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Abstract—We describe a novel method for the analysis of by analysis of the individual time seriés.g., autoregres-
multivariate time series that exploits the dynamic relationships gjye modeling, spectral analysis, and nonlinear

among the multiple signals. The approach resolves the multi- . . ..
variate time series into hierarchically dependent underlying techmque@). Typically, the goal of the analysis is to

sources, each driven by noise input and influencing subordinate €xtract the underlying biological sources of the multi-
sources in the hierarchy. Implementation of this hierarchical variate temporal data, in order to characterize each
decomposition(HD) combines principal components analysis source more fully and to describe the system more pre-
(PCA), autoregressive modeling, and a novel search strategy qjqo|, - Unfortunately, the criterion of independence of

among orthogonal rotations. For model systems conforming to o .
this hierarchical structure, HD accurately extracts the underly- Sources enforced by standard decomposition techniques

ing sources, whereas PCA or independent components analysignay not be appropriate for real biological systems, in
does not. The interdependencies of cortical, subcortical, and which the underlying sources may well have dynamic
brainstem networks suggest application of HD to multivariate interrelationships. With this in mind, we developed a

measures of brain activity. We show first that HD indeed re- | h t ltivariate ti . Vi
solves temporal lobe ictal electrocorticographic data into nearly NOVE! approach 1o mullivariate time series analysiS—

hierarchical form. A previous analysis of these data identified hierarchical decomposition(HD)—that exploits the
characteristic nonlinearities in the PCA-derived temporal com- causal(i.e., forward in timé¢ dynamic content of multi-
ponents that resembled those seen in absépett ma) sei- variate temporal data.

zure electroencephalographic traces. However, the components . .
containing these characteristic nonlinearities accounted for only | In contrast to HD, standard decomposition techniques

a small fraction of the power. Analysis of these data with HD  including principal components analy§BCA), alone or
reveals furthermore that components containing characteristic modified by varimax rotationéVR),* independent com-

nonlinearities, though small, can be at the origin of the hierar- ponents analysi§CA),?> and non-negative matrix factor-

chy. This finding supports the link between temporal lobe and __ .. 10 ; ; ;
absence epilepsy. @001 Biomedical Engineering Society. ization (NMF), ™ do not exploit causality. Briefly, PCA
[DOI: 10.1114/1.1424914 seeks sources that are uncorrelai@dthogonal. ICA

seeks sources that are independent in an information-
theoretic sense. VR seeks a transformation that maxi-
Keywords—Nonlinear dynamics, Autoregression, Epilepsy, mizes the sum of the variances in each extracted source.
Principal components, Independent components, Spatiotempo-NMF attempts to find sources whose weights are non-

ral, Electroencephalography, Electrocorticography. negative (i.e., only additive, not subtractive, combina-
tions of sources are allowgdThese assumptions are
INTRODUCTION appropriate for image analysis or for separation of inde-

| pendent time seriege.g., the “cocktail party problem,”

Multivariate time series are abundant in biomedica separating one voice from the cacophony of other con-
systems, from spatiotemporal signals such as the electro-

encephalogranfEEG), to temporal patterns of gene ex- versations and background noisbut may be unsuitable

pression observed with GeneCHiptechnologies. One for multivariate systems or.lglnatmg from dynamically
. o interrelated sources. In particular, these methods assume
common approach for the analysis of multivariate data

involves decomposition into several independent time se- that the order of data points is irrelevant, and thus woulld

. L . roduce equivalent results for the original, time-reversed
ries (e.g., by principal components analysjsfollowed P ' '
(e.g., by p P P i or randomly shuffled data.

] ] As described below, the HD method takes advantage

Address correspondence to Michael A. Repucci, Department of of the signal dynamics and thus may achieve a more
Neurology and Neuroscience, Weill Graduate School of Medical Sci- . ! . . .

ence of Cornell University, 1300 York Avenue, New York, Ny 10021. useful resolution of the sources of a multivariate time

series. HD was designed with physiologically derived
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multivariate time series in mind. Such time series often nonlinear interactions at lags around 90 and 150 ms,
result from dynamically interrelated generators, in which suggested a common underlying mechanism. These char-
some of the generators have a driving role. For example, acteristic dynamics, however, were observed only in
the EEG exhibits synchronizations, desynchronizations, components that accounted for a small fraction of the
and rhythmic oscillations resulting from cortical, subcor- variance of the original datéhird, fourth, or fifth rank-
tical, and brainstem network activity: these are charac- ing components, when ordered by the amount of vari-
teristics anticipated in a dynamically interrelated ance explained thus leaving their biological significance
system® To exploit these observations, we assume that uncertain. By contrast, the HD method demonstrates that
the generators are organized hierarchically. Namely, we these nonlinearities are present in the more autonomous
assume that there is an autonomous generator whoseomponents(i.e., the components in the system that
state depends only on noise input and feedback from drive the remaining componentsThis indicates that the
itself (i.e., an autoregressive proces&ach successive size of the components does not necessarily correlate
generator is influenced by an independent noise input, itswith their physiological importance, and thus strengthens
own state, and the state of more dominant generators inthe evidence that temporal lobe and absence seizures
the hierarchy, such that the last generator is influencedshare a common mechanism. Here, the ability of HD to
by noise input and the state afl generators. The HD  resolve the underlying generators on the basis of dynami-
method, as presented below, attempts to account for thecal interrelationships, rather than by independence or
temporal dynamics in a multivariate data set by resolving power, sheds light on a prior puzzle.

it into a model of this form.

We show that if a system does conform to this hier- METHODS
archical structure, and the multivariate autoregressive
model includes sufficient terms, then the HD resolution Multivariate ECoG data were previously collected as
is unique and will recover the hierarchically related briefly described hergfor further details, see Schiff
sources. Moreover, the HD approach will not be mislead- et al'®). Epilepsy patients with medication-resistant tem-
ing for an independent system,; if the underlying sources poral lobe seizures were studied with subdural electrode
are truly independent, the HD algorithm will uncover grids and strips in the course of presurgical evaluation
them as well. On the other hand, there is no guaranteefor temporal lobectomy. ECoG signals were recorded by
that all multivariate time series are reducible to hierar- g 64-channel Telefactor Beehiv@Vest Conshohocken,
chical form—one such example is a system with recip- PA) telemetry systengsampling rate of 200 Hz, low-pass
rocally related generators. For such systems, failure of filter at 0.3 Hz and high-pass filter at 70 Hzand con-
this approach to identify a hierarchical resolution is posi- current video images of each patient were obtained. Thir-
tive evidence for the presence of a more complex net- teen to 16 channels of clear artifact-free recordings of
work structure. ictal events(occurring during wakefulnegswere resa-

In brief, the HD approach consists of building a mul- mpled at 100 Hz(2:1); the mean was subtracted and
tivariate linear autoregressivdILAR) modef from the detrending applied. Typically5 s of data recorded from
PCA-derived components of the original data set. This is within an ongoing ictal event were analyzed as described
followed by seeking a coordinate transformation that ro- in the text.
tates the MLAR model to make it as consistent as pos-  All data analyses herein were carried out wisTLAB
sible with a hierarchical interrelationship among compo- functions and scriptéversion 5.3, release 11, Pentium I
nents. We demonstrate that for simulated multivariate PC running Windows 2000 which are archived, along
time series with truly hierarchical structure, HD accu- with a sample data set, at http://www.med.cornell.edu/
rately extracts the underlying generators of the system. research/hds. We consider a multivariate data set consist-
We then use the HD method to analyze ictal electrocor- ing of N evenly spaced observations in time, on each of
ticographic(ECoQ records, the application that inspired M channels M <N), represented as a matriX (M
the HD approach. Analysis of these data reveals that x N). In our application to ECoG datd=512 (approxi-
significant hierarchical structure is present in all records; mateyy 5 s of data sampled at 100 Mzand typically
this fact is not obvious by PCA or ICA decomposition M =14 (epicortical recording sités
alone. Subsequent analysis of these HD resolved compo-
nents adds further insight to the dynamic nature of an
ictal discharge.

In previous work!® we identified certain characteristic The original data matrix is processed by PCAsee
dynamic nonlinearities in EEG traces obtained during file “pca.m” archived in “HD_ABME _code.zip” at
absenceseizures(also known agetit mal seizure and http://www.med.cornell.edu/research/hdgelding a sec-
in the PCA-derived temporal components from temporal ond matrixY (M X N), consisting of linear combinations
lobe ictal ECoG data. The similarities, most notably the of P orthogonal principal components,

Principal Components Analysis (PCA)
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Y=CTWT. (1) whereR is a PXN matrix of residual valuesy,, is the
mean value of thepth component, andA is a PXP

Cis aPXM matrix whose rows are the spatial weights, XL three-dimensional array of model coefficients. It is
T is a PXN matrix whose rows are the temporal helpful to view the model coefficientd as a set ofl
weights, andV is aPx P diagonal matrix of eigenvalues ~Planes, each of which is Bx P matrix. Thelth plane of
whose elements, squared, are the amount of variance® describes the estimated influence of the signals at a
explained by each principal component. For any number time n—1, on the signal values at time Namely,Aq p|
of componentsP [P<min(M,N)], PCA guarantees that IS the influence of thgth component at théth time lag

the unexplained variance betwe#nand Y, on the current value of thpth component.
The model coefficienté\ are determined by minimiz-
Reca=tl(X—=Y)(X=Y)T] ®) ing the sum of squared residual valudise innovations,

Ry.n) in the model

is minimized (i.e., Y is the “best fit" to X). PN
This decomposition ofX into orthogonal(i.e., inde- R _ E 2 R 4)

pendent or instantaneously uncorrelatetbmponents MLAR s =y P

C andT, however, is not unique. Replacing the temporal

componentsT by GT (for any nonsingular linear trans-  via the Yule—Walker equatiorf8.We choose the maxi-

formation G) and, accordingly, the spatial components mum lag L (the order of the MLAR modgl by the

C by WG H)'WC, leaves the matrix Y  akaike criterion (AIC),! a statistical justification based

unc?ang??: 3 T[(W_l(G_l)TWC)T]W[GT] on whether the amount of reduction in residual variance
=C'WG "W "WGT=C 'WT=Y, where we have used s sufficient to justify the inclusion of additional linear
basic properties of the transpose, and the fact Wias model terms. In the examples below this typically yields

diagonal. The specific, but arbitrary, solution identified 3 value ofL from 2 to 4 lags.

by PCA consists of matrice€ and T whose rows are

orthonormal, and a matrixV whose diagonal elements

are non-negative and ordered from largest to smallest. Decorrelation of the MLAR Innovations
Resolving the nonuniqueness of the decomposition ob-
tained with Eq.(1) is the focus of the remainder of the
HD analysis(i.e., finding a unique, nonarbitrary transfor-
mation G).

We use PCA as a first step in the analysis in order to
reduce the dimension of the system by removing instru-
mental noise from the signawithout removing biologi-
cal noisé?. For real data, thé® temporal components
are selected such that each component accounts for
fraction of variance greater than or equal\io %, except . . s
where noted. Typically this allows us to reduce a 13- to each channel of mnovgﬂpns has equal vqnaﬁc&e, no
16-channel system to 3—5 components that together aC_partlcular_source is noisier than anothe_:'l’h|s amounts
count for greater than 80% of the variance. Selecting ato an arbitrary choice for the overall siz€ of each gen-
small number of components reduces the computationalerator' but makes no further assumptions about the dy-

burden for the following analyses. namical structure of the _system.
Under these assumptions, we seek transformations

o _ _ that orthonormalize the innovatior®, ,—that is, KR)
Multivariate Linear Autoregression (MLAR) (KR)T=KRR'KT=1, wherel is the identity matrix. One
such matrixK can be obtained by dividing the rows of
the eigenvectors oRR" by the square root of the cor-
responding eigenvalue$The rows of the matrixK are
necessarily orthogonal, since they are scalar multiples of
the eigenvectors of the positive symmetric mafR'.)

The transformatiorK applied to Eq.(3) yields new tem-
poral componentsT’'=KT, new autoregressive coeffi-
cients A/ T=KA[K ™! (for I=1---L, where A denotes

The first step in resolving the nonuniqueness of the
PCA decomposition relies upon thH&xX N matrix of in-
novationsR;, ,. These quantities are viewed as random
terms that drive the® channels of the MLAR model.
Thus, if T represents distinct underlying generators, then
the corresponding driving terms in E@) will be un-
correlated. For this reason, we require that the trans-
Jormed temporal componentST decorrelateR, ,. Ad-
ditionally, it is analytically convenient to assume that

We next create a MLAR model of the temporal com-
ponentsT in a form equivalent to that proposed by Gersh
and Yonemoto (see file “mlar.m” archived in
“HD _ABME _code.zip” at http://www.med.cornell.edu/
research/hd$ The P temporal componentsi.e., each
elementT, ,—nth sample of thepth component are
modeled by arl-term autoregression:

P L the transpose of\|), and decorrelated, normalized inno-

: L .
T =R+ u+ Ay o T, 3 vations R'=KR. Nevertheless, this does not fully re-
pn— o Hp q§=:l Z’l aptian-t @ solve the nonuniqueness problem, since premultiplying
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by any orthogonal transformatio® (i.e., Q such that
QQ"'=Q'Q=1) yields an alternative matrixG=QK,
for which GR is likewise decorrelated and normal-
ized: (GR)(GR)'=(QKR)(QKR)"=QKRRK'QT
=QIQ"=I.

Novel Search Among Orthogonal Rotations

At this point, we have reduced the nonuniqueness of
the PCA decomposition to an arbitrary scale factor for
each channel—the normalization performed above will
suffice—and any orthogonal transformati@h We now
search for a rotation of the temporal compone®s’
that is consistent with the hierarchical structure proposed
in the introduction. Recall that the autoregressive coeffi-
cients A’ from the decorrelated MLAR model specify
the dynamic interrelationships among tRecomponents
at up toL lags. Accordingly, the HD algorithm seeks a
PX P transformationQ that simultaneously transforms
all L matricesA/ into upper-triangular form(see file
“rotation.m” archived in “HD_ABME_code.zip” at
http://www.med.cornell.edu/research/hdsWe require
that Q be orthogonal, thereby guaranteeing that the re-
sidualsRy, ar are unchanged and that the orthonormality
of the innovationsR’ is preserved. The search is further
restricted to the set of rotatiorise., detQ)=1] to avoid
arbitrary changes in the sign of an odd number of the
components.

Q is obtained iteratively via a procedure motivated by
Jacobi matrix diagonalizatiott:** We begin with an ar-
bitrary rotationQ, (see below, and successively apply a
sequence of individual plane rotatiods each about a
pair of axeq u,v]. The sequence of plane rotations con-
sists of multiple cycles through each of the possible
choices of axis pairs. That is,

Q:Jud ,Ud( efd)' : "]ul,ul( 0d+1)~]ud ,Ud( ed)

+Ju, 0,(01)Qo, ®

Ul,l}l

whered=P(P—1)/2 is the number of unique axis pairs
(i.e., for a 3x3 matrix d=3, for a 4<4 matrix d=6,
and so o f is the number of cycles through all axis
pairs, and eachi, ,(6) is a rotation by an anglé about
axes[u,v]. For example,

1 0 0 0

0O cogd) O sino)
Bd0=l0 o 1 o (®)

0 -—sin(#) 0 cog6)

At the nth stage in the iterationg,,...,0,_, are held
fixed, and 6, is determined by minimizing the sum of

and MCTOR

squared elements below the diagofthke residualsR;p)
in all L matricesA| (see the Appendix

L P p-1
Rup=2 2 2 [(QAQN), 1% (7)
I=1p=2qg=1

The algorithm terminates when a full cycle dfitera-
tions passes without further reduction Bf;. In other
words, termination occurs when tHe matricesA| are
concurrently transformed to be as close as possible to
upper-triangular form. If the generators of the original
system can be cast in a hierarchical form, this transfor-
mation returns a new set of upper-triangular matrices,
Ayp: for other systems, this procedure yields matrices
Ayp that are as nearly upper triangular as possible, in the
sense thatRyp has reached the minimum attainable
value.

This process of minimization, by successive applica-
tion of rotationsJ, ,(6), in a manner analogous to the
Jacobi matrix diagonalization procedure, falls into the
class of “direction set” method&’® Direction set methods
entail sequential one-dimensional minimizations—here,
determination of6;q about the axis paifuq,vq]—o0f a
multidimensional—hered-dimensional—space. The se-
guence of axis pairs is chosen to cycle through all pos-
sible pairs of axedi.e., for a 4<4 matrix, we used
=6 and the cycld?2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [4,

3], [2, 1],..). Numerical experimentation indicates that
there is no particular advantage to any sequence, pro-
vided that each axis pair is examined once per cyte.
general, however, direction set methods tend to be more
efficient when the gradient of the function is used to
guide the sequencé) As with any multidimensional
minimization, there is a risk of being trapped in a local
minimum. While simulated annealing methods could be
used to ensure that the global minimum is found, we
have found that it is sufficient simply to run several
minimizations in parallel, each preceded by a different
initializing rotation Q, chosen from a collection of well-
spaced rotationgsee the Appendix and file “rotmesh.m”
archived in “HD_ABME_code.zip” at http://
www.med.cornell.edu/research/hds

The rotationQ that attains the global minimum for
Ryp (see file  “globalmin.m” archived in
“HD _ABME _code.zip” at http://www.med.cornell.edu/
research/hdsis subsequently used to transform the tem-
poral componentsT’, thereby identifying components
Tup=QT’, such that each component is, as nearly as
possible, influenced only by itself and the more dominant
components in the hierarchy.
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Nonlinear Analysis of HD Resolved Components L P
. : . Rpiac= F2 .. 10
In our application of HD to ictal ECoG, we are inter- DIAG 2’1 pz’l p.pl (19

ested in the nonlinear features of the underlying time
series identified by the HD procedure. We therefore ana-
lyzed the time serie3p., (for p=1---P) for nonlinear  The size of the hierarchical dynamic relationships in a

characteristics via nonlinear autoregressive analysisMLAR model is summarized by the sum of squared
(NLAR), and compared them to the related NLAR analy-

sis of the principal componentg, (for p=1:--P). The
NLAR method is discussed in detail elsewh&té’
Briefly, a 20-term linear autoregressive model for

each time series is augmented by a single nonlinear term

that models a joint influence of the signal at two prior
times(timesn—j andn—k) on the signal at time. The
coefficientsB and C of this nonlinear model,

20

THp:p,n= Rntar:p,n = Bp,o— 241 Bp, i THp:pn-1

- Cj,kTHD:p,nijHD:p,nfka

are then determined separately for each of the 210 pos-

sible choices of a single nonlinear tef(ite., each of the
210 unique assignments ¢fand k to pairs in the set
{1,..., 2Q) by minimizing Ry ar. This yieldsC, a 20

X 20 symmetric matrix of nonlinear autoregressive coef-
ficients (where each entry irC is resolved by separate
models.

The addition of each nonlinear ter@; , to the au-
toregressive model reduces the model variavicky an
amountAV; , in comparison with the variance associated
with the best 20-term linear AR model. Via an extension
of the AIC!® we useNAV/V to assess whether this
reduction in variance is significant. We also examine
NAV; (/V as a function off andk; this “NLAR finger-
print” summarizes the nonlinear dynamics of each time
series over the lags considered, up to second order.

Definitions of Some Useful Quantities

elements above the diagonal in &llmatricesF, :

T

-1
(11

P
> Faan

L
RUPPERZZ
I=1 p=1 qgq=p+1

The size of the dynamic relationships that are “antihier-
archical” (i.e., neither hierarchical nor independemg
equal to the sum of squared elements below the diagonal
in all L matricesF:

L P p-1
RLOWERzlzl pzz qzl o (12)

Thus, RroraL = Roiac + Ruppert RLower-
These four quantities will be used to compare the

degree of independent and hierarchical drive in the vari-
ous MLAR models at each stage of analysis described
above.Ryo7a. before and after the transformation iden-
tified by HD must be unchanged, since this transforma-
tion is orthogonal. However, the stage of noise decorre-
lation may changeRiota. because of the scale factor
implicit in the transformatiorK. For this reason, we will
typically focus on the quantitie®Rpac, Rupper and
R ower, as fractions oRtq7a , and refer to these frac-
tions as the independent, hierarchical, and antihierarchi-
cal drives, respectively.

We draw the readers attention to the fact that the
arbitrary order chosen for the principal and noise-
decorrelated components will define one set of values for

In assessing the degree of hierarchical structure Rurper@nd Riower for each model, and that any reor-

present in any set of MLAR coefficients, it is useful to
define four quantities as follows. For any such set of
MLAR model coefficients= (whereF may beA, A’, or
App as below, the sum of all squared elements is

L P P
RTOTAL:Z:L pzl qzl F’ZJ,q,I' 9

The size of the decoupled portion of the MLAR model

dering of those components potentially yields different
sets of values. Thus, the! permutations of those com-
ponents may change the apparent percent of hierarchical
drive in the system. To distinguish the degree to which
any such permutation will lead to a more or less hierar-
chical model versus the degree to which the HD method
uncovers the inherent hierarchical structure in the sys-
tem, we shall use the maximum value Rf;ppeg—where
Rupper is considered for all permutations of the
components—for all models of the principal and noise-

(i.e., the extent to which the components’ dynamics are decorrelated components. This necessarily results in the

independentis summarized by the sum of squared ele-
ments on the diagonal in all matricesF,:

minimum possible value foR, ower, and guarantees
that Rypper™ RLoweRr -
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FIGURE 1. HD analysis of a three-generator hierarchical system constructed from a two-lag MLAR model. (A) Time series of the
three hierarchical generators, showing one, two, and three dominant frequencies, respectively. (B) Sixteen time series com-
posed of random linear combinations of the three time series in (A). (C) Time series of the first three principal components
obtained from (B). (D) Time series of the three resolved hierarchical components obtained by rotation of the principal compo-

nents. The ability of the HD method to extract hierarchical sources is evidenced by the virtually identical time series (disre-
garding signal polarity ) in (A) and (D), as compared to the scrambled and dissimilar principal components in ©).

RESULTS from a Gaussian distribution with a mean of zero and
unit variance.(It can be shown that for a hierarchical
system off-diagonal coefficients do not affect stability. In

To demonstrate proof of principle of the HD method our simulations, stability was ensured by choosing the
we present several analyses of simulated multivariate MLAR coefficients on the diagonal to correspond to
systems. We first consider systems composed of threepolynomials of ordei. whose roots have absolute value
generators driven by Gaussian noise and linked in aless than unity) Figure XA) shows the three resulting
hierarchical relationship. For the first system, the autore- time series(the simulated generatorsThe influence of
gressive model has nonzero coefficients up to two lags in each generator on the subordinate generators is evident:
the past(i.e., L=2); this situation permits unambiguous the first generator exhibits a single dominant frequency,
identification of the underlying generatotthis data set  while the second and third generators have two and three
and the code to reproduce Fig. 1 is archived in dominant frequencies, respectivelyAnalysis of the
“HD _ABME_code.zip” at http://www.med.cornell.edu/ power spectra confirms thjsEstimation of the MLAR
research/hds We then limit the autoregressive model to coefficients for the simulated generators via the Yule—
a single lag(i.e., L=1) and show that this leads to Walker procedure will approximatéut not equal the
degeneracy in the possible minimizing rotatio@s and values used to construct the system. That is, the esti-
consequent lack of uniqueness in the hierarchical decom-mated coefficients yieldR, ower=0.0003, a good ap-
position. Finally, we examine a system of thriedepen- proximation to the intende®&, owegr=0. By comparison,
dentgenerators, with nonzero autoregressive coefficients Rpjac=8.0316 andRypper=4.7208, indicating~63%
up to L=2; this example demonstrates that HD is also independent drivéi.e., Rpjac/Rrota. ~0.63 and ~37%
capable of extracting dynamically independent compo- hierarchical drive (i.e., Rypper/RtotaL~0.37 in the
nents. overall signal.

To create the first simulated system of three hierarchi-  To simulate the kind of mixing of sources that might
cally related time series, we fix a two-lag hierarchical occur in EEG recordings, we take 16 random linear com-
MLAR model, and drive each generator with indepen- binations of the three generatdrsee Fig. 1B) and the
dent Gaussian white-noise input, generating three time file “lincomb.m” archived in “HD _ABME _code.zip” at
series of lengtiN=512. Coefficients above the diagonal http://www.med.cornell.edu/research/fid$CA decom-
in the MLAR matrices—which correspond to hierarchi- position of these 16 time series—the first step in the HD
cal influences between channels—were randomly chosenanalysis—yields components that are remarkably dis-

HD Analysis of Simulated Multivariate Time Series
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similar to the original generatorsee Fig. {C)]. Each
principal component contains a mixture of frequencies,
and the MLAR model of them gives no hint of the i : Gkl Wirisrum
hierarchical structuréRroa =22.9593,~64% indepen-
dent and~24% hierarchical drive Because these sig-
nals are Gaussian, decorrelation by PCA guarantees
information-theoretic independence at each time point,
and is thus equivalent to ICA. In other words, examina-
tion of the higher-order momentt zero lagwould not
help to reveal the hierarchical structure. By contrast, the
explicit use of signal dynamics allows HD to resolve
hierarchically related components: the resulting MLAR
model is characterized by 64% independent ant36%
hierarchical drive Ryoa. =12.5284), close to the values
obtained from the original generators. Strikingly, the re-
solved componentksee Fig. 1D)] are virtually identical = '
to the original generators, other than signal polarity. R 0002
(Amplitudes of the extracted components also match the

original generators because we chose equal-variance _ . )
h .. FIGURE 2. Graphical representation of a portion of the rota-
noises as the driving terms.

