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Reich, Daniel S., Ferenc Mechler, and Jonathan D. Victor.Formal
and attribute-specific information in primary visual cortex.J Neuro-
physiol85: 305–318, 2001. We estimate the rates at which neurons in
the primary visual cortex (V1) of anesthetized macaque monkeys
transmit stimulus-related information in response to three types of
visual stimulus. The stimuli—randomly modulated checkerboard pat-
terns, stationary sinusoidal gratings, and drifting sinusoidal gratings—
have very different spatiotemporal structures. We obtain the overall
rate of information transmission, which we callformal information,
by a direct method. We find the highest information rates in the
responses of simple cells to drifting gratings (median: 10.3 bits/s, 0.92
bits/spike); responses to randomly modulated stimuli and stationary
gratings transmit information at significantly lower rates. In general,
simple cells transmit information at higher rates, and over a larger
range, than do complex cells. Thus in the responses of V1 neurons,
stimuli that are rapidly modulated do not necessarily evoke higher
information rates, as might be the case with motion-sensitive neurons
in area MT. By an extension of the direct method, we parse the formal
information into attribute-specificcomponents, which provide esti-
mates of the information transmitted about contrast and spatiotempo-
ral pattern. We find that contrast-specific information rates vary across
neurons—about 0.3 to 2.1 bits/s or 0.05 to 0.22 bits/spike—but
depend little on stimulus type. Spatiotemporal pattern-specific infor-
mation rates, however, depend strongly on the type of stimulus and
neuron (simple or complex). The remaining information rate, typically
between 10 and 32% of the formal information rate for each neuron,
cannot be unambiguously assigned to either contrast or spatiotemporal
pattern. This indicates that some information concerning these two
stimulus attributes is confounded in the responses of single neurons in
V1. A model that considers a simple cell to consist of a linear
spatiotemporal filter followed by a static rectifier predicts higher
information rates than are found in real neurons and completely fails
to replicate the performance of real cells in generating the confounded
information.

I N T R O D U C T I O N

Recent studies of the responses of visual neurons to stimuli
with rich temporal structure, such as flickering checkerboard
patterns and drifting gratings that abruptly change direction,
have pointed to overall information transmission rates of be-
tween 5 and 100 bits/s (Berry and Meister 1998; Buracˇas et al.
1998; Reich et al. 2000a; Reinagel and Reid 2000; Ruyter van
Steveninck et al. 1997). The sensory systems analyzed in these
studies range from blowfly lobula plate to primate cortex. The
information calculations are based on thedirect method
(Ruyter van Steveninck et al. 1997; Strong et al. 1998), which

estimates the overall rate of information transmission in a set of
responses to a single stimulus.

Earlier studies on neurons in primary visual cortex, based on
slowly fluctuating stimuli, report information rates an order of
magnitude lower (Gershon et al. 1998; Heller et al. 1995;
Mechler et al. 1998b; Richmond and Optican 1990; Tolhurst
1989; Victor and Purpura 1996). These studies use a variety of
methods other than the direct method to calculate the informa-
tion rates in responses to sets of stimuli that vary along some
particular parameter, such as contrast or spatial pattern. All of
these methods calculate information as a measure of the degree
to which responses can be clustered into the appropriate stim-
ulus classes.

Comparing these and similar results, Buracˇas and Albright
(1999) argue that neurons, especially cortical neurons, more
effectively convey information about stimuli with rich tempo-
ral structure than about stimuli with simpler structure. This
argument is incomplete, however, because the two sets of
studies use qualitatively different approaches to measuring
transmitted information, both in terms of the richness of the
stimuli and in terms of the analysis method. It is therefore
impossible to draw conclusions about the types of stimulus that
evoke the highest information rates from such a comparison.
Here we link the results of these two sorts of studies by
recording the responses of V1 neurons to a battery of stimuli of
different spatiotemporal structure and by analyzing the re-
sponses in a uniform fashion (a variant of the direct method).
Our major finding is that the overall rate of information trans-
mission—which we dub formal information—does vary with
stimulus type but that responses to rapidly modulated stimuli
do not necessarily convey the most information, particularly in
the case of simple cells.

Next we draw a distinction between formal and attribute-
specific information rates. Formal information concerns all
aspects of the response that depend on the stimulus. Attribute-
specific information concerns only aspects of the response that
allow the discrimination between stimuli that differ in some
particular attribute, such as contrast, in the face of variation in
other attributes, such as spatiotemporal pattern. The attribute-
specific information is a measure of the degree to which
responses to different stimuli cluster according to a particular
stimulus attribute and is thus more comparable to the informa-
tion measured in the second type of study mentioned above. By
presenting each type of stimulus at multiple contrasts and
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appropriately modifying the direct method, we parse the formal
information rate into attribute-specific components relating to
contrast and spatiotemporal pattern. Here, spatiotemporal pat-
tern refers to a broad category of stimulus attributes that
includes temporal fluctuations as well as variations in spatial
phase.

Overall, we find that information about contrast is transmit-
ted at a significantly slower rate than information about spa-
tiotemporal pattern, although not for every type of neuron and
stimulus. The rate of contrast-specific information transmission
depends little on stimulus type. Contrast-specific information
rates estimated by the direct method are very similar to con-
trast-specific information rates estimated by a method based on
computing the distances between pairs of spike trains (Victor
and Purpura 1996).

We find that contrast- and spatiotemporal pattern-specific
information rates together account for less than the full formal
information rate—typically 68–90%. This indicates that a sig-
nificant portion of the information in V1 responses relates to a
confoundedrepresentation of contrast and spatiotemporal pat-
tern by which the spatiotemporal pattern of the stimulus is
encoded in a contrast-dependent fashion and the contrast of the
stimulus in a spatiotemporal pattern-dependent fashion. An
observer who is only aware of the portion of a single neuron’s
response that contains the confounded information cannot draw
conclusions about contrast or spatiotemporal pattern in isola-
tion. The possibility still exists—though it is not addressed in
this paper—that the confounded information may be parsed
into individual components by considering the simultaneous
responses of additional neurons.

We ask whether a basic model of a V1 simple cell can
account for our results. This model consists of a linear spatio-
temporal filter, which we derive from the responses of a real
neuron, followed by a static rectifier and a Poisson spike
generator. The responses of such a model to the same stimuli
presented to real neurons transmit formal information at rates
comparable to, but higher than, those of real responses. How-
ever, unlike in the responses of real neurons, all of the formal
information in model responses can be parsed into attribute-
specific components: the model does not confound the encod-
ing of contrast and spatiotemporal pattern. We have shown that
this discrepancy is not due to differences in the underlying
dynamics of spike generation, which do not strongly determine
information rates (Reich et al. 2000a). Instead, the discrepancy
occurs because this basic model lacks certain features of real
cortical neurons, such as contrast gain control (Ohzawa et al.
1982), contrast normalization (Albrecht and Geisler 1991;
Heeger 1992), and pattern gain control (Carandini et al.
1997a), by which variations in one stimulus attribute can affect
the encoding of another.

Portions of this work have appeared in abstract form (Reich
et al. 2000b).

M E T H O D S

We present data from recordings of individual neurons in the
primary visual cortices of sufentanil-anesthetized macaque monkeys.
Our detailed experimental procedures have been described elsewhere
(Reich et al. 2000a; Victor and Purpura 1998). We use three types of
stimulus: flickering checkerboards modulated by m-sequences, drift-
ing sinusoidal gratings, and transiently presented, stationary sinusoi-
dal gratings. All stimuli are presented on a Tektronix 608 monitor

with a mean luminance of approximately 150 cd/m2 and a frame rate
of 270.329 Hz.

M-sequence stimuli

The principles and methodology of the m-sequence checkerboard
stimuli have been extensively described (Reich et al. 2000a; Reid et
al. 1997; Sutter 1992). In the experiments reported here, we use two
such stimuli: a 12th-order m-sequence (4,095 stimulus frames) mod-
ulating 249 stimulus checks and a 9th-order m-sequence (511 frames)
modulating 25 checks. In both cases, each frame lasts for 14.8 ms
(four monitor refreshes), so that the total 12th-order stimulus lasts
60.6 s and the 9th-order sequence lasts 7.6 s. Individual checks
typically span 163 16 arc-min of visual angle and are arranged in a
square. The size and orientation of the array are sometimes adjusted
based on the neuron’s spatial-frequency preferences, but only in cases
where the adjustment is expected to produce a dramatically larger
response.

The 249-check (long) stimulus is surrounded by a black circular
aperture, and the 25-check (short) stimulus is surrounded by a uniform
field at the mean luminance. In both stimuli, every check is modulated
by the same m-sequence, but the starting point in the sequence varies
from check to check. The minimum offset between starting points is
237 ms (64 samples of the m-sequence). The use of m-sequences in
this way ensures that there are essentially no pair-wise correlations in
time within individual checks, or in space across checks, that are
relevant to the neuron’s response. The long stimulus is presented at a
single contrast (1), and the short stimulus is presented at each of five
geometrically spaced contrasts (0.0625, 0.125, 0.25, 0.5, and 1). Both
standard and contrast-inverted (reversed dark and light checks) se-
quences, each repeated 12–16 times, are presented in the long stim-
ulus. Standard and inverted sequences within a repeat are separated by
a period of 23 s during which a uniform field at the mean luminance
is presented; repeats are separated by 18 s. For the short stimulus, no
inverted sequences are presented. Contrasts are presented in increas-
ing order, separated by uniform-field presentations lasting 10 s, and
the entire of set of contrasts is repeated 25–100 times with 10 s
between repeats.

