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Reich, Daniel S., Jonathan D. Victor, Bruce W. Knight, Tsu- given stimulus, even while the response itself changes dra-
yoshi Ozaki, and Ehud Kaplan. Response variability and timing matically. This behavior was found in every cell examined
precision of neuronal spike trains in vivo. J. Neurophysiol. 77: in our study. A simple theoretical model for neuronal fir-
2836–2841, 1977. We report that neuronal spike trains can exhibit ing—the leaky or ‘‘forgetful’’ integrator (Knight 1972) —
high, stimulus-dependent temporal precision even while the trial- also produces this sort of spiking behavior and provides ato-trial response variability, measured in several traditional ways,

straight-forward resolution of the apparent paradox.remains substantially independent of the stimulus. We show that
retinal ganglion cells and neurons in the lateral geniculate nucleus

M E T H O D S(LGN) of cats in vivo display both these aspects of firing behavior,
which have previously been reported to be contradictory. We de- Experimentsvelop a simple model that treats neurons as ‘‘leaky’’ integrate-and-
fire devices and show that it, too, can exhibit both behaviors. We We recorded extracellularly the activity of lateral geniculate
consider the implications of our findings for the problem of neural nucleus (LGN) neurons and their retinal inputs in anesthetized,
coding. paralyzed cats (Kaplan et al. 1987). Experiments were performed

on two male and one female adult cats. The behavior described in
this paper was seen in all four retinal ganglion and LGN cells from

I N T R O D U C T I O N which recordings suitable for this type of analysis were made.
Anesthesia was induced by intramuscular injections of xylazine
(Rompun, 1 mg/kg) and ketamine (Ketaset, 10 mg/kg) and wasThe variability of neurons’ response patterns has been
maintained throughout surgery and the recording process with in-studied extensively and is widely considered to be larger
travenous injections of thiopental (Pentothal, 2.5%, 2–6(see Shadlen and Newsome 1994 for a review). For retinal
mgrkg01

rhr01) . Paralysis was induced and maintained with vec-ganglion cells in intact mammals, one particular measure of
uronium (Norcuron, 0.25 mgrkg01

rhr01) or pancuronium (Pavu-trial-to-trial variability, the standard deviation of the cell’s lon, 0.3–0.5 mgrkg01
rhr01) . Gas-permeable hard contact lenses

responses to multiple cycles of a sinusoidal grating, is consis- were used to prevent corneal drying, and artificial pupils (3 mm
tently independent of contrast, region (center or surround) diam) were placed in front of the eyes. Blood pressure, heart rate,
or fraction of the receptive field stimulated, and overall illu- and expired CO2 were continuously maintained within the physio-
mination (Croner et al. 1993; Reich et al. 1994). On the logical range. The optical quality of the animals’ eyes was checked

regularly by ophthalmoscopy. Our experimental protocol was ap-other hand, retinal ganglion cells in rabbits and salamanders
proved by the Rockefeller University Animal Care and Use Com-respond with high temporal precision to a flickering full-
mittee and was in accordance with National Institutes of Healthfield light stimulus (Berry et al. 1996), as do cells in rat
guidelines for the use of higher mammals in neuroscience experi-neocortical slices that are directly injected with time-varying
ments.current (although these cells respond less precisely to steady

A tungsten–in-glass electrode (5–10-m tip) recorded spikesstimulation) (Mainen and Sejnowski 1995). On the basis of from a single LGN neuron and from its retinal ganglion cell input
their results, Mainen and Sejnowski suggest that the ‘‘intrin- in the form of extracellular synaptic (S) potentials (Bishop et al.
sic noise’’ of neurons is low. Moreover, even in the so- 1958). The electrode signal was amplified and monitored conven-
called ‘‘higher areas’’ of the visual cortex of awake mon- tionally. Visual stimuli were created on a white CRT (Conrac, 135
keys, neurons can respond to visual stimuli by firing spikes frames/s, 100 cd/m2 mean luminance) by specialized equipment

developed in our laboratory. The eyes were refracted to focus atat the same times in every stimulus presentation (Bair and
the viewing distance of 114 cm. LGN spikes and S potentials wereKoch 1996). Thus there continues to be substantial debate
timed to the nearest 0.1 ms.regarding the size of variability at the various levels of the

mammalian visual system (Gur et al. 1996; Softky and Koch
Model1993).