) : . tion space for the HD analysis of the system displayed in
For a three-dimensional system such as this, we canFig. 1. Each rotation Q is specified by a point r in a solid

visualize the search for the rotatidp (see the Methods sphere, where the direction from the center of the sphere to

ti b ti tati f th f r indicates the axis of the rotation, and the length of this
section by creating a representation of the space of PoS- ocior represents 6. The residual value R,y for each rotation
sible three-dimensional rotations. To construct this repre- is represented in color  (see scale to the right ). In this portion
sentation of the rotation space, we recognize that any of space (angle of rotation #~1.9478rad), we can see both a

i ; : ; = global minimum and a local minimum, which provides a po-

three_: dimensional rotation is specified b)_/ an ar_lgle_z of Hniial trap for the HD algorithm.
rotation (6, from O to 7 rad) around a unique axis in
space. We can thus represent a three-dimensional rotation
as a pointr in a solid sphere, where the direction from ited to permuting the generators or changing their sign
the center of the sphere toindicates the axis of the that minimizeRyp. These rotations correspond to tRe

12,748

Blotss

0 00z

oo

rotation, and the length of this vector represefits-ig- possible orderings of eigenvalues in the mafkpg . (To
ure 2 uses this representation of the rotation space tosee this, we observe that transformiAg into upper-
examine the global behavior of the residual valtgg, triangular form by a rotation amounts to choosing an

for the example outlined in Fig. 1. Notice that there is a appropriate orthonormal basis to form the column®of
local minimum in the neighborhood of the global mini- When hierarchical generators exist, application of the
mum that provides a potential trap for the HD minimi- Gram—Schmidt procedure to the eigenvector@\ofpro-
zation algorithm. vides such an orthonormal basis. This is because trian
The second example consists of three hierarchically gular form for a matrix implies a full set of real eigen-
related generators, but one in which the predefined values and eigenvectots.Each of theP! orderings of
MLAR model stipulates only single-lag influences theP eigenvectors yields a different basis via the Gram—
(RyoTaL=11.8557,~7% independent and-93% hierar- Schmidt procedure, and hence, a distinct rotatipand
chical drive. Figure 3 shows the time seriedl£512) a distinct set ofL triangular matricesA,;p,=QA/Q.)
for this example in the same format as Fig. 1. Again, This degeneracy does not occur witl*=2, since rota-
PCA is unable to resolve the hierarchical generators tions Q that makeQA; QT triangular do not necessarily
(RrotaL=1.6037,~73% independent ane-23% hierar- make QA,QT triangular.
chical drive. By contrast, the HD algorithm uncovers the An extension of this analysis allows us to state the
hierarchical component&Ryota =11.8533,~8% inde- conditions under which a set of matricés,A,,...,A_
pendent and~92% hierarchica| as is evidenced by the can be simultaneously transformed to upper-triangular
similarity between Figs. (&) and 3D). However, the form by an orthogonal matriQ. First, each matrix must
hierarchical decomposition is not unique: the global be- have a full set of real eigenvalues, so that each matrix
havior of the residuals, as shown in Fig. 4, demonstratescan be individually transformed into upper-triangular
the existence of multiple global minima. form.!! Second, it must be possible to order the eigen-
It can be shown that this nonuniqueness is expectedvectors for each matrix in such a way th@ the first
for single-lag hierarchical MLAR models. For a generic eigenvector of each matrix is identic@ther than a scale
P-component system, there aRé rotationsQ (not lim- facton, and(b) for eachk=Q, the firstk eigenvectors of
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FIGURE 3. HD analysis of a three-generator hierarchical system constructed from a one-lag MLAR model. (A) Time series of the
hierarchical generators. (B) Sixteen time series composed of random linear combinations of the three time series in (A). (C)
Time series of the first three principal components obtained from (B). (D) Time series of the three resolved hierarchical
components obtained by rotation of the principal components. Although HD extracts hierarchical sources, the hierarchical
decomposition for the single-lag case is not unique (see Fig. 4).

each matrix span the samledimensional subspace. independent dynamics:Rpac=7.5851 and RroraL
These conditions fix the order of the eigenvectors, pro- —7.5875. When PCA is applied to a set of 16 random
vided that the number of lags>1. linear combinations of these generatsee Fig. 5B)],

The final simulated example consists of three inde- : :
the extracted components sggg. 5C)] depend in part
pendent generators, each driven by independent Gaussian P 9. AC)] dep b

noise. To simulate independence. the two-lad MLAR on the sizes of the contributions of the individual gen-
modell has no off-diagonaﬁ terms I\)ILAR coefficigents os. erators to each channel, and thus do not fully reveal the
timated from the time series\N(=512) generated by this ndependent dynamid&Rrora = 7.5888,~94% indepen-
model [see Fig. BA)] indeed indicate essentially 100% dent,~3% hierarchical, and-3% antihierarchical drive
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FIGURE 4. Graphical representation of three portions of the rotation space for the HD analysis of the system displayed in Fig.

3. The residual value Ry for each rotation Q is represented as in Fig. 2. The three panels are chosen to contain three of the
global minima for R,p (#=0.1257 rad in panel A, 6#=0.3770 rad in panel B, and #=0.6283rad in panel C ). This illustrates the
degeneracy in the rotation  Q for single-lag models. (Small differences in the color of each minimum result from the rough, finite
sampling required by the graphical presentation. )
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FIGURE 5. HD analysis of a three-generator independent system constructed from a two-lag MLAR model. (A) Time series of the
independent generators. (B) Sixteen time series composed of random linear combinations of the three time series in (A). (C)
Time series of the first three resolved principal components. (D) Time series of the three HD-resolved independent components.

Here, we see that the HD method is also capable of extracting dynamically independent sources.

Following application of HD[see Fig. ¥D)], we find Strikingly, the components resolved by HD are both
approximately 100% independent drive Ryoa. proportionally more hierarchically influence@ompare
=7.5862). However, since there is no hierarchical de- columns labeled Rypper/ R ower’ in Table 1) and more
pendence in this example, the order of the componentsindependently driven (compare columns labeled
extracted by HD is arbitrary—here, the second and third “9% Rp,,g” in Table 1) than the components resolved by
generators are interchanged in FigD5 compared with  PCA. For example, the MLAR model coefficients of the

Fig. S(A). principal componentsA-in Eq. (3)—obtained from the
third seizure record of patient 2 are characterized by
HD Analysis of Ictal ECoG Data ~94.3% independent drive (R ac) and ~4.4% hier-
Here, we use HD to reanalyze the ictal electrocortico- &rchical influence (%uppeq, yielding a hierarchical to
graphic records examined by Schiff and co-workers antihierarchical ratio Rypper/Riower) Of 3.4 (sixth row,

the analysis of electroencephalographic data, neither thefirst column, Table L By contrast, the MLAR model
number nor the time course of the underlying generators Coefficients of the hierarchical components,f) reveals

is known in advance. Therefore, we select Bieompo-  that ~96.2% of the drive is independent ®iac),
nents that constitute most of the original signal variance ~3:6% is hierarchical (Bypper. and the ratio of hier-
(see the Methods sectigrand are interested in both the archical drive Rypper/RLower) is 16.3(sixth row, third
degree of the resolved hierarchical structure and the dy-column, Table 1 Some, but not all, of this simplification
namics of each component. We use the traditional AIC of model structure is due to the reorganization of the
(Ref. 1) to determine the order of the MLAR models. model coefficients by the noise decorrelation procedure,
Application of a stricter AIC that doubles the relative Which yields model coefficient#\". For this example,

weighting of the number of degrees of freedSnypi- noise decorrelation alone yields96.0% independent
cally reduces the model ordérby 1 but does not oth-  (%Rpjag) and ~2.5% hierarchical drive (®RyppeR-
erwise significantly alter the result@ata not shown But, in most instances, noise decorrelation fails to iden-
Since individual seizure generators are commonly tify a proportionally more hierarchical organization
thought of as cyclidi.e., roughly periodic in timg it is (Rupper/ RLower is only 1.7, whereas HD extracts com-

important to point out that the hierarchical relationship ponents that are both more independefiarger
between generators, which we seek here, is by no meansRpjac/RroTaL, all record$ and proportionally more hi-
in contradiction to this view. That is, generators that are erarchical (greater ratio ofRypper t0 R ower N 7/9
related to each other in a hierarchical fashion may them- records, as detailed in Table 1. Moreover, the contribu-
selves be cyclic in time. tion of each of theL coefficient matrices to the indices
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(Ayp) for all patient records. The percentages are obtained by normalizing the values for

TABLE 1. Summary of the percentage of independent, hierarchical, and antihierarchical drive for the MLAR model coefficients of the principal compone

(A), noise-decorrelated PCA decomposition

(A’), and hierarchical decomposition

Rpiac » Y Ryupper, and % R\ ower
Rupper and R ower for A and A’ reflect

Rupper=R_ ower - All values are rounded to the nearest 0.1 for

(RyotaL) in each instance, here labeled %

(RLower) drive by their total

(Rypper), and antihierarchical
Ruprer! RLower reflects the relative proportion of hierarchical influence in the system. Percentages for

the independent (Rpag), hierarchical

respectively. The unitless ratio

the most hierarchical ordering of the respective components, as outlined in the Methods section, such that

clarity.

Noise-decorrelated components Hierarchical components

Principal components

RUPPER IRLOWER

0, 0,
A)RUPPER A’RLOWER

% RDIAG

RUPPER /RLOWER

0, 0,
A’RUPPER /ORLOWER

%RDIAG

RUPPER IRLOWER

0,
% RLOWER

0,
% Rupper

% RDIAG

Patient 1

3.2

0.4
0.3

1.2
2.3
3.4

98.5

1.6
2.1

11
5.0
3.5

1.8
10.6

97.2

5.2
6.5
4.8

1.7
4.0

8.7

26.2

89.6

Seizure 1

8.3

97.4

84.4

69.8

Seizure 2

4.7

0.7

95.9

2.2

7.7

88.8

84.6 12.8 2.7

Seizure 3
Patient 2

5.4
14.7

1.8
0.1

9.9
1.8
3.6

2.1 88.3

10.8 5.1

84.1

2.1
11.3

11.9 5.6

5
.2

82

Seizure 1

98.1

2.6
1.7

2.4 0.9

25

96.7

0.6

6.3
4.4

93

Seizure 2

16.3

0.2

96.2

15

96.0

34

1.3

94.3

Seizure 3
Patient 3
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Rupper@nd R ower are approximately equal in all cases
(data not shown perhaps as a consequence of the fact
that the HD algorithm treats all matrices equally.

As alluded to in the Introduction, examination of the
nonlinear dynamics present in the extracted components
provides another means to interpret the results of the HD
method. To assess the nonlinear dynamics in an indi-
vidual time series we use the NLAR fingerpriitThis
approach identified common nonlinear dynamics between
3/s spike-and-wave seizure trac¢és! and the principal
components derived from the partial complex seizure
records of patients 1 and '2.Figure 6 compares the
NLAR analyses of the principal componerigs analyzed
in Ref. 15 with that of the hierarchical components. In
Fig. 6, the percent of variance of the original signal that
each component explains is shown by the height of a bar.
(For PCA this necessarily decreases as the component
number increasesThe significance of the nonlinear dy-
namics identified in each component, as summarized by
NAV/V, is shown by the corresponding point on a solid
line [the dashed line indicates significant nonlinearities,
NAV/V=4 (Ref. 19]. Whereas the principal compo-
nents with the largesNAV/V are typically those com-
ponents that explain only a small fraction of the variance
(leaving their significance uncleaHD analysis reveals
that the hierarchical components with the greatest non-
linear structure can be the most autonomous components
(lowest numbered componenfhis is seen in seizure 1
of patient 1, and in seizures 1 and 3 of patient 2.

This latter record is particularly striking because HD
analysis uncovers a hierarchical component with signifi-
cant nonlinearities NAV/V~8) even though none of
the principal components display significant nonlinear
characteristics NAV/V<4). We hypothesize that this
reflects a more effective separation of underlying genera-
tors by HD, and that the components extracted by PCA
reveal only diluted effects of the nonlinearity due to
mixing. Additionally, five components were retained for
seizure 3 of patient Ifollowing Schiff et al)'>—this is
an exception to the guidelines mentioned in the Methods
section—because the fifth component has MAV/V
~b5.2. Here, HD analysis with five components exposes
significant nonlinear characteristics in the third hierarchi-
cal component, which accounts for nearly 50% of the
original signal variance. Finally, we note that there are
differences in the analyses of individual records within
and across patients, both in terms of the relative sizes of
the hierarchical components and in the HD components
that demonstrate the greatest nonlinearities. We suspect
that these differences reflect physiologic differences in
the events themselves rather than nonrobustness of the
analysis method, sincéa) the records themselves ap-
peared artifact fregb) the results of the analysis are not
significantly altered by small changes in the model order,
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FIGURE 6. Summary of the NLAR analyses of the principal components
each record of patients 1 and 2. The percent variance explained by each component is shown by the height of a bar, while the
maximum NAV/V for that component is shown by the corresponding point on a solid line. The dashed line in each graph

indicates NAV/ V=4, the criterion we have used for detection of significant dynamical nonlinearities
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(see Ref. 15) and hierarchical components derived from

(see Ref. 19). Often HD

analysis reveals that the component with the greatest nonlinear structure is one of the more autonomous components. Patient
2, seizures 1 and 3 are particularly striking examples of this.
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and (c) for systems in which the internal structure is
known (Figs. 1-3, HD provides an accurate decompo-
sition.

DISCUSSION

and MCTOR

accounting for all of the variance of the sigria20% in

the current application to EEGAIlthough in principle

HD analysis could be performed on the raw data, this
compromise is often necessary because identification of a
minimum in the extremely high-dimensional space of all

possible rotations is not likely to be robust. Additionally,
one might wonder how HD would behave if performed
In summary, the ability of HD to uncover hierarchi- on fewer components than the number of generators
cally related components results from its fundamental known to be present. Here, the results of HD analysis on
use of the dynamics inherent in any multivariate time numerical simulations provide reassuran(@ata not
series. We use a MLAR model to simultaneously enforce showr), since main features of the decomposition are
two conditions upon the components. The first assump- preserved. For example, three hierarchical sources ex-
tion is that the noisdi.e., residual values between the tracted by HD from a system built with four generators
observed behavior and the MLAR mogéh each com- look more similar to the four original generators than do
ponent is independent and of equal magnitude. This any of the principal components, in so far as they seem
makes concrete the assumption that the stochastic com+to be less arbitrarily mixed.
ponents of the generators are independent, and it arbi- For many previous approaches to the analysis of mul-
trarily sets a scale for the size of each generator. It is tivariate time series(including methods based exclu-
implemented in a single step, and can always be sively upon PCA and related methgdshe underlying
achieved, independent of the dynamics of the system.rationale is that the observed signals represent linear
The second condition seeks a hierarchical relationship mixtures of independent sourcés generators In many
among components. It is implemented iteratively, via systems, such as the brain, the observed time series rep-
successive orthogonal rotations of the components to at-resent mixtures of sources that are not strictly indepen-
tain a set of MLAR matrices that are as triangular as dent, but rather dynamically influence one another, often

Hierarchical Decomposition (HD) Method

possible.

Using simulated systems of hierarchically organized
generators, we show that HD is capable of extracting the
original sources, whereas PCA or ICA canr(igs. 1
and 3. The hierarchical minimization procedure is
graphically depicted in Figs. 2 and 4, and highlights two
important caveats(a) finding the global minimum for
the model(i.e., the most triangularrequires avoiding
various local minima, andb) models with simple dy-
namics(i.e., where only single-lag influences are signifi-
cany are degenerate, having multiple global minima. The

in stereotyped patterrt§. This is the rationale for the
present approach, in which we separate multivariate time
series by assuming instead that the sources influence
each other in a hierarchical fashion. More generally, the
method can be adapted to seek interrelationships of other
canonical typesge.qg., cyclig by appropriate modification
of Eq. (7). Thus, the HD method may be considered to
be a special case of a large set of canonical decomposi-
tion procedures.

The use of causalityi.e., the influence of prior ob-
servations on the current observadi@nd its importance

latter point underscores the fact that separation of thein the HD algorithm deserves emphasis. The MLAR

generators relies intimately on their dynamics. If the
MLAR model is trivial (i.e., L= 0, no significant dynam-
ics in the individual componentsthen the HD procedure

is trivial, too, and the continuum of ambiguities intrinsic
to PCA remain. If the MLAR model contains one lag
only, then the HD procedure can narrow down possible
models of the system to a discrete set of $2gwhere

P is the number of generatorsif the MLAR model
contains two or more lags, then the HD decomposition is
typically unique, and if the original system has a hierar-
chical structure, the algorithm will identify it.

In these simulations, we know exactly how many gen-
erators(i.e., three contribute to each 16-channel data set
we create. Moreover, the first three principal components
necessarily account for 100% of the variance of the sys-
tem. This highlights two potentially important limitations
of the HD method. In real-world data, by selecting only
the most important principal componerigee the Meth-
ods sectiojy we make the explicit compromise of not

technique used by HD is implicitly dependent upon
causal relations among the observations in a multivariate
time series data set. That is, the MLAR model descrip-
tion of the data relies upon the order of the observations,
as it describes the effect of prior observations upon cur-
rent observations. This description would be obscured by
time-reversing or shuffling the data. HD uses these
causal relationships to guide the search for a rotafon
(see the Methods sectipthat yields a hierarchical inter-
relationship among components. The hierarchy of com-
ponents delineates a specific type of causal relationship
in a data set, namely, that the current value for each
component is affected by prior values of itself and more
dominant components in the hierarchy.

This approach is in direct contrast to other causal
techniques for multivariate data analysis, including
Granger causalit{, generalized autoregressive condi-
tional heteroskedasticityGARCH),® adaptive multivari-
ate autoregressive modelindAMVAR),> and directed
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coherencé&. These methods assume that the original time that contribute little to the surface EEG, but affect a
series represents the unmixed sources, and then look foldarge portion of the entire neuronal system. More gener-
and characterize the degree and type of causal relationsally, the HD analyses demonstrate that although the non-
among the data. In contrast, HD assumes a general formlinearities are not always a major contribution to the
for the causal interaction, and uses this assumption tooverall signal variance, they nevertheless may exert in-
direct the decomposition into source&rangef notes fluence over all or most of the system.

that multivariate data sets can have a “spurious causal- In addition, the NLAR fingerprints of the hierarchical
chain appearance,” and examples of this can be readily components support the connection between temporal
constructed by linear mixing of independent time series. lobe and absence seizures, and strengthen the suggestion
However, as pointed out above, for multivariate data sets that both seizure types may result from similar underly-
whose MLAR structure includes more than one lag, re- ing neuronal mechanisnt$!® Significant nonlinearities
duction to hierarchical form is not guaranteed, and if in these fingerprints appear in the vicinity of 90 and 150
such a reduction is possible it is typically unambigupus. msl# as is seen in the NLAR fingerprints of absence
From this point of view, HD appears to be unique. seizure trace$’ and as reported earlier for the NLAR
fingerprints of the principal componeritsNotice, how-
ever, that the nonlinearities tend to be more statistically
significant in the hierarchical components than in the

The degree of hierarchical and independent structure principal components. Our findings may help explain
in all components derived from ictal ECoG records of why even focal temporal lobe seizures produce global
patients 1—4 is summarized in Table 1. Examination of alterations in awareness and behavior: the importance of
Table 1 indicates that the components resolved by HD a neuronal circuit in driving global brain activiiy.e., its
are both proportionally more hierarchicéle., see the  position in the hierarchymay be disproportionate to the
columns labeled Ry pper/Rower’ Under each type of  fraction of the variance of the surface activity that it
component and more independently drivene., see the explains, especially for generators that are deep. The
columns labeled “9Rpac” under each type of compo-  results of HD modeling are thus consistent with the no-
neny than the components resolved by PCA. Also evi- tion that temporal lobe and absence seizures reflect al-
dent from Table 1 is the fact that reorganization of the teration of selective circuit mechanisms that play a key
components by noise decorrelation is partially respon- role in forebrain integratiof® The application of the HD
sible for this simplification of model structure. However, technique to ECoG records of temporal lobe epilepsy
noise decorrelation alone typically results in a more even suggests that there is an interpretive benefit gained
distribution of off-diagonal coefficientséi.e., values for by extracting hierarchical, rather than independent,
Ruprer/ RLower that are closer to )1 In addition, notice components.
that the proportion of hierarchical drive in these systems
revealed by HD is sometimes quite large, particularly for
seizures 2 and 3 of patient Rypper/RLower €quals
14.7 and 16.3, respectivglyNevertheless, there is also
variability, both from patient to patient and within pa-
tients, in the degree of hierarchical relationship between
the underlying seizure generators.

Previously, we showed that PCA decomposition of
temporal lobe seizure records uncovers components
whose nonlinear dynamics, as characterized by NLAR
fingerprints, resemble those of the EEG during absence APPENDIX
seizures® Because the principal components exhibiting
significant nonlinear characteristics account for relatively ~ This Appendix provides additional details for two as-
small fractions of the original signal variance, the bio- pects of the algorithm we have presented abe= the
logical significance of the nonlinear signal was unclear. Methods section The description is keyed t®ATLAB
In contrast, HD analysis of these same records uncoverscode, archived in “HDABME_code.zip” at http://
components containing the same nonlinearities, but they www.med.cornell.edu/research/hds, but does not fully de-
can appear relatively early in the hierarctsee Fig. 6. scribe the code itself(see embedded documentation
The position of these nonlinearities in the hierarchy ap- within the code for further detallsWhere the code dif-
pears to be independent of the amount of original signal fers slightly from the calculations presented in this ex-
variance that these components explain. Furthermore,position such differences are noted. We make no claim
HD analysis may clarify the biological significance of that this code is optimized but rather hope that it will
these nonlinearities: they possibly reflect deep generatorsprovide a useful starting point for other researchers.

Application of HD to Ictal ECoG
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Determination of the Rotation Ang(&,,)

This calculation is carried out by the file “rotation.m”
archived in “HD_ABME_code.zip” at http:/
www.med.cornell.edu/research/hds.

For any square matrid, transformation via a plane
rotation J, ,(6) [see Egs.(6) and (7)] produces a new
square matrix]ulu(a)AJI'U(e)=A’. This transformation
only alters the elements in both the rows and columns
andv in matrix A—whose elements are denotad . We

are interested in minimizing the sum of squared elements

below the diagonal ilPA'—whose elements are denoted
a; ;. Thus we require equations for those elemeats
below the diagonali.e., such thai>j) that are altered
by the rotation.[For historical reasons, the code mini-
mizes the sum of squared elemealmovethe diagonal of
A'T. and each rotation induces the transformation
I (OATI,(6)=A"T. Becausel, ,(6) is antisymmet-
ric this is fundamentally equivalent to performing the
rotation as described in Eq7).]

For convenience we can divide the analysis of matrix
entries below the diagonal &' (above the diagonal of
A'T) into five groups of elementglepending on the axes
valuesu andv, some of these groups may be emptyn
what follows, se{u,v}, p=min(uy), r=max@,y), and
n<p<g<r<t: (1) ag,, (2 ajs, ) a/4, 4 agp,
and(5) ar"p. Elementary matrix algebra used in conjunc-
tion with trigonometric identities shows that groups 1
and 2 will never affect the residual vall®,y [see Eq.
(7)]. For group 1 elements

a5 +als=[a,,coq0)+a,,sin0)]°+[a,,coq6)
—ay,,sin0)]?=aj ,+a2,,

and similarly for group 2 elements,
a/’+a/’=[a,,coq0)+ay, sin(0)]>+[a,, cog )

H 2_,2 2
—ayysin(d)]°=af, +ag,.

In contrast, elements in groups 3 and 4, when present,

typically affect the residual valuByp, as will the group
5 element, which is always present.

For groups 3 and 4, we use the trigonometric identi-
ties cod(#)=0.5+0.5cos(?), sirf (6)=0.5—0.5 cos(),
and 2 sinf)cos@)=sin(26), and find:

12 12 _ H 2
arqtag,=[ar,qcog0)—a, qsin(6)]
+[aq,pcog0)+ag, sin(6)]?
=a’ ,cos(0) — 2a, 4ap q COK 0)Sin( )

+aj , Sin(0) +a; ,cos()
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+2ay pa, o9 0)sin(0)
+aj, sir’(0)
=(al,+a; ,)cos(0)
+2(aq,plq,r — ar,q@p,q)COY 6)sIn( H)
+(a ,+ag,)si(0)

= (aq,pap,r - ar,qap,q)sm(2 0)

2 2 2 2
+0.5a; g +ag a5 q—ag,)co426)

+0.5af +aj ,+aj ,+ag ).
This equation may be further simplified by combining
the sine and cosine terms into a single trigonometric
function. (The addition of sine and cosine waves of the
same frequency yields another sinusoidal wave at the
same frequency, whose amplitude is the square root of
the sum of the squared amplitudes of the original waves,
and whose phase is the arctangent of the ratio of the
amplitudes of the original wavesAccordingly, we make
the  substitutions E sin(¢)=(ayp8—a ¢dpq and
E cos$)=0.5@’ ,+a; ,—a5 ,—a5,;) which, used in
conjunction with the trigonometric identity sim)sin(g)
+cos)cos(B)=cos(—p), leads to

12 12 _ . 2 2 2 2
gt agp= Ecog26 ¢)+O.5(a,]q+ agptapqt aq’,).

(A1)

Additionally, the equation for the group 5 element sim-
plifies in an analogous manner, using the substitutions
Vsin()=0.5(a, ,—a, ;) andVcos@)=0.5(@, ,+a,,),
and the trigonometric identities above:
a; q=[a, pcod 0)+a, , sