particular the contrast-specific informa-

e eyl s i statlonany-graing responses (compare i, © (o

1973; Tolhurst and Movshon 1975). Such changes ma 'Eg; 6). Most 5|gn|f|c_antly_, the model responses contain no
) P ’ A , 9 Y O6nfounded information, in stark contrast to the prominent

medlated by yarlatlon in the_ adaptive sFa_\te ofa neuron undgbnfounded information found in real responses.

different spatiotemporal stimulus conditions, particularly be- |4 earlier work (Reich et al. 2000a), we used a spike train

tween rapidly varying stimuli, like the m-sequence checkefasampling technique to show that, for V1 neurons, the details

board, and gratings (Gaska et al. 1994). of spike generation do not have a large effect on the magnitude

Another way in which contrast and spatiotemporal pattedt formal information rates. That result, together with addi-
can potentially interact is through a refractory period that ifonal resamplings done in connection with the present study
intrinsic to a neuron’s spike generating mechanism but th@fot shown), indicates that the discrepancies between real and
influences the responses to both stimuli. However, we do mabdel information rates (including confounded information)
believe that refractory periods contribute significantly to thare not likely to be due to the assumption of a Poisson spike
confounded information reported here. This is because as mgemerating mechanism in the model. Moreover, these discrep-
or more confounded information is present in data sets thaicies are also not likely to be due to cell-to-cell variation in
have been resampled to effectively eliminate the refractotiye shape of the linear filter or kernel, since such variation is
period while preserving the overall rate modulation and dist$imilar for real and model responses and in both cases has little
bution of spike counts per trial (Reich et al. 2000a). impact on information rates.

Whatever its basis, the finding that a substantial portion of Instead the discrepancies between real and model responses
the total information is confounded means that downstreammost certainly relate to the fact that real responses to stimuli
neurons cannot use all of the information in the responsestbét differ only in contrast are not simply related by a scaling
their inputs to draw conclusions about either one of tho$actor but rather depend strongly on factors such as spatiotem-
stimulus attributes in isolation. But perhaps the task of thmoral pattern and the level of adaptation (Albrecht 1995; Bonds
visual system is not simply to decompose stimuli into compd991; Ohzawa et al. 1982). It is possible that a single mecha-
nents relating to contrast and spatiotemporal pattern. For e«sm—nonlinear suppression that is sometimes caltedrast
ample, if we had determined attribute-specific informationormalization(Albrecht and Geisler 1991; Heeger 1992)—can
along the visual system’s preferred axes, we might not hagecount for all of these discrepancies but only if the mechanism
found any confounded information. is sensitive to the spatiotemporal parameters of the stimulus

Alternatively, or perhaps in addition, it is possible that thand can affect the dynamics of the response. Indeed, such
messages that correspond to the confounded information woaldchanisms are known to exist in the retina (Shapley and
separate into contrast- and spatiotemporal pattern-specifictor 1981), lateral geniculate nucleus (Sclar 1987), and pri-
components if the concurrent responses of other neurons tothary visual cortex (Reid et al. 1992). The sensitivity can be
same stimulus were considered (deCharms 1998). It is knowimtyinsic to the suppressive mechanism itself or, alternatively,
for example, that spikes that are synchronous across two gaght be derived from a pooling of the responses of other V1
LGN neurons can convey additional information beyond whateurons with different stimulus-response properties.
can be obtained from each neuron’s individual response (Dan
et al. 1998), and similar results have been obtained in Vario{‘s‘ﬁmmary
cortical systems (Maynard et al. 1999; Riehle et al. 1997;

Vaadia et al. 1995). However, it is important to point out that The major finding in this paper is that V1 neurons transmit
simply averaging together the responses of redundant neurdasnal information at high rates for a variety of stimulus types
or even neurons that have some degree of correlated variabiiityd that the amount of attribute-specific information is much
but identical average responses (Shadlen and Newsome 19B8)er. Contrast-specific information rates depend little on
would not help to disambiguate the confounded informatiostimulus and cell type, whereas spatiotemporal pattern-specific
Thus, whether concurrent decoding of responses of a clusteirdbrmation rates depend strongly on these factors. A substan-
neurons can reduce the amount of confounded informationtiil fraction of the formal information cannot be attributed to
an issue that must be resolved experimentally. It is relativedyther contrast or spatiotemporal pattern if only the responses