Drifting-grating stimuli

We use “optimal” sinusoidal gratings with spatial frequency, tem-
poral frequency, and orientation chosen to maximize either firing rate
(for complex cells) or response modulation at the driving frequency
(for simple cells) (Skottun et al. 1991). For simultaneously recorded
neurons, we optimize the gratings for at least one of the cells, usually
the one with the most distinct extracellularly recorded waveform
(since this is the neuron most easily monitored during the experiment).
The parameter choices based on the response of this cell are likely to
be similar to the parameters that would have been chosen for the other
simultaneously recorded neurons (DeAngelis et al. 1999), as we
occasionally verified empirically. We present the gratings for 4 s at
each of six geometrically spaced contrasts (0, 0.0625, 0.125, 0.25, 0.5,
and 1). We repeat the entire set of contrasts five to eight times, with
the order of contrast presentation randomized within blocks. For 4-Hz
gratings, this yields 80–128 stimulus cycles at each contrast. Within
each block, grating presentations at different contrasts are separated
by presentation of a uniform field of the same mean luminance for 8 s,
and blocks are separated by presentation of the uniform field for 13 s.

Stationary-grating stimuli

We present stationary sinusoidal gratings at the same spatial fre-
quency and orientation as the drifting gratings. The spatial phase of
the stationary gratings is the one that maximizes the neuron’s firing
rate in response to stationary gratings of unit contrast. For each
neuron, we present in increasing order either seven geometrically
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spaced (0, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1) or nine arithmetically
spaced (0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) contrasts.
Gratings replace a uniform field of the same mean luminance for a
period of 237 ms, after which the uniform field reappears for a
minimum of 710 ms. The amount of time between grating presenta-
tions increases as a function of the contrast of the preceding grating.
For example, the amount of off time following the 0.5 contrast
presentation is 2.84 s and following the 0.875 contrast presentation is
4.26 s. This strategy is used to approximate a uniform state of contrast
adaptation (Sclar et al. 1989) prior to the presentation of each different
grating. The entire series of contrasts is usually presented 100 times.
We analyze only spikes that occur between 30 and 300 ms after
stimulus onset.

Information rates

We use extensions of the direct method of calculating information
rates (Ruyter van Steveninck et al. 1997; Strong et al. 1998) to
evaluate the responses to all three types of stimulus. This method is
based on a comparison of the response variability across time to the
response variability across trials. The underlying principle behind the
approach is that the portion of variability that cannot be explained by
intrinsic variations in the response to a particular stimulus must
represent stimulus-related information.

Direct method

The straightforward application of the direct method, diagrammed
in Fig. 1A, evaluates what we call the formal information rate. The
spike train recorded during each trial is divided into time bins, and the
spike counts in each bin are tabulated. These spike counts are con-
sidered letters in the neuron’s response alphabet. Several letters in a
row constitute a word, and each word has a probability, possibly
stimulus-dependent, of being “spoken” by the neuron. In this paper,
we choose one-letter words (single time bins) because our data sets
are not typically large enough to obtain reliable multi-letter-word
information estimates. Based on others’ results in different systems
(Reinagel and Reid 2000; Strong et al. 1998), as well as on analysis
of a limited number of V1 neurons from which large amounts of data
were collected, we estimate that information rates are likely to differ
by at most 25% in the two cases, but that the qualitative results
(formal vs. attribute-specific information and amount of confounded
information) are not likely to change greatly.

We perform our calculations at a variety of bin (letter) sizes,
ranging from 0.9 to 59.2 ms. We choose the bin size that yields the
highest information rate. This choice is justified because the actual
information rate cannot decrease as the bin size decreases (Strong et
al. 1998), even though our information-rate estimates may not in-
crease because of limitations set by the amount of available data. It is
important to emphasize that the quantities estimated here are infor-
mation rates for brief samples of the responses (single bins or letters),
not the total information contained in an extended response. In gen-
eral, the conversion between information-rate estimates and informa-
tion estimates over extended responses is subadditive, in part because
the information encoded at different times in the response may be
redundant (DeWeese and Meister 1999).

From the set of binned spike counts, we extract two quantities. The
first, called thetotal entropy (HT), is a measure of the response
variability across time—that is, the uncertainty in spike count across
all bins. We calculateHT from the distribution of spike counts in
individual bins across all time and trials (represented by the light gray
rectangle in Fig. 1A). We obtain a direct estimate of the probabilities
pn that n spikes are observed directly from the spike count statistics.
We then apply Shannon’s formula (Cover and Thomas 1991) to obtain
the entropy

H 5 2O
n50

`

pn log2 pn (1)

The second quantity that we extract is thenoise entropy,which is
a measure of the response variability across trials at a fixed time—that
is, the uncertainty in spike count in bins at a particular time. Unlike
the situation with total entropy, which is derived from all bins taken
together, the number of noise-entropy estimates is equal to the number
of time bins in a single trial. The set of bin-specific entropies {Ha} is
obtained from the distribution of spike counts at fixed time binsa
across trials (dark gray in Fig. 1A) and Shannon’s formula. The
transmitted information is taken to be the difference between the total
entropy and the averaged noise entropy:I 5 HS 2 ^Ha&. Information
values are calculated in bits, which are normalized by the bin size to
obtain bits/s and by the total spike count to obtain bits/spike.

An important caveat of the direct method is that it is only sensitive
to fluctuationswithin an analyzed response. If there is little variation
in the local spike-count distribution during the course of a response,
then the direct method yields a low information rate. Such is the case
for complex cells when the stimulus is a drifting sinusoidal grating at
fixed contrast. Since complex cells respond to these stimuli primarily
by elevating their discharge rates (Skottun et al. 1991), the direct
method only detects information if the analyzed response includes
both background and stimulus-driven firing, because the appearance

FIG. 1. Direct methodof information-rate estimation. Stimulus-related in-
formation I is calculated as the difference between the response variability
across time (total entropy, HS or H●,●) and the response variability across trials
or stimulus conditions (noise entropy). A: straightforward application of the
direct method to multiple trials of a single stimulus in which the noise entropy
is calculated as the average entropy in each bin (Ha) (Ruyter van Steveninck
et al. 1997).B: modification of the direct method for calculation of attribute-
specific information in an experiment with multiple contrasts. The total entropy
H●,● is unchanged, but the noise entropy depends on the particular type of
information being estimated (formal or attribute-specific).
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of the stimulus causes a change in firing rate. In this chapter, the
unit-contrast drifting-grating responses, unlike the unit-contrast sta-
tionary-grating responses, do not include any period of background
firing. In the past, the direct method has always been applied to the
responses of neurons to rapidly varying stimuli, which typically evoke
a wide range of firing rates that fluctuate over time (Buracˇas et al.
1998; Reinagel and Reid 2000; Ruyter van Steveninck et al. 1997).
However, there is no a priori reason to limit the application of the
direct method to rapidly varying stimuli, and we will show that the
method can yield useful results even when applied to other sorts of
responses.

Attribute-specific information

The formal information rate calculated by the direct method eval-
uates the overall rate of information transfer about all time-varying
aspects of the stimulus. It does not evaluate the rates at which
information about individual stimulus attributes is transmitted without
the confounding influence of other attributes. We refer to these latter
quantities as the attribute-specific information rates, and we now
describe an extension of the direct method that allows us to estimate
them. In our experiments, we concentrate on contrast and spatiotem-
poral pattern, but the idea can be applied to any situation in which two
(or more) attributes are varied independently. As used here, spatio-
temporal pattern is an omnibus term that refers to aspects of the
stimulus that do not change as the contrast is varied. Our stimuli are
completely defined by contrast and spatiotemporal pattern: indeed,
each stimulus is defined by a spatiotemporal pattern and a contrast
value by which it is multiplied.

As shown in Fig. 1B, attribute-specific information is calculated by
a procedure that elaborates on the one depicted in Fig. 1A. The total
entropyH●,● is an overall quantity that represents the uncertainty in
spike count across all bins in the entire data set—that is, across time,
trials, and contrasts—and is used in both formal and attribute-specific
information calculations. When restricted to a single contrast,H●,●

reduces toHT, the total entropy from Fig. 1A. [We use the dot (●)
notation to denote inclusion of either all time or all contrasts in the
information calculations.] To obtain the overall noise entropy used in
the calculation of formal information rates, we average together all the
estimates of the noise entropyHa,b taken from spike counts measured
on different trials at fixed times (a) and contrasts (b) (dark gray
region). This is a direct extension of the procedure used when only a
single stimulus type is presented, as in Fig. 1A, in which Ha,b is
equivalent toHa.

Attribute-specific information rates are obtained by averaging over
one or another stimulus attribute and over trials. Intuitively, by ig-
noring the value of one stimulus attribute, we are considering stimulus
variations along the ignored attribute to be a source of “noise.” This
potentially adds variability to the spike count and could reduce the
ability of stimulus-induced variations in spike count to transmit in-
formation about the nonignored attribute. To obtain the contrast-
specific noise entropyH●,b, we consider spike counts recorded at
contrastb, regardless of time bin or trial number (medium gray), and
then average those entropy estimates across contrasts. This essentially
represents the uncertainty in spike count at each contrast, averaged
across all contrasts. The contrast-specific information is then the
difference between the total entropy and the averaged contrast-spe-
cific noise entropy:H●,● 2 ^H●,b&. To obtain the spatiotemporal
pattern-specific noise entropyHa,●, we average across time bins the
entropies derived from spike counts at timea, regardless of contrast
(light gray). This corresponds to the uncertainty in spike count at each
time relative to the stimulus, averaged across all times. The spatio-
temporal pattern-specific information is the difference between the
total entropy and the averaged spatiotemporal pattern-specific noise
entropy:H●,● 2 ^Ha,●&. The sum of the two pattern-specific informa-
tion rates cannot exceed the formal information except for measure-
ment errors, and equality can only hold under circumstances in which

the two attributes are independently represented. Proof of this state-
ment and further background concerning attribute-specific informa-
tion can be found in theAPPENDIX.

Bias in the information estimates

Because we only have access to a limited amount of data, our
estimates of the total and noise entropies are both subject to a
downward bias. This is a generic property of information estimates
from limited data sets (Carlton 1969; Miller 1955). Since the trans-
mitted information is the difference between these two entropies, the
resulting information rate will be either underestimated or overesti-
mated depending on the relative magnitude of the bias in the two
entropy estimates. When the probabilities of each word are directly
estimated from the observed probabilities, an asymptotic estimate
of the bias is (k 2 1)/2N ln (2), wherek is the number of distinct,
observed words (here, spike counts per bin) andN is the total number
of observations (Panzeri and Treves 1996; Victor 2000). BecauseN is
large for the total entropy (number of bins times number of trials), the
correction is quite small (for m-sequence responses, about 0.01%). On
the other hand, in the calculation of the individual bin-specific noise
entropies,N can itself be small (as low as 12 for m-sequences),
making the correction much larger (sometimes on the order of 10% or
more).

In many cases, particularly with short bins, only one distinct spike
count—zero—is observed. These bins contribute an entropy of 0 to
the averaged noise entropy, even with the asymptotic bias correction
(becausek 5 1). Because these bins are so common and because
entropy is a logarithmic function of probability, as inEq. 1, the noise
entropy is potentially severely underestimated. This can result in an
overestimation of the transmitted information. We address the prob-
lem of the zero-count bins by assuming that the noise entropy varies
slowly when the number of spikes is very low. This assumption allows
us to group several consecutive bins together to generate a single
estimate of the bin-specific noise entropy. Specifically, when we
encounter a bin with no spikes in any trial, we sequentially consider
subsequent bins until we find one that has at least one spike. For these
m bins, we calculate the noise entropy as described, applying the
analytic bias correction withN, the number of observations, equal to
m times the number of trials. We then assign this value of the noise
entropy to each of the bins that are grouped together in this way. The
final value of the noise entropy is again the average of the individual
bin-specific entropies, where some of those entropies have been
calculated by grouping several bins together. This grouping occurs
most commonly in the calculation of the formal noise entropy for
which the number of observations is simply equal to the number of
trials. The effective number of trials in the calculation of the spatio-
temporal pattern-specific noise entropy is higher because time bins are
grouped together across contrasts. The effective number of trials in the
calculation of the contrast-specific noise entropy is vastly higher
because time bins and trials are grouped together at a single contrast
so that we never encounter a bin with only one type of spike count.

We have verified that our assumption—that the noise entropy varies
slowly when the number of spikes is very low—allows us to obtain
accurate information-rate estimates for synthetic spike trains that are
examples of modulated (inhomogeneous) Poisson processes with
fewer than half the number of trials that would otherwise be required
(simulations not shown). Indeed, for long stimuli (such as the
m-sequences), accurate information estimates can sometimes be ob-
tained with as few as four trials of the stimulus—we typically have at
least 16. For briefer stimuli (such as the gratings), more trials are
required. Because real neuronal responses are not examples of mod-
ulated Poisson processes (Reich et al. 1998), we impose an additional
criterion to eliminate data sets that do not contain enough trials. In
particular, we insist that the formal information rate obtained from
half the data (randomly chosen) be within 10% of the corresponding
information rate obtained from the full data set. This requirement is
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quite strict and eliminates between 20–50% of the neurons recorded
with each stimulus type. The neurons that are retained tend to convey
information at slightly higher rates.

Finally, to obtain an estimate for the scatter of individual informa-
tion estimates, we use the jackknife procedure (Efron 1998). Specif-
ically, for each data set, we sequentially remove1⁄16 of the trials and
recalculate the information rates;1⁄16 is chosen because we have
access to only 16 trials for some m-sequence data sets. From the
resulting distribution of information rates, we estimate the standard
error of the information rate obtained from the full data set. The
jackknife estimate of the standard error is

sJ 5 ÎN 2 1

N
O
i51

N

@ Î i 2 ^ Î &#2 (2)

where N is the number of trials (16) andÎ i is the ith jackknife
information-rate estimate.

Simple-cell model

To help explain our findings about formal and attribute-specific
information rates—in particular, the confounded information rate (see
RESULTS)—we model a V1 simple cell as a linear spatiotemporal filter
the output of which is subject to a static nonlinear rectification and a
Poisson spike generating mechanism (Carandini et al. 1996). Rather
than assuming any particular form for the linear filter, we use first-
order kernels derived from responses of real V1 neurons to unit-
contrast m-sequence stimuli (Reich et al. 2000a; Reid et al. 1997;
Sutter 1992); the calculation of this kernel, as well as its normaliza-
tion, is extensively discussed in the references. The subset of 11
neurons modeled here includes five simple and six complex cells.
Complex cells, which often yield significant linear kernels (Reich et
al. 2000a), are modeled here in exactly the same way as simple cells.
However, because we only use the linear kernels in the model and
because the model does not include any full-wave rectification (Movs-
hon et al. 1978a), the model neurons derived from complex cells
respond like simple cells. Although we only model neurons with
robust linear kernels or receptive-field maps, we verified that these
neurons have firing and information rates not significantly different
from the firing and information rates of the entire population of simple
cells, for unit contrast responses (Kolmogorov-Smirnov test,P .
0.05).

To derive the parameters of the rectification (threshold and linear
gain), we first predict the linear response by convolving the first-order
kernel with the unit-contrast m-sequence stimulus. We then find the
constant offset and linear gain that, when applied to the predicted
linear response histogram, yield the best least-squares fit to the his-
togram of the observed unit-contrast m-sequence response for the
neuron being modeled. We present the model neurons with the same
three stimuli that we present to real V1 neurons: m-sequences, sta-
tionary sinusoidal gratings, and drifting sinusoidal gratings. Kernels
and stimuli are binned at 1.8-ms resolution (half of a single display
frame for the actual visual stimuli). Because the spatiotemporal pat-
terns in grating stimuli—particularly drifting gratings—change faster
than the spatiotemporal pattern in m-sequences (even though such
changes are not necessarily detected by the neuron), we integrate the
gratings over each m-sequence check and time bin before presenting
them to the model neuron.

The model yields a response histogram that serves as the modula-
tion envelope of an inhomogeneous Poisson process, which is then
used to determine the spike times in each trial. For the purpose of
calculating information rates, the response histogram and the Poisson
assumption are sufficient, because knowing the firing rate in each bin
gives us the full spike-count probability distribution in that bin. Thus
for model responses, we obtain anexactvalue for the information rate
in one-letter words. In practice, these exact information rates are

extremely close to the ones obtained by applying the method de-
scribed in the preceding text for real data; indeed, this similarity is
the primary justification for the applicability of our bias-correction
methods.

R E S U L T S

Formal information rates

Figure 2 shows the responses of a complex cell in monkey
V1 to the three different stimuli used in this paper, each
presented at unit contrast. Response histograms, obtained by
averaging the number of spikes across all trials in consecutive
7.4 ms bins and then normalizing by the binwidth, are pre-
sented atop raster diagrams that show the spike times following
stimulus onset in each trial. Thetop panelpresents results from
a flickering checkerboard stimulus, in which the time course of
contrast modulation in each check is determined by a binary
m-sequence (seeMETHODS). The stimulus lasts 60.6 s and is
repeated 14 times; here, we only show spike times that oc-
curred between 32 and 33 s after stimulus onset.

A striking feature of these responses is that spike firing tends
to be clustered at particular times, which presumably follow
transient changes in the stimulus. However, since the stimulus
changes every 14.8 ms (67.6 times during the 1 s display
period), it is clear that not all stimulus transitions are followed
by a consistent change in firing probability—that is, only some
of the changes, such as the one that causes firing shortly before
32.5 s, are effective in driving the neuron. This event-like firing
in response to stimuli of this sort has been noted in other

FIG. 2. Responses of a representative complex cell to three types of stim-
ulus at unit contrast. Cell 44/9s. Each panel shows response histograms (7.4-ms
bins) atop raster diagrams that depict the spike times fired during each trial.
Top: flickering binary checkerboard pattern modulated by an m-sequence. The
entire sequence lasts 60.6 s. Only spikes that occur in the 1-s period between
32 and 33 s after the start of the stimulus are shown. 14 trials.Bottom left:
stationary sinusoidal grating presented at the cell’s optimal orientation, spatial
frequency, and spatial phase. The stimulus appears attime 0and is removed
237 ms later; solid vertical lines mark these times. Spikes occurring between
30 and 300 ms after stimulus onset (dashed vertical lines) are analyzed. 100
trials. Bottom right: drifting sinusoidal grating presented at the cell’s optimal
orientation, spatial frequency, and temporal frequency. 40 trials.

309FORMAL AND ATTRIBUTE-SPECIFIC INFORMATION IN V1



species and visual areas as well (Bair and Koch 1996; Berry et
al. 1997; Ruyter van Steveninck et al. 1997). As estimated by
the direct method (METHODS), the response to the m-sequence
conveys 7.8 bits/s (0.75 bits/spike) of stimulus-related infor-
mation, which is within the range reported both for MT neu-
rons (Buracˇas et al. 1998) and for salamander and rabbit retinal
ganglion cells (Berry and Meister 1998) in responses to similar
stimuli.

Figure 2 also shows the responses of the same neuron to 100
presentations of a stationary sinusoidal grating of optimal
orientation and spatial frequency. The grating appears attime 0
and disappears 237 ms later (times marked by solid vertical
lines). The response histogram reveals three distinct firing
levels. High firing rates begin abruptly 40–45 ms after the
stimulus is presented and reappear at about 310 ms, after the
grating is removed. In between, the firing rate decays to a lower
level that is still higher than the baseline. The high firing rates
that occur in the response transients resemble, in terms of peak
rate and duration, the brief periods of high firing rate in the
m-sequence response. However, the neuron spends a great deal
more time firing spikes at the lower rate than at the higher rate.
This results in a lower information rate of 4.3 bits/s (0.14
bits/spike), despite the fact that the mean firing rate is 72%
higher than for the m-sequence response (29.8 vs. 17.3 spikes/
s). Although both total and noise entropy are higher in the
stationary-grating response, the noise entropy, which reflects
the spike count variability across trials at particular times, is
subject to a proportionately greater increase than the total
entropy. Thus the variability in firing is larger for the station-
ary-grating response than for the m-sequence response, and the
stimulus-induced modulation is relatively small. Note that in-
formation-rate calculations on stationary-grating responses
only involve spikes that occur from 30 to 300 ms following
stimulus onset (dashed lines), meaning that the off response of
this neuron is effectively ignored.

The third stimulus is a sinusoidal grating, again presented at
the optimal orientation and spatial frequency, that drifts uni-
formly at 2.1 Hz. For this neuron, we recorded the responses to
40 cycles of the drifting grating. The analysis treats individual
cycles of the grating as separate stimulus trials. As is the case
for most complex cells, the response to the drifting grating is
only weakly modulated (Skottun et al. 1991), and the most
prominent feature is an elevation of the mean firing rate (com-
pare the average response level in thebottom-right panelto the
response level just after stimulus onset in thebottom-left
panel). There are no periods of abruptly increased firing rate
because, unlike the m-sequence and stationary-grating stimuli,
the drifting-grating stimulus contains no temporal transients.
The information rate in the drifting-grating response is 4.4
bits/s (0.11 bits/spike). This is in the top 15% of information
rates measured in bits/s in our sample of 43 complex-cell
responses to drifting gratings but near the median information
rate measured in bits/spike. The firing-rate elevation that is
such an important feature of the responses of complex cells to
drifting sinusoidal gratings does not contribute to the informa-
tion rate calculated by the direct method, which reflects only
reproducible modulations in the spike count probability during
the course of the response. Such slow modulation, superim-
posed on a relatively high overall firing rate of 41.5 spikes/s, is
evident in the response histogram.

Figure 3 and Table 1 summarize the results of similar

experiments performed on our entire population of V1 neurons,
all at unit contrast.Panels A–Fsummarize across-neuron re-
sults, andG shows within-neuron comparisons for the neurons
that convey significant information rates in response to at least
two of the stimuli. The results reveal that differences between
simple and complex cells are most pronounced in the responses
to drifting gratings, which evoke the highest information rates
in simple cells but the lowest information rates in complex
cells. For simple cells (Fig. 3,A–C), the unexpected finding is
that information rates are higher in drifting-grating responses
than in m-sequence responses (Fig. 3G, filled triangles are
typically above the line of equality). This is evidence against
the hypothesis that high information rates in V1 neurons are

FIG. 3. Summary across V1 neurons of firing and information rates in
responses to three types of stimulus. All stimuli are presented at unit contrast.
Median values and population sizes are given in Table 1.A–C: simple cells.
D–F: complex cells.A andD: mean firing rate, spikes/s.B andE: information
rate, bits/s.C andF: information rate, bits/spike. Boxes represent the 25–75%
range of the data, whiskers represent the 5–25% and 75–95% range, and
horizontal lines represent the medians.G: information rates (bits/spikes) for
neurons that conveyed significant amounts of information in response to at
least two stimuli. Filled symbols: simple cells. Open symbols: complex cells.
Circles: stationary gratings. Triangles: drifting gratings. Lines connect points
corresponding to neurons that convey significant amounts of information in
response to all three stimulus types. Data from individual cells, plotted inG,
follow the population trends evident inA–F.
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more likely to be evoked by stimuli that change rapidly in time
than by stimuli that change slowly, as might be the case in the
motion-sensitive area MT (Buracˇas and Albright 1999; Bu-
račas et al. 1998). Complex-cell responses to drifting gratings
behave differently: the filled triangles in Fig. 3G are typically
below the line of equality. This is because complex cells,
unlike simple cells, transmit very little information about the
aspect of the drifting-grating stimulus—its spatial phase—that
varies during the course of the experiment. We found (Table 1)
that stimulus type has a significant effect on firing and infor-
mation rates for complex cells but only on information rates in
bits/spike for simple cells. However, we believe that the lack of
significance for simple cells is simply due to the smaller
number of simple cells in the sample.

Attribute-specific information rates

The direct method is usually applied only to neurons’ re-
sponses to rapidly modulated stimuli, such as the unit-contrast

m-sequence responses in Figs. 2 and 3. Most stimulus sets used
in neurophysiology experiments can be classified along two (or
more) attributes: one (or more) features, such as contrast and
spatial phase, that are explicitly varied from one stimulus
presentation to the next; and the time course of the stimulus
itself. For responses to these sorts of stimulus, straightforward
implementation of the direct method measures only the overall
rate of information transmission, which we call the formal
information rate, and not information rates for individual stim-
ulus features, which we call the attribute-specific information
rates. Earlier methods, based on firing rates (Tolhurst 1989),
principal components (Richmond and Optican 1990), stimulus
reconstruction (Bialek et al. 1991), and time structure of indi-
vidual responses (Panzeri and Schultz 2000; Victor and Pur-
pura 1996), are expressly designed to measure attribute-spe-
cific information.

Here, we focus on contrast and spatiotemporal pattern. For-
mal information rates are parsed into components specific to
contrast and spatiotemporal pattern. Responses to five contrasts
(0.0625, 0.125, 0.25, 0.5, and 1) are analyzed. The m-sequence
stimulus used in the contrast experiments is shorter, running
for 7.6 s instead of 60.6 s and modulating 25 checks instead of
249.

Figure 4 shows the responses (raster diagrams and histo-
grams) of a second complex cell, which has a maintained
discharge (response to a uniform field at the mean luminance)
of 2.4 spikes/s. For all three types of stimulus, the responses
generally become more reproducible as contrast increases.
Some features, such as the spikes that occur around 7,100 ms
in the m-sequence response, or the transient firing-rate eleva-
tion at the beginning of the stationary-grating response, are
particularly reproducible and give rise to peaks in the histo-
grams.

Figure 5A plots the neuron’s firing rate as a function of
contrast for all three stimulus types. Clearly, the curves are

TABLE 1. Summary of unit-contrast firing and information rates

Stimulus Type n

Median

spikes/s bits/s (RE) bits/spike

m-sequence
simple 11 10.38 6.41 (0.038) 0.69*
complex 72 11.97† 4.99 (0.053)‡ 0.42§

stationary
simple 12 23.69 7.29 (0.16) 0.25*
complex 26 23.15† 4.38‡ (0.20) 0.19§

drifting
simple 25 10.14 10.28 (0.13) 0.92*
complex 43 16.16† 1.58‡ (0.33) 0.08§

Table gives medians of distributions plotted in Fig. 3. Median values that
differ significantly between simple and complex cells are shaded gray (P ,
0.05, Mann-WhitneyU test). Medians of distributions that vary significantly
with stimulus type are denoted by symbols (*, †, ‡, §;P , 0.05, Kruskal-
Wallis nonparametric ANOVA). RE: relative error, or standard error derived
from jackknife resamplings (seeMETHODS) divided by information rate from
the full data set.n: number of neurons in data set.

FIG. 4. Responses of a representative complex
cell to three types of stimulus at five contrasts.
Raster diagrams and response histograms (7.4-ms
bins). Cell 45/2s. Contrasts 0.0625, 0.125, 0.25,
0.5, and 1.Left: 1-s snippets of the responses to 25
presentations of a 7.6-s m-sequence checkerboard
stimulus.Middle: responses to 100 presentations of
a stationary-grating stimulus, showing the first 350
ms after stimulus onset.Right: responses to 192
cycles of a sinusoidal grating drifting uniformly at
8.4 Hz.
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quite similar, to within the error bars (95% confidence limits of
the mean). As shown in Fig. 5,B andC, the formal information
rate is 3.2 bits/s (0.58 bits/spike) in the m-sequence response,
1.8 bits/s (0.28 bits/spike) in the stationary-grating response,
and 1.2 bits/s (0.06 bits/spike) in the drifting-grating response.
Responses to lower contrasts can contribute extra information
as well as extra variability so that including them in the
information calculations can both raise and lower formal in-
formation rates. In this example, including those contrasts
decreases the information rate measured in bits/s (but not
bits/spike) in the m-sequence responses (■), increases the
information rate measured in bits/spike (but not bits/s) in the
stationary-grating responses (u), and leaves virtually un-
changed the information rates in the drifting-grating responses
(h).

To isolate the relative amount of information transmitted
about different aspects of the stimulus, we modify the direct
method by selectively changing our definition of noise entropy
while leaving unchanged the definition of total entropy (see
METHODS). For these stimuli, information is conveyed about
contrast and spatiotemporal pattern. Spatiotemporal pattern
refers to aspects of the stimuli that affect the response variation
across time at a fixed contrast. The results are displayed in Fig.
5, B and C, together with error estimates derived from jack-
knife resampling (seeMETHODS).

The information rates due to contrast and spatiotemporal
pattern alone do not sum to the full formal information rate, as
they would if the two stimulus features were encoded indepen-
dently (seeAPPENDIX). Instead, for this neuron, the sum of the
two attribute-specific information rates fails to account for
19–46% of the formal information rate, depending on stimulus
type. We call the information not accounted for by the at-
tribute-specific information ratesconfounded.The presence of
confounded information means that the dynamics of contrast-
and spatiotemporal pattern-encoding are interdependent. The
confounded information cannot be used to determine either
contrast or spatiotemporal pattern based on the response of this
neuron alone.

The results of the contrast and spatiotemporal pattern exper-
iment over the population of neurons are shown in Fig. 6 and
Table 2. Here, we have combined data from simple and com-
plex cells for m-sequence and stationary-grating responses
because we could not find significant differences among the
distributions, probably due in part to the limited number of
simple cells in our sample. Overall, as with unit-contrast re-
sponses, drifting gratings evoke the highest formal information
rates in simple cells but the lowest formal information rates in
complex cells. The same is true for spatiotemporal pattern-
specific information rates.

The strikingly high formal and pattern-specific information
rates in simple cell responses to drifting gratings are explained
by the fact that simple cells are exquisitely sensitive to spatial
phase (Hubel and Wiesel 1962; Movshon et al. 1978b; Victor
and Purpura 1998), which is the only aspect of the stimulus that
varies at fixed contrast. The spatial-phase variation causes the
firing rate to be deeply modulated, which results in high
spatiotemporal pattern-specific, and hence formal, information
rates. This is emphatically not the case for complex cells, as
discussed above. On the other hand, simple and complex cells
transmit contrast-specific information at the same rates in re-
sponse to drifting gratings. Indeed, the contrast-specific infor-
mation-rate distributions are relatively independent of stimulus
type, measured either in bits/s or bits/spike (P . 0.05, Kruskal-
Wallis ANOVA).

For the neuron presented in Figs. 4 and 5, the attribute-
specific information rates do not account for all the formal
information in the neuron’s response. This is also the case for
the population results (Fig. 6,right). The median confounded
information—the portion of information that cannot be re-
solved into contrast- or spatiotemporal pattern-specific compo-
nents—represents a substantial fraction of the formal informa-

FIG. 6. Summary across V1 neurons of overall and attribute-specific infor-
mation rates. Data taken from 44 neurons (m-sequences); 50 neurons (station-
ary gratings); 31 simple cells and 118 complex cells (drifting gratings). Data
from simple and complex cell responses to m-sequences and stationary grat-
ings are collapsed together because their distributions are not significantly
different from one another. Boxes represent the 25–75% range of the data,
whiskers represent the 5–25% and 75–95% range, and horizontal lines repre-
sent the medians.Top: information rate, bits/s.Middle: information rate,
bits/spike.Bottom: attribute-specific information rate as a percentage of the
formal information rate.First column: formal information rate.Second col-
umn: contrast-specific information rate.Third column: pattern-specific infor-
mation rate.Fourth column: confounded information rate.

FIG. 5. Firing and information rates for the responses of the neuron from
Fig. 4.A: mean firing rate (spikes/s) as a function of contrast: m-sequences (n),
stationary sinusoidal gratings (u), and drifting sinusoidal gratings (▫). Error
bars represent two standard errors of the mean.B: information rate (bits/s).C:
information rate (bits/spike). Error bars inB andC represent estimates of the
standard error derived from jackknife resampling (seeMETHODS). D: informa-
tion rate (% of total). All 5 contrasts are used for these calculations, except for
the bars labeled “unit contrast only” inB andC.
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tion. Indeed, across all neurons and stimulus types, the
confounded information rate typically accounts for 10–32%
(interquartile range) of the formal information rate.

Information transmission in a model V1 simple cell

The model described here considers the responses of a V1
simple cell to derive from a linear spatiotemporal filter fol-
lowed by a static rectifier and a Poisson spike generator (see
METHODS). The shape and size of the filter, as well as the
parameters of the rectifier, are drawn from the responses of
actual neurons to the long m-sequence stimulus at unit contrast.
Similar models have been used in the past to describe the
responses of visual neurons to various kinds of stimuli (Ca-
randini et al. 1996), even though it is well known that V1
neurons, even simple cells, display many features that are not
captured in the model, including nonlinearities of spatiotem-
poral summation (Movshon et al. 1978a) and contrast response
(Albrecht and Hamilton 1982).

Figure 7 shows the responses of a real simple cell (top) and
its corresponding model neuron (bottom) to the three types of
stimulus, each presented at unit contrast. Despite the rudimen-
tary nature of the model, it successfully captures many of the
features of the real data. In particular, the model replicates the
location of the peaks in the m-sequence response and the
existence of a transient period of elevated firing rate at the
beginning of the stationary-grating response. Notable differ-
ences, especially in the grating responses, do exist. For exam-
ple, the transient portion of the stationary-grating response is
briefer in the real data than in the model, and the drifting-
grating response is narrower in the model than in the real data.
Moreover the distinct, brief period of very low firing rate that
immediately follows the real neuron’s transient response to the
stationary grating is absent from the model’s response. These
differences are not surprising given that the model’s parame-
ters are fit to the linear part of the m-sequence response and not
to the grating responses.

The similarities and differences between real and model
responses are also reflected in the rates of information trans-
mission. The m-sequence response of the real neuron transmits

TABLE 2. Summary of five-contrast formal and attribute-specific information rates

Stimulus Type n

Median Information Rate

bits/s bits/spike percent

F C SP CNF F C SP CNF C SP CNF

m-sequence all 35 3.23 0.83 1.50 0.68 0.46 0.14 0.21 0.086 30.3 45.8 16.6
stationary all 29 1.84 0.59 0.63 0.74 0.28 0.087 0.12 0.08 35.2 35.2 22.1

drifting
simple 27 5.18 0.69 3.31 0.76 0.85 0.085 0.64 0.092 11.3 72.6 12.5
complex 57 1.86 1.31 0.30 0.34 0.23 0.11 0.028 0.045 62.0 13.8 20.0

Values are medians of distributions plotted in Fig. 6. Simple and complex cell results were indistinguishable for m-sequence and stationary-grating responses
and are therefore combined. Medians of distributions that vary significantly with stimulus type are shaded gray (P , 0.05, Kruskal-Wallis nonparametric
ANOVA, simple- and complex-cell drifting-grating responses separately compared with m-sequence and stationary-grating responses).n: number of neurons in
data set;F: formal; C: contrast-specific;SP: spatiotemporal pattern-specific;CNF: confounded.

FIG. 7. Comparison of model and simple-cell responses. Cell 35/1s, unit-
contrast stimuli. Model parameters are derived from the m-sequence response
of the real neuron. The model consists of a linear spatiotemporal filter, a static
rectifier, and a Poisson spike generator (seeMETHODS). Each panel shows
response histograms (7.4-ms bins) atop raster diagrams.Left: flickering binary
checkerboard pattern modulated by an m-sequence. The entire sequence lasts
60.6 s, and only the spikes that occurred in the 1 s period between 1 and 2 s
after the start of the stimulus are shown. 16 trials.Middle: stationary sinusoidal
grating presented at the cell’s optimal orientation, spatial frequency, and
spatial phase. The stimulus appears attime 0and is removed 237 ms later. 100
trials. Right: drifting sinusoidal grating presented at the cell’s optimal orien-
tation, spatial frequency, and temporal frequency (8.4 Hz). 256 trials.

FIG. 8. Summary across 11 model neurons of information rates in the
responses to three types of stimulus. Boxes represent the 25–75% range of the
data, whiskers represent the 5–25% and 75–95% range, and horizontal lines
represent the medians.Top: information rate, bits/s.Middle: information rate,
bits/spike.Bottom: attribute-specific information rate as a percentage of the
formal information rate.First column: formal information rate.Second col-
umn: contrast-specific information rate.Third column: pattern-specific infor-
mation rate.Fourth column: confounded information rate.
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information at a rate of 15.5 bits/s (1.6 bits/spike), compared
with 19.2 bits/s (2.5 bits/spike) for the model. In response to
the stationary and drifting-grating stimuli, the real neuron
transmits 24.2 bits/s (0.43 bits/spike) and 49.4 bits/s (0.92
bits/spike) of information, respectively, whereas the model
neuron transmits 20.8 bits/s (0.42 bits/spike) and 90.8 bits/s
(1.2 bits/spike). It should be noted that the information in this
real neuron’s response to the drifting grating is at the top of the
range of such information rates, even among simple cells
(Fig. 3).

Figure 8 and Table 3 show that these results generalize to the
population of 11 neurons that we modeled; the results should
be compared with Fig. 6 (noting the sometimes-different ver-
tical scales) and Table 2. Typically, the information rates of
model responses are higher than the information rates of real
responses. As is the case with the simple cell modeled in Fig.
7, and with real simple cells, the model neurons convey the
most information about drifting gratings. The low spatiotem-
poral pattern-specific information rates in the modeled station-
ary-grating responses correspond to the low spatiotemporal
pattern-specific information rates in the responses of real neu-
rons to these stimuli. However, unlike in real neurons, the
contrast-specific information rate conveyed by the model neu-
rons does depend significantly on the type of stimulus.

The most striking difference between real and model re-
sponses is in the confounded information rate, which is nearly
zero in model responses. In model responses, contrast and
spatiotemporal pattern can be independently determined from
the response time course and depth of modulation. The prom-
inence of the confounded information in real responses sug-
gests that an interaction between the coding of contrast and
spatiotemporal pattern constitutes one of the primary differ-
ences between real and model neurons.

D I S C U S S I O N

We used three types of stimulus to evaluate the ways in
which the spatiotemporal features of a stimulus affect the rates
at which V1 neurons transmit information. The first stimulus is
based on pseudo-random m-sequences and appears as a rapidly
modulated checkerboard pattern, in which the spatial pattern
changes every 14.8 ms. The second stimulus is a sinusoidal
grating at the cell’s optimal orientation, spatial frequency, and
spatial phase; it appears abruptly and is removed 237 ms later.
The third stimulus is a sinusoidal grating that drifts at the cell’s
optimal temporal frequency and has the same orientation and
spatial frequency as the stationary grating. We find that V1
simple cells typically transmit information at the highest rates

in response to high-contrast, drifting-grating stimuli. The same
stimuli evoke the lowest information rates in complex cell
responses because those responses are not modulated in time.

Do cortical neurons transmit information at high
or low rates?

Our results are surprising in light of the fact that compari-
sons of information rates in a variety of neural systems suggest
that stimuli that change rapidly in time drive neurons to encode
information at rates often more than an order of magnitude
higher than the corresponding rates for slowly changing stimuli
(Buračas and Albright 1999). Based on the formal and at-
tribute-specific information rates calculated for V1-neuron re-
sponses to different types of stimulus, it is likely that the major
cause of this discrepancy is not simply the rate of variation of
the stimulus, as some have argued (Buracˇas and Albright
1999). Moreover, the cause does not lie in the number of
transient changes in a stimulus, because such transients are
absent from drifting gratings (which evoke the highest infor-
mation rates in simple cells) but present in both m-sequences
(which evoke the highest information rates in complex cells)
and stationary gratings.

Instead, the results suggest that the magnitude of a measured
information rate has a complicated dependence on the type of
attribute-specific information that is being estimated and the
sensitivity of the neuron under study to that stimulus attribute.
For example, a stimulus (such as a drifting grating) that con-
sists of rapid changes in spatial phase evokes high spatiotem-
poral pattern-specific information rates in simple cells and low
spatiotemporal pattern-specific information rates in complex
cells, but a stimulus (such as an m-sequence checkerboard) that
consists of rapid changes in luminance evokes indistinguish-
able information rates in simple and complex cells.

Information rates and channel capacity

The information rates for complex cells can be compared
with estimates of the channel capacities of complex cells in the
supragranular layers of alert monkeys, which range from 6.7 to
8.5 bits/s (Wiener and Richmond 1999). The channel capacity
is a measure of the maximum information rate that a commu-
nications channel can transmit (Cover and Thomas 1991). In
response to the stimuli used here, which differ from the stimuli
used by Wiener and Richmond, complex cells transmit infor-
mation at approximately half of this estimated channel capac-
ity. Since our stimuli were not designed to evoke information
rates that approach the channel capacity, we consider this result
to be rather impressive.

TABLE 3. Summary of five-contrast formal and attribute-specific information rates

Stimulus

Median Information Rate

bits/s bits/spike percent

F C SP CNF F C SP CNF C SP CNF

m-sequence 13.1 3.5 9.5 0.10 1.9 0.52 1.4 0.015 27.1 72.4 0.77
stationary 13.6 9.1 3.5 0.077 0.86 0.63 0.23 0.004 73.2 26.5 0.55
drifting 21.7 6.4 13.6 0.23 2.1 0.62 1.4 0.022 30.1 69.2 1.3

Data forn 5 11 model neurons. Medians of distributions plotted in Fig. 8. Compare to the data in Table 2. Medians of distributions that vary significantly
with stimulus type are shaded gray (P , 0.05, Kruskal-Wallis nonparametric ANOVA). Abbreviations as in Table 2.
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Relevance of the confounded information
for visual processing

Our use of the direct method to calculate both formal and
attribute-specific information rates reveals a hitherto-over-
looked aspect of the information conveyed by V1 neurons. We
found that a substantial fraction of the information (typically
10–32%) cannot be attributed to either contrast or spatiotem-
poral pattern alone. This portion of the information, which we
call confounded,arises from an interdependence of contrast
and spatiotemporal pattern in generating neuronal responses.
Confounded information is not present in the model responses,
where there is no such interdependence (seeAPPENDIX). In other
words, the amount of confounded information quantifies the
effects of changes in the spatiotemporal profile of the stimulus
on the contrast response and sensitivity functions of V1 neu-
rons (Albrecht 1995; Gawne et al. 1996; Maffei and Fiorentini
1973; Tolhurst and Movshon 1975). Such changes may be
mediated by variation in the “adaptive state” of a neuron under
different spatiotemporal stimulus conditions, particularly be-
tween rapidly varying stimuli, like the m-sequence checker-
board, and gratings (Gaska et al. 1994).

Another way in which contrast and spatiotemporal pattern
can potentially interact is through a refractory period that is
intrinsic to a neuron’s spike generating mechanism but that
influences the responses to both stimuli. However, we do not
believe that refractory periods contribute significantly to the
confounded information reported here. This is because as much
or more confounded information is present in data sets that
have been resampled to effectively eliminate the refractory
period while preserving the overall rate modulation and distri-
bution of spike counts per trial (Reich et al. 2000a).

Whatever its basis, the finding that a substantial portion of
the total information is confounded means that downstream
neurons cannot use all of the information in the responses of
their inputs to draw conclusions about either one of those
stimulus attributes in isolation. But perhaps the task of the
visual system is not simply to decompose stimuli into compo-
nents relating to contrast and spatiotemporal pattern. For ex-
ample, if we had determined attribute-specific information
along the visual system’s preferred axes, we might not have
found any confounded information.

Alternatively, or perhaps in addition, it is possible that the
messages that correspond to the confounded information would
separate into contrast- and spatiotemporal pattern-specific
components if the concurrent responses of other neurons to the
same stimulus were considered (deCharms 1998). It is known,
for example, that spikes that are synchronous across two cat
LGN neurons can convey additional information beyond what
can be obtained from each neuron’s individual response (Dan
et al. 1998), and similar results have been obtained in various
cortical systems (Maynard et al. 1999; Riehle et al. 1997;
Vaadia et al. 1995). However, it is important to point out that
simply averaging together the responses of redundant neurons,
or even neurons that have some degree of correlated variability
but identical average responses (Shadlen and Newsome 1998),
would not help to disambiguate the confounded information.
Thus, whether concurrent decoding of responses of a cluster of
neurons can reduce the amount of confounded information is
an issue that must be resolved experimentally. It is relatively

straightforward to do this by an extension of the direct method
to the responses of multiple neurons recorded together.

What do we expect from a simple model?

We evaluated the degree to which a simple model of V1
simple cells can replicate our experimental results. This model
is quasi-linear and therefore fails to account for many of the
interesting nonlinearities displayed by V1 neurons, particularly
complex cells (Movshon et al. 1978a) but also, to some extent,
simple cells (DeAngelis et al. 1993; Mechler et al. 1998a). In
particular, the model does not account for contrast-specific
nonlinearities (Albrecht and Hamilton 1982; Carandini et al.
1997b; Dean 1981). We find that this model significantly
overestimates the magnitude of formal and attribute-specific
information rates, in particular the contrast-specific informa-
tion rates in stationary-grating responses (compare Fig. 8 to
Fig. 6). Most significantly, the model responses contain no
confounded information, in stark contrast to the prominent
confounded information found in real responses.

In earlier work (Reich et al. 2000a), we used a spike train
resampling technique to show that, for V1 neurons, the details
of spike generation do not have a large effect on the magnitude
of formal information rates. That result, together with addi-
tional resamplings done in connection with the present study
(not shown), indicates that the discrepancies between real and
model information rates (including confounded information)
are not likely to be due to the assumption of a Poisson spike
generating mechanism in the model. Moreover, these discrep-
ancies are also not likely to be due to cell-to-cell variation in
the shape of the linear filter or kernel, since such variation is
similar for real and model responses and in both cases has little
impact on information rates.

Instead the discrepancies between real and model responses
almost certainly relate to the fact that real responses to stimuli
that differ only in contrast are not simply related by a scaling
factor but rather depend strongly on factors such as spatiotem-
poral pattern and the level of adaptation (Albrecht 1995; Bonds
1991; Ohzawa et al. 1982). It is possible that a single mecha-
nism—nonlinear suppression that is sometimes calledcontrast
normalization(Albrecht and Geisler 1991; Heeger 1992)—can
account for all of these discrepancies but only if the mechanism
is sensitive to the spatiotemporal parameters of the stimulus
and can affect the dynamics of the response. Indeed, such
mechanisms are known to exist in the retina (Shapley and
Victor 1981), lateral geniculate nucleus (Sclar 1987), and pri-
mary visual cortex (Reid et al. 1992). The sensitivity can be
intrinsic to the suppressive mechanism itself or, alternatively,
might be derived from a pooling of the responses of other V1
neurons with different stimulus-response properties.

Summary

The major finding in this paper is that V1 neurons transmit
formal information at high rates for a variety of stimulus types
and that the amount of attribute-specific information is much
lower. Contrast-specific information rates depend little on
stimulus and cell type, whereas spatiotemporal pattern-specific
information rates depend strongly on these factors. A substan-
tial fraction of the formal information cannot be attributed to
either contrast or spatiotemporal pattern if only the responses
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of single neurons are taken into account, and this confounded
information is likely to be a result of dynamic interactions
between stimulus attributes during response generation. Fur-
ther work may determine the degree to which the confounded
information can be sorted into stimulus-specific components on
the basis of the simultaneous responses of groups of neurons.

A P P E N D I X

In this appendix, we make rigorous the statement that there is no
confounded information if and only if a neuron’s response depends
independently on the two stimulus attributes (in our experiments,
contrast and spatiotemporal pattern). We assume that stimuli are
defined by an independent choice of a stimuluss1 out of a setS1

(corresponding to the 1st attribute) and a stimuluss2 out of a setS2

(corresponding to the 2nd attribute). A corollary of this demonstration
is that there is no confounded information if and only if, for each
possible responser, there is no mutual information between the
conditional distributions {S1ur} and {S2ur}. This is in turn equivalent
to the statement that, for each responser, the conditional probability
p(s1,s2ur) is a separable function ofs1ands2: p(s1,s2ur) 5 p(s1ur)p(s2ur).

For notation, we follow the conventions of Cover and Thomas
(1991). The mutual information between two variablesX andY is

I ~X;Y! 5 H~X! 1 H~Y! 2 H~X,Y! (A1)

whereH(X) andH(Y) are, respectively, the entropies ofX andY, and
H(X,Y) is the joint entropy ofX and Y. For example, ifx [ X is
distributed according to the probabilitiesp(x), then

H~X! 5 2O
x[X

p~x! log p~x!

By the Chain Rule for entropies

H~X,Y! 5 H~X! 1 H~YuX! (A2)

where H(YuX) denotes the conditional entropy ofY given X and is
defined as

H~YuX! 5 2O
x[X

p~x! O
y[Y

p~yux! log p~yux! (A3)

Here,p(yux) is the conditional probability ofy, given the occurrencex.
We define the confounded informationC as

C 5 I ~R;S1,S2! 2 I ~R;S1! 2 I ~R;S2! (A4)

whereSi is the ith set of stimuli andR is the set of responses. By
substitution ofEqs. A1and A2 into Eq. A4 and using the fact that
H(S1,S2) 5 H(S1) 1 H(S2) (sinceS1andS2 are independent), we find
that

C 5 H~S1uR! 1 H~S2uR! 2 H~S1,S2uR! (A5)

Further substitution ofEq. A3 into Eq. A5yields

C 5 O
r [R

p~r!3 2 O
s1[S1

p~s1ur! log p~s1ur! 2 O
s2[S2

p~s2ur! log p~s2ur!

1 O
s1[S1

O
s2[S2

p~s1,s2ur! log p~s1,s2ur! 4 . (A6)

Each p(r) is a probability and therefore nonnegative. The term in
brackets inEq. A6must also be nonnegative, since it is the mutual
information ofS1andS2, given the occurrence ofr, and quantities of
mutual information cannot be less than zero (Cover and Thomas
1991). ThusC 5 0 if and only if the term in brackets inEq. A6is zero
for everyr that occurs with nonzero probabilityp(r). But this is true
if and only if, for everyr, I(S1ur; S2ur) 5 0. This latter condition in turn
requires that

p~s1,s2ur ! 5 p~s1ur !p~s2ur ! (A7)

meaning thatp(s1,s2ur) is a separable function ofs1ands2.
It is straightforward to show thatEq. A7 is equivalent to our

independence condition, given that the stimulus probabilities are
independent, i.e.,p(s1,s2) 5 p(s1)p(s2). By Bayes’s rule

p~s1,s2ur ! 5
p~r us1,s2!p~s1!p~s2!

p~r !
(A8)

CombiningEqs. A7andA8 and the fact thatp(siur)p(r) 5 p(rusi)p(si),
we find that

p~r us1,s2! 5
p~r us1!p~r us2!

p~r !
, (A9)

precisely the independence condition.

Examples

We now discuss eight simple examples to illustrate the concept of
confounded information. In these examples, we consider systems with
two independent inputs, each of which can take a value of 0 or 1 with
equal probability, and a single output. There are therefore four dif-

TABLE 4. Eight simple systems that feature two binary inputs and different output distributions

Stimuli Responses [Conditional Probabilityp(rus1,s2)]

s1 s2 1 2 3 4 5 6 7 8

0 0 0 (1) 0 (1) 1 (1) 0 (1) 0 (0.5) 0 (1) 0 (1) 0 (1)
1 (0.5)

0 1 0 (1) 1 (1) 0 (1) 0 (1) 0 (1) 0 (0.5) 1 (1) 1 (1)
1 (0.5)

1 0 1 (1) 0 (1) 0 (1) 0 (1) 0 (0.5) 0 (0.5) 1 (1) 1 (1)
1 (0.5) 1 (0.5)

1 1 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 2 (1) 3 (1)

Information (bits)

I(S1;R) 1 0 0 0.31 0.19 0.19 0.5 1
I(S2;R) 0 1 0 0.31 0 0.19 0.5 1
I(S1,S2;R) 1 1 1 0.81 0.5 0.5 1.5 2
CNF 0 0 1 0.19 0.31 0.12 0.5 0

The conditional probability of each possible output is given in parentheses next to the output value itself. Information is calculated by the methodsdetailed
in the APPENDIX. I(X;Y) refers to the information between two variablesx andy, andCNF refers to the confounded information.
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ferent input configurations of the stimuli (s1,s2): (0,0), (0,1), (1,0), and
(1,1). In the first six examples, the output is also binary, whereas in the
last two examples, the output can take on more than two distinct
values. The example systems are displayed in Table 4, together with
the corresponding information values.

In example 1,the response is independent ofs1 and is completely
determined bys2. In example 2,the response is independent ofs2 and
is completely determined bys1. Of the 2 bits of entropy in the stimuli,
only 1 bit is conveyed as information, but it is transmitted perfectly.
Moreover, the response to one stimulus is independent of the value of
the other, so that there is no confounded information.

In example 3,the system responds with a 1 if the twoinputs are
identical, and with a 0 if they are different. There is still 1 bit of
information transmitted, but in this case the response to one stimulus
depends completely on the value of the second, so that all the
information is confounded—that is, there is no information transmit-
ted about either stimulus unless the value of the other stimulus is
known.

In example 4,the system responds only if the values of both stimuli
are 1. Here, the response is symmetric in the two stimuli, so that the
response to each stimulus alone conveys the same amount of infor-
mation. However, because the response depends jointly on the values
of both stimuli, some of the information—23% of the total—is con-
founded.

In the fifth and sixth examples, the system’s response again has a
complicated dependence on the two stimuli, so that the confounded
information is nonzero. Inexample 5,the system responds at random
if s2 5 0, and identically reflectss1 if s2 5 1. Confounded information
arises because although no information is conveyed abouts2, the
response tos1 is more informative ifs2 is known. Inexample 6,the
system responds at random if the two stimuli are different and reflects
their shared value if they are the same. The response thus conveys
equal amounts of information about the two stimuli, but there is still
some confounded information.

The first six examples illustrate that confounded information can
arise even in very simple systems, so long as the conditional response
probabilities are separable in the two stimuli, as inEq. A9.The last
two examples demonstrate that this requirement is not equivalent to a
requirement that stimulus encoding be linear or additive.Example 7is
a system that simply sums the values of the two stimuli (and thus has
three possible responses); the confounded information in this system
is 33% of the total. On the other hand,example 8is a system that
generates distinct responses to each of the four stimuli, but its re-
sponse is also additive in the sense that the response to any pair of
stimuli is the sum of the responses to two pairs of stimuli that add up
to the same input. For instance, the response to (1,1) is equal to the
sum of the responses to (1,0) and (0,1). As with any system that maps
each input to a distinct output, even a system that is not additive at all,
the system inexample 8does not produce confounded information.

Thus it is not surprising that we observe substantial amounts of
confounded information in real neuronal responses: real responses
depend in a complicated way on both contrast and spatiotemporal
pattern. In the simple examples considered here, in fact, only systems
that ignore one or the other stimulus, as inexamples 1and 2, or
systems that respond differently to each stimulus pair, as inexample
8, can feature responses that convey information about both stimuli
without confounding them.
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BURAČAS GT, ZADOR AM, DEWEESE MR, AND ALBRIGHT TD. Efficient dis-
crimination of temporal patterns by motion-sensitive neurons in primate
visual cortex.Neuron20: 959–969, 1998.

CARANDINI M, BARLOW HB, O’KEEFE LP, POIRSON AB, AND MOVSHON JA.
Adaptation to contingencies in macaque primary visual cortex.Philos Trans
R Soc Lond B Biol Sci352: 1149–1154, 1997a.

CARANDINI M, HEEGERDJ, AND MOVSHON JA. Linearity and normalization in
simple cells of the macaque primary visual cortex.J Neurosci17: 8621–
8644, 1997b.

CARANDINI M, MECHLER F, LEONARD CS, AND MOVSHON JA. Spike train
encoding by regular-spiking cells of the visual cortex.J Neurophysiol76:
3425–3441, 1996.

CARLTON AG. On the bias of information estimates.Psychol Bull71: 108–109,
1969.

COVER TM AND THOMAS JA. Elements of Information Theory. New York:
Wiley, 1991.

DAN Y, ALONSO JM, USREY WM, AND REID RC. Coding of visual information
by precisely correlated spikes in the lateral geniculate nucleus.Nature
Neurosci1: 501–507, 1998.

DEAN AF. The relationship between response amplitude and contrast for cat
striate cortical neurones.J Physiol (Lond)318: 413–427, 1981.

DEANGELIS GC, GHOSEGM, OHZAWA I, AND FREEMAN RD. Functional micro-
organization of primary visual cortex: receptive field analysis of nearby
neurons.J Neurosci19: 4046–4064, 1999.

DEANGELIS GC, OHZAWA I, AND FREEMAN RD. Spatiotemporal organization of
simple-cell receptive fields in the cat’s striate cortex. II. Linearity of tem-
poral and spatial summation.J Neurophysiol69: 1118–1135, 1993.

DECHARMS RC. Information coding in the cortex by independent or coordi-
nated populations.Proc Natl Acad Sci USA95: 15166–15168, 1998.

DEWEESEMR AND MEISTER M. How to measure the information gained from
one symbol.Network10: 325–340, 1999.

EFRON B AND TIBSHIRANI RJ. An Introduction to the Bootstrap.Boca Raton,
FL: Chapman & Hall/CRC Press, 1998.

GASKA JP, JACOBSON LD, CHEN HW, AND POLLEN DA. Space-time spectra of
complex cell filters in the macaque monkey: a comparison of results ob-
tained with pseudowhite noise and grating stimuli.Vis Neurosci11: 805–
821, 1994.

GAWNE TJ, KJAER TW, AND RICHMOND BJ. Latency: another potential code for
feature binding in striate cortex.J Neurophysiol76: 1356–1360, 1996.

GERSHONED, WIENER MC, LATHAM PE,AND RICHMOND BJ. Coding strategies
in monkey V1 and inferior temporal cortices.J Neurophysiol79: 1135–
1144, 1998.

HEEGERDJ. Normalization of cell responses in cat striate cortex.Vis Neurosci
9: 181–197, 1992.

HELLER J, HERTZ JA, KJAER TW, AND RICHMOND BJ. Information flow and
temporal coding in primate pattern vision.J Comput Neurosci2: 175–193,
1995.

MAFFEI L AND FIORENTINI A. The visual cortex as a spatial frequency analyser.
Vision Res13: 1255–1267, 1973.

MAYNARD EM, HATSOPOULOS NG, OJAKANGAS CL, ACUNA BD, SANES JN,
NORMANN RA, AND DONOGHUE JP. Neuronal interactions improve cortical
population coding of movement direction.J Neurosci19: 8083–8093, 1999.

MECHLER F, REICH DS, AND VICTOR JD. Receptive field nonlinearities in
macaque primary visual cortex (V1) are not selectively activated by edges.
Soc Neurosci Abstr24: 1979, 1998a.

MECHLER F, VICTOR JD, PURPURA KP, AND SHAPLEY R. Robust temporal
coding of contrast by V1 neurons for transient but not for steady-state
stimuli. J Neurosci18: 6583–6598, 1998b.

317FORMAL AND ATTRIBUTE-SPECIFIC INFORMATION IN V1



MILLER GA. Note on the bias on information estimates.Information Theory in
Psychology: Problems and MethodsII-B: 95–100, 1955.

MOVSHON JA, THOMPSONID, AND TOLHURST DJ. Receptive field organization
of complex cells in the cat’s striate cortex.J Physiol (Lond)283: 79–99,
1978a.

MOVSHON JA, THOMPSON ID, AND TOLHURST DJ. Spatial summation in the
receptive fields of simple cells in the cat’s striate cortex.J Physiol (Lond)
283: 53–77, 1978b.

OHZAWA I, SCLAR G, AND FREEMAN RD. Contrast gain control in the cat visual
cortex.Nature298: 266–268, 1982.

PANZERI S AND SCHULTZ SR. A unified approach to the study of temporal,
correlational and rate coding.Neural Comput.In press.

PANZERI S AND TREVES A. Analytical estimates of limited sampling biases in
different information measures.Network7: 87–100, 1996.

PURPURA K, CHEE-ORTS MN, AND OPTICAN LM. Temporal encoding of texture
properties in visual cortex of awake monkey.Soc Neurosci Abstr19: 315.15,
1993.

REICH DS, MECHLER F, PURPURA KP, AND VICTOR JD. Interspike intervals,
receptive fields, and information encoding in primary visual cortex.J Neu-
rosci 20: 1964–1974, 2000a.

REICH DS, MECHLER F, AND VICTOR JD. Information rates in the responses of
V1 neurons to temporally rich stimuli.Invest Ophthalmol Vis Sci (Suppl)41:
53, 2000b.

REICH DS, VICTOR JD,AND KNIGHT BW. The power ratio and the interval map:
spiking models and extracellular recordings.J Neurosci18: 10090–10104,
1998.

REID RC, VICTOR JD,AND SHAPLEY RM. Broadband temporal stimuli decrease
the integration time of neurons in cat striate cortex.Vis Neurosci9: 39–45,
1992.

REID RC, VICTOR JD, AND SHAPLEY RM. The use of m-sequences in the
analysis of visual neurons: linear receptive field properties.Vis Neurosci14:
1015–1027, 1997.

REINAGEL P AND REID RC. Temporal coding of visual information in the
thalamus.J Neurosci20: 5392–5400, 2000.

RICHMOND BJ AND OPTICAN LM. Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex. II. Information
transmission.J Neurophysiol64: 370–380, 1990.

RIEHLE A, GRUN S, DIESMANN M, AND AERTSENA. Spike synchronization and
rate modulation differentially involved in motor cortical function.Science
278: 1950–1953, 1997.

RUYTER VAN STEVENINCK RR DE, LEWEN GD, STRONG SP, KOBERLE R, AND

BIALEK W. Reproducibility and variability in neural spike trains.Science
275: 1805–1808, 1997.

SCLAR G. Expression of “retinal” contrast gain control by neurons of the cat’s
lateral geniculate nucleus.Exp Brain Res66: 589–596, 1987.

SCLAR G, LENNIE P,AND DEPRIEST DD. Contrast adaptation in striate cortex of
macaque.Vision Res29: 747–755, 1989.

SHADLEN MN AND NEWSOME WT. The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding.J Neu-
rosci 18: 3870–3896, 1998.

SHAPLEY RM AND VICTOR JD. How the contrast gain control modifies the
frequency responses of cat retinal ganglion cells.J Physiol (Lond)318:
161–179, 1981.

SKOTTUN BC, DE VALOIS RL, GROSOFDH, MOVSHON JA, ALBRECHT DG, AND

BONDS AB. Classifying simple and complex cells on the basis of response
modulation.Vision Res31: 1079–1086, 1991.

STRONG SP, KOBERLE R, RUYTER VAN STEVENINCK RR DE, AND BIALEK W.
Entropy and information in neural spike trains.Phys Rev Lett80: 197–200,
1998.

SUTTER EE. A deterministic approach to nonlinear systems analysis. In:Non-
linear Vision: Determination of Neural Receptive Fields, Function, and
Networks, edited by Pinter RB and Nabet B. Boca Raton, FL: CRC, 1992,
171–220.

TOLHURST DJ. The amount of information transmitted about contrast by
neurones in the cat’s visual cortex.Vis Neurosci2: 409–413, 1989.

TOLHURST DJ AND MOVSHON JA. Spatial and temporal contrast sensitivity of
striate cortical neurones.Nature257: 674–675, 1975.

VAADIA E, HAALMAN I, ABELES M, BERGMAN H, PRUT Y, SLOVIN H, AND

AERTSENA. Dynamics of neuronal interactions in monkey cortex in relation
to behavioural events.Nature373: 515–518, 1995.

VICTOR JD. Asymptotic bias in information estimates and the exponential
(Bell) polynomials.Neural Comput.In press.

VICTOR JD AND PURPURA KP. Nature and precision of temporal coding in
visual cortex: a metric-space analysis.J Neurophysiol76: 1310–1326, 1996.

VICTOR JD AND PURPURA KP. Spatial phase and the temporal structure of the
response to gratings in V1.J Neurophysiol80: 554–571, 1998.

WIENER MC AND RICHMOND BJ. Using response models to estimate channel
capacity for neuronal classification of stationary visual stimuli using tem-
poral coding.J Neurophysiol82: 2861–2875, 1999.

318 D. S. REICH, F. MECHLER, AND J. D. VICTOR