Although these widely divergent reports of the size and The model we used is based on the evolution of a dimensionless
nature of neuronal variability may appear inherently para- state variable whose value, compared to a stochastic firing thresh-

old, determines when the cell fires (Knight 1972). The state vari-doxical, they are not. We show here that neurons in vivo
able evolves byroutinely exhibit, in the same spike trains, simultaneously,

both high, stimulus-dependent temporal precision and stimu-
V ( t) Å *

t

0

f ( t)e0( t0t*) /tdt *,lus-independent variability among repeated responses to a
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where t is the time since the previous spike, t is the time constant 2A shows the PSTH of the response of an X-type, ON-center
of the leak, and retinal ganglion cell to 1,024 cycles of a 4-Hz drifting grating

at 32 and 100% contrast. Also shown is a plot of responsef ( t) Å A0 / A1 cos (vt / w)
versus contrast (on a semilogarithmic scale), which demon-

is the sinusoidally modulated input. This model is a limiting case strates that, whereas the response amplitude increases sig-
of the Hodgkin-Huxley equations for neuronal firing (Knight nificantly with contrast, the three measures of response vari-
1972), and the state variable V ( t) plays the role of the intracellular ability remain relatively constant. Preferred firing times are
voltage. V ( t) is recalculated every 0.1 ms. The cell fires when again evident in the 100% case, with a precision of approxi-V ( t) reaches a threshold whose value is chosen randomly from a

mately {5 ms for the first few spikes; we show one of theuniform distribution (in our simulation, between 0.7 and 0.9); a
Gaussian distributions used to measure this timing precision.new threshold is calculated after each spike is fired. (Versions of
Thus response variability (measured in any of the three waysthe simulation in which the threshold changes every 0.1 ms or in
shown in the figure) is independent of whether spikes arewhich the probability of firing increases exponentially as the state

variable nears the threshold yield similar results.) The single pa- precisely timed (in the high-contrast regime) or not ( in the
rameter that was varied in this study was A1 , the amplitude of the low-contrast regime).
sinusoidal stimulus. The constant parameters were A0 Å 50.0 imp/ Figure 2B shows the response of an X-type, OFF-center
s (IPS); v /2p Å 4 Hz; w Å p; t Å 20 ms. The first few stimulus cell to the same stimulus. The temporal precision is on the
cycles were discarded to ensure steady-state behavior of the model. order of {3 ms. Note that the response variability for this

cell is not constant over low contrasts; that is because this
Analysis OFF cell fires very few spikes at low contrast. However, once

the mean rate exceeds 3 IPS at 2% contrast, the responseWe calculated 1) high-resolution (1-ms bins) peristimulus time
variability reaches its maximum value and remains flat there-histograms, representing the binned nerve impulses fired in re-
after, even while the firing precision (and mean firing rate)sponse to multiple presentations of the same stimulus, to show the
increases dramatically. Thus despite the differences from thefiring rate at any time during the response cycle and 2) mean
ON-center cell at low contrasts, the data from this cell supportrates and stimulus-locked Fourier fundamental components of these

response records to evaluate the amplitude and variability of the our conclusion that response variability is stimulus-indepen-
neuron’s response. We also calculated three separate measures of dent whereas firing precision is stimulus-dependent, at least
response variability: 1) the vector standard deviation of the single- over a reasonable range of contrasts.
cycle Fourier fundamental component (Croner et al. 1993), which Fourier analysis reveals that the precise spike timing is
is the square root of the sum of the variances of the real and not an artifact of the frame rate (135 Hz) of the stimulating
imaginary parts of the Fourier components, taken separately; 2) CRT. For the data presented in Fig. 1C , for example, thethe standard deviation of the single-cycle Fourier fundamental am-

nearest peaks in the power spectrum of the spike train occurplitudes (a phase-independent measure that is always smaller than
at 121 and 140 Hz; for the data in Fig. 2A there is a smallthe amplitude and phase measure); and 3) the standard deviation
peak at 90 Hz; and for the data in Fig. 2B , the nearest peaksof the spike count in each trial (also known as the mean rate
are at 120 and 145 Hz. Moreover, the interpeak intervalsvariability) .
vary throughout the response cycle.

We show now that a simple model (namely, a leaky inte-R E S U L T S
grate-and-fire neuron with a stochastic threshold, which fires
in response to sufficient input but which forgets its previousFigure 1 shows the peristimulus time histogram (PSTH)

of an LGN neuron’s response to 1,024 cycles of a drifting input at an exponential rate) robustly exhibits, in the same
response discharge, high, stimulus-dependent temporal firing4-Hz sinusoidal grating, presented at three contrasts (0, 32,

and 100%). There are no preferred times for spikes to occur precision together with stimulus-independent response vari-
ability. The key parameter of the model is the rate at whichin the unmodulated (0%) case. At 32% contrast, the first

spike in each response tends to be fired at a reliable and the neuron forgets its previous input. Responses to strongly
modulated stimuli typically include a period of intense firingreproducible time (the large peak), but later spikes are more

widely distributed (Fig. 1B) . At 100% contrast, however, alternating with a quiet period when no spikes are fired (i.e.,
when the model cell is relatively inhibited) . If the timethere are several large but narrow peaks in the PSTH that

occur after the initial spike (Fig. 1C) . As a measure of constant of the leak (a stimulus-independent parameter) is
shorter than the quiet period (a stimulus-dependent responsetemporal precision akin to that used by other investigators

(Mainen and Sejnowski 1995), we fit each peak in the PSTH property) , the neuron ‘‘forgets’’ the residual input that is
integrated during the active portion of the response. There-to a Gaussian distribution and measured the width of each

distribution in the 100% contrast situation. By this measure, fore the neuron’s initial state is restored after the inactive
period of every stimulus cycle at high modulation depth,the temporal precision for the first few spikes of this cell’s

response was on the order of {5 ms. Figure 1D is a raster and response fluctuations do not accumulate from cycle to
cycle.plot of all the spike times for the responses whose PSTH is

shown in Fig. 1C . The slow drift seen in the rasters indicates Figure 3A shows PSTHs of the model’s response to 1,024
cycles of a 4-Hz sinusoidal grating at 0, 16, and 100% con-that our measure of precision is conservative, and the small,

gradual change in response pattern that occurs through trial trast. Although the range of variation of the stochastic thresh-
old is the same in all three cases, the firing precision is highnumber 250 could be due to a change in eye position. For

the sake of completeness, we have shown the responses to at high contrast and low at lower contrasts. Figure 3B plots
the model’s response versus contrast, showing that all mea-all 1,024 cycles of the stimulus.

Similar behavior is found in retinal ganglion cells. Figure sures of response variability are independent of contrast,
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FIG. 1. Neurons in vivo can fire action potentials at
precise, reproducible times. Peristimulus time histograms
(PSTHs) from an X-type, ON-center cell in the cat lateral
geniculate nucleus for 1,024 cycles of a 4 Hz, 0.15 cycles/
deg, drifting sinusoidal grating. Vertical axis represents
the firing rate in imp/s (IPS) in each 1-ms bin. A : 0%
contrast. B : 32% contrast. C : 100% contrast. Note: vertical
scale in A is 10 times greater than in B and C . D : raster
plot of the data from C , showing that the cell’s response
is relatively stationary across response cycles.

whereas the response amplitude, measured as the Fourier of the first few spikes in each response and the imprecise
firing of the last few.fundamental or the mean rate, generally increases with con-

trast. Note that either a stochastic threshold or additive (stimu-
lus-independent) background noise in the cell’s membraneNote that at 100% contrast the firing precision is lower

for spikes that occur later in the response cycle, as the width potential is sufficient to ensure that the model does not re-
spond identically to every presentation of the stimulus. Bothof the histogram’s sharp peaks increases with time. This

change occurs because errors in absolute spike time (due to of these types of input noise yield qualitatively similar
PSTHs. In fact, our rather abstract model with a fluctuatingthe stochastic threshold) accumulate as successive spikes

are fired during each response cycle. Figure 3C shows the firing threshold, and the more physiologically realistic model
in which the noise is introduced by a stimulus-independentprobability distribution of the internal state variable of the

model (which resets to zero after each spike is fired) at three fluctuating input current, are very closely related. Imagine
a simulation in which we followed the state variable fromdifferent times during the stimulus cycle (50, 75, and 190

ms), all at 100% contrast. At 50 ms, before any spikes have one spike to the next in the absence of the fluctuating input
current and then followed it in a large sample of cases withbeen fired, the distribution is very narrow because there has

been no opportunity for variability to accumulate. Because the noisy current present. At the moment that each noisy
run crosses threshold, subtract from the state variable theof the model’s stochastic threshold, the first spike in each

trial occurs at a slightly different time (the 1st peak in the value it had at that moment in the noise-free run. Our collec-
tion of differences has a probability distribution that can be100% contrast histogram in Fig. 3A is narrow but has a

nonzero width) . Each spike causes the state variable to reset regarded as an equivalent distribution of threshold values
for the stochastic-threshold case and will yield an identicalto zero, so the amount of input that has accumulated by 75

ms varies depending on when the first spike was actually distribution of interspike interval values for that spike pair.
If the noise does not dominate the result, the two kinds offired. Hence the wider distribution at 75 ms. The distribution

of the state variable at an intermediate time (e.g., 65 ms in systems have the same response characteristics. However,
the actual distribution of the state variable at any time isthe middle of the 1st peak of the histogram) is bimodal,

because on some trials the cell has already fired and the state different ( i.e., the state variable has intrinsic variability that
is reflected in its distribution even before the 1st spike isvariable is near zero, whereas on others the cell has not yet

fired and the state variable is near threshold. At 190 ms, fired).
after all the spikes have occurred, the distribution of the
state variable is wider than at 50 or 75 ms, because a great D I S C U S S I O N
deal of variability has accumulated after many spikes have
fired. The difference in the width of the distribution between Our results indicate that analyzing the size and nature of

neuronal variability is not straightforward and that several75 and 190 ms is sufficient to account for the precise firing
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FIG. 2. Spike timing can be precise even
while response variability is substantial. A :
X-type, ON-center retinal ganglion cell re-
corded as sypnaptic (S) potentials in the cat
lateral geniculate nucleus (LGN). Stimulus
was a drifting grating (4 Hz, 1.2 cycles/deg,
1,024 cycles) . PSTHs for the responses to
stimuli at 32 and 100% contrast. Again, the
vertical axis shows the firing rate in each 1-
ms bin. Bottom plot : cell’s response vs. con-
trast, on a semilogarithmic scale. Five data
points plotted for each contrast: mean firing
rate (●) , amplitude of the mean Fourier fun-
damental (j) , variability of the mean rate
(s) , variability of the Fourier fundamentals
(h) , and phase-independent variability of the
Fourier fundamentals ()) . B : as in A , but
here the cell is an X-type, OFF-center retinal
ganglion cell stimulated with a drifting grat-
ing at 32 and 100% contrast (4 Hz, 1.05 cy-
cles/deg, 1,024 cycles) . Note that the cell
exhibited a 1–2 min period of nonstationary
firing (obvious in the raster diagrams, not
shown here) during 2 of the stimulus condi-
tions (4 and 16% contrast) ; this corresponded
to roughly 250–500 cycles of the 4-Hz stimu-
lus. Including these trials in the response and
response variability calculations yielded un-
expectedly high values at those 2 contrasts;
however, deleting those trials at the 2 con-
trasts (and analyzing the 750–1,000 re-
maining ones) resulted in values that clearly
followed the trend for the 8 other contrasts
we tested. We plot the data analyzed without
the ‘‘variant’’ firing for the sake of clarity.

measures of variability must be considered. For example, we The firing precision we report here is lower than that
recently reported for neurons in a rat neocortical sliceconsider the response variability, measured as the standard

deviation of the fundamental Fourier components for each (Mainen and Sejnowski 1995). This result is not surprising;
our experiments were performed in vivo, where synapticresponse cycle (considering or disregarding the phase of the

response) and as the standard deviation of the spike count activity is higher, and in a different region of the brain. In
addition, our stimuli were delivered through the natural neu-in each cycle, as well as the variability of timing of individ-

ual spikes. It is not obvious that there is any simple relation- ral pathway, in which variability could accumulate at each
of several stages. Moreover, the firing precision we foundship between these various measures of variability.
is on the same order of magnitude as that reported in theThese two general types of variability—one substantially
retinae of salamanders and rabbits (Berry et al. 1996) andindependent of the stimulus and the other strongly dependent
even in the medial temporal visual area (area MT) of awakeon the stimulus—can both be generated by a single process:
monkeys (Bair and Koch 1996).background noise that affects the neuron’s membrane poten-

tial or, equivalently, fluctuations in the firing threshold. This Several investigators have proposed that the timing of
individual spikes, and not merely the mean firing rate or thenoise could come, for example, from the barrage of excit-

atory and inhibitory inputs that converge on many cells in Fourier fundamental, carries information that is accessible
to the nervous system (Abeles et al. 1994; Bialek et al. 1991;the brain (Shadlen and Newsome 1994). In our model, all

the various potential sources of neuronal noise are included Bullock 1968; Hopfield 1995; Richmond et al. 1987; Softky
1995; Victor and Purpura 1996). Our data do not providein a single parameter, the fluctuation in the firing threshold

of the model cell. information about which response measure the neuron uses
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FIG. 3. A leaky (forgetful) integrate-and-
fire model, with noise added to its firing
threshold, simultaneously displays high timing
precision and substantial response variability.
A : PSTHs of the model’s response to 1,024
presentations of a 4-Hz sinusoidal stimulus at
0, 16, and 100% contrast. Arrows at 50, 75,
and 190 ms in the 100% panel indicate times
for which the state variable’s distribution is
shown in C . B : model’s response vs. contrast.
C : probability distribution of the model’s state
variable, akin to the membrane potential of a
real neuron, at 3 times during the cycle, in
response to stimulation at 100% contrast. See
Fig. 2 for definitions of symbols.
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