hat do we expect from a simple model?
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of single neurons are taken into account, and this confoundelere§ is theith set of stimuli andR is the set of responses. By
information is likely to be a result of dynamic interactionsubstitution ofEgs. Aland A2 into Eq. Ad4and using the fact that
between stimulus attributes during response generation. FifS1S) = H(S) + H(S,) (sinceS,andS, are independent), we find
ther work may determine the degree to which the confound &Rt

information can be sorted into stimulus-specific components on C = H(SIR + H(§IR) — H(S,S,R) (A5)
the basis of the simultaneous responses of groups of NeurQns, - bstitution oEq. A3into Eq. ASyields

APPENDIX = > p(siln) log p(sifr) — >, p(slr) log p(sylr)

In this appendix, we make rigorous the statement that there is noc = Z pn)|  ses €S (AB)
confounded information if and only if a neuron’s response depends = + E E p(sy,sr) log p(s;,sr)
independently on the two stimulus attributes (in our experiments, SES 9ES

contrast and spatiotemporal pattern). We assume that stimuli are . . . .
defined by an independent choice of a stimuiuut of a sets, Erach p(r) is a probability and therefore nonnegative. The term in

: : : brackets inEq. A6 must also be nonnegative, since it is the mutual
(corresponding to the 1st attribute) and a stimudusut of a setS, . . . ' o
(corresponding to the 2nd attribute). A corollary of this demonstratidﬂfuotggfti'gf%ror;?ti%nnd izngr:\é?nbfeh(?eggcgr:;?\ncz%g ?ggvggagélgeihcgmas
is that there is no confounded information if and only if, for eaceg'ggl). ThusC = 0 if and only if the term in brackets iig. ABis zero

possible response, there is no mutual information between th that ith babili But this is t
conditional distributions $,|r} and {S,|r}. This is in turn equivalent .]?r ea/erylr it ? oceurs V\I" ”,O”Zerﬂ %roTﬁ 'I'%r)' ud't'ls IS Iue
to the statement that, for each responsthe conditional probability ' 21 ON %/hl ’ oreveryr, I(S,|r; SJr) = 0. This latter condition in turn
p(s,,S,|r) is a separable function sfands,: p(s,.s,|r) = p(s,rp(s,r). r€dulres tha

For notation, we follow the conventions of Cover and Thomas p(susr) = p(si|r)p(seIr) (A7)

(1991). The mutual information between two variab¥eandY is ) ) )
meaning thap(s,,s,|r) is a separable function afands,.

1(X;Y) = H(X) + H(Y) — H(X,Y) (A1) It is straightforward to show thaEq. A7 is equivalent to our
independence condition, given that the stimulus probabilities are

whereH(X) andH(Y) are, respectively, the entropies XfandY, and independent, i.ep(s,,S,) = p(s,)p(s,). By Bayes's rule

H(X.,Y) is the joint entropy ofX and Y. For example, ifx € X is

distributed according to the probabiliti , then
9 P o) b(susir) = p<r|s1,sz>(p:<)s1>p<s2> )
H(X) = — >, p(X) log p(x) P
xex CombiningEgs. A7andA8 and the fact thap(s|r)p(r) = p(r|s)p(s),
we find that

By the Chain Rule for entropies
p(r|s)p(r|s2)
p(r)

precisely the independence condition.

H(X,Y) = H(X) + H(Y|X) (A2) p(r]sus,) = ) (A9)

where H(Y|X) denotes the conditional entropy &fgiven X and is
defined as

H(YIX) = = 25 9 2, Py log py) (A3)  Examples
XEX yey
We now discuss eight simple examples to illustrate the concept of
confounded information. In these examples, we consider systems with
two independent inputs, each of which can take a value of 0 or 1 with
C=1(RS,S) — I(R;S) — (RS, (A4) equal probability, and a single output. There are therefore four dif-

Here,p(y|x) is the conditional probability of, given the occurrence
We define the confounded informati@as

TABLE 4. Eight simple systems that feature two binary inputs and different output distributions

Stimuli Responses [Conditional Probabilipgr|s;,s,)]

Sy S, 1 2 3 4 5 6 7 8

0 0 0(1) 0(1) 1(1) 0(1) 0(0.5) 0(1) 0(1) 0(1)
1(0.5)

0 1 0(1) 1(1) 0(1) 0(1) 0(1) 0(0.5) 1(1) 1(1)

1(0.5)

1 0 1(1) 0(1) 0(1) 0(1) 0(0.5) 0(0.5) 1(1) 1(1)
1(0.5) 1(0.5)

1 1 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 2 (1) 3(1)

Information (bits)

1(S;R 1 0 0 0.31 0.19 0.19 0.5 1

1(S;R) 0 1 0 0.31 0 0.19 0.5 1

1(SLS;R) 1 1 1 0.81 0.5 0.5 15 2

CNF 0 0 1 0.19 0.31 0.12 0.5 0

The conditional probability of each possible output is given in parentheses next to the output value itself. Information is calculated by theetetbdds
in the ApPENDIX. |(X;Y) refers to the information between two variableandy, and CNF refers to the confounded information.
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ferent input configurations of the stimus,(s,): (0,0), (0,1), (1,0), and ALBRecHT DG AND GEISLER WS. Motion selectivity and the contrast-response

(1,1). In the first six examples, the output is also binary, whereas in thdunction of simple cells in the visual corte¥is Neurosci7: 531-546, 1991.

last two examples, the output can take on more than two distirfStBRECHT DG AND HamiLTON DB. Striate cortex of monkey and cat: contrast

values. The example systems are displayed in Table 4, together witfgsponse function] Neurophysiol8: 217-237, 1982.

the corresponding information values. BAarR W aND KocH C. Temporal precision of spike trains in extrastriate cortex
In example 1the response is independentsyfand is completely _ ©f the behaving macaque monkeyeural Compus: 1185-1202, 1996.

determined bys,. In example 2the response is independentsypfand BerrY MJ Il AnD MEISTERM. Refractoriness and neural precisidriNeurosci

is completely determined kg;. Of the 2 bits of entropy in the stimuli, 18: 253)%—%/311, 199%K M M. The struct g ision of

only 1 bit is conveyed as information, but it is transmitted perfectl)?ErRF:;;] Al spike :‘;ﬁg‘groc N/;TIDAC:&STSES USA 4ef Z;lﬁ_usri 1‘2” 18@‘97‘:'5'0” 0

Moreover, the response to one stimulus is independent of the valug, P ; K '

. . . 9\ EK W, REKE F, RUYTER VAN STEVENINCK RR DE, AND WARLAND D.
the other, so that there is no confounded information. Reading a neural cod&cience252; 1854—1857, 1991.

In example 3the system responds Wita 1 if the twoinputs are  gonpsAB. Temporal dynamics of contrast gain in single cells of the cat striate
identical, and wit a O if they are different. There is still 1 bit of cortex.Vis Neurosci6: 239-255, 1991.
information transmitted, but in this case the response to one stimuBisacas GT anp ALBRIGHT TD. Gauging sensory representations in the brain.
depends completely on the value of the second, so that all thdrends Neurosc22: 303-309, 1999.
information is confounded—that is, there is no information transmiBURACAS GT, Zapor AM, DEWEESE MR, AND ALBRIGHT TD. Efficient dis-
ted about either stimulus unless the value of the other stimulus ifimination of temporal patterns by motion-sensitive neurons in primate
KNown. visual cortex.Neuron20: 959-969, 1998.

. . ARANDINI M, BArRLow HB, O’KEEFE LP, PoirRsoN AB, AND MovsHON JA.
In example 4the system responds only if the values of both stimull Adaptation to contingencies in macaque primary visual coR@&xos Trans

are 1. Here, the response is symmetric in the two stimuli, so thaF th&; soc Lond B Biol S&52: 1149-1154, 1997a.

response to each stimulus alone conveys the same amount of infzanpini M, HEEGERDJ, AND MovsHON JA. Linearity and normalization in

mation. However, because the response depends jointly on the valugsmple cells of the macaque primary visual cort@xNeuroscil7: 8621—

of both stimuli, some of the information—23% of the total—is con- 8644, 1997b.

founded. CARANDINI M, MECHLER F, LEONARD CS, AND MovsHON JA. Spike train
In the fifth and sixth examples, the system’s response again has ghcoding by regular-spiking cells of the visual cortéxNeurophysiol76:

complicated dependence on the two stimuli, so that the confounded425-3441, 1996. _ _

information is nonzero. llexample Sthe system responds at rando ARLTON AG. On the bias of information estimatézsychol Bull71: 108109,

if s, = 0, and identically reflects, if s, = 1. Confounded information 1969.

; N . . CoverR TM AND THomAs JA. Elements of Information ThearyNew York:
arises because although no information is conveyed abgute Wiley, 1991. oA

response t@, is more informative ifs, is known. Inexample 6the  pay Y, ALonsoIM, Usrey WM, anp Reip RC. Coding of visual information
system responds at random if the two stimuli are different and reflectgy precisely correlated spikes in the lateral geniculate nuclbasure
their shared value if they are the same. The response thus conveysuroscil: 501-507, 1998.
equal amounts of information about the two stimuli, but there is stlean AF. The relationship between response amplitude and contrast for cat
some confounded information. striate cortical neuroned. Physiol (Lond)318: 413—427, 1981.
The first six examples illustrate that confounded information cePFANGELIS GC, GHoSEGM, Orzawa 1, AND FREEMAN RD. Functional micro-
arise even in very simple systems, so long as the conditional r‘:.‘Spongr.)i(gan|zat|on of pn_ma.ry visual cortex: receptive field analysis of nearby
robabilities are separable in the two stimuli, asiq. A9.The last heurons.J Neuroscil9: 40464064, 1999,
p P . . » A= - DEANGELIS GC, OHzawa |, AND FREEMAN RD. Spatiotemporal organization of
two examples demantrate that Fhls req_wrement IS _nOt equivalent to §imp|e—cel| receptive fields in the cat’s striate cortex. Il. Linearity of tem-
requirement that stimulus encoding be linear or addi&xample 7s poral and spatial summatiod.Neurophysiob9: 1118-1135, 1993.
a system that simply sums the values of the two stimuli (and thus h&&narvs RC. Information coding in the cortex by independent or coordi-
three possible responses); the confounded information in this systemated populationsProc Natl Acad Sci USA5: 15166-15168, 1998.
is 33% of the total. On the other hanelxample 8is a system that DEWeeseMR anD MeISTERM. How to measure the information gained from
generates distinct responses to each of the four stimuli, but its reone symbolNetwork10: 325-340, 1999.
sponse is also additive in the sense that the response to any paffi@PN B AND TissHiRanI RJ. An Introduction to the BootstragBoca Raton,
stimuli is the sum of the responses to two pairs of stimuli that add yp/ - Chapman & Hall/CRC Press, 1998.

; . . ASKA JP, AcoBsoN LD, CHEN HW, AND PoLLEN DA. Space-time spectra of
to the same input. For instance, the response to (1,1) is equal to omplex cell filters in the macaque monkey: a comparison of results ob-

sum of the responses to (1,0) and (0,1). As with any system that mapgined with pseudowhite noise and grating stimvlis Neuroscill: 805—

each input to a distinct output, even a system that is not additive at allgo1, 1994,

the system irexample 8oes not produce confounded information. Gawne TJ, Kiaer TW, AND RicHMonD BJ. Latency: another potential code for
Thus it is not surprising that we observe substantial amounts offeature binding in striate cortex. Neurophysiol76: 1356—1360, 1996.

confounded information in real neuronal responses: real respon§e8sHONED, WIENER MC, LATHAM PE,AND RictMonD BJ. Coding strategies

depend in a complicated way on both contrast and spatiotempordh monkey V1 and inferior temporal cortice3. Neurophysiol79: 1135-

pattern. In the simple examples considered here, in fact, only system&l44, 1998. _ . . .
that ignore one or the other stimulus, aseramples land 2, or HeecerDJ. Normalization of cell responses in cat striate cortég.Neurosci

systems that respond differently to each stimulus pair, @xample 9: 181-197, 1992.

f h inf . b both sti ||:_LLER J, HErTz JA, KiaER TW, AND RicHmonD BJ. Information flow and
8, can feature responses that convey information about both stimu {emporal coding in primate pattern visiahComput Neurosc: 175-193,

without confounding them. 1995,
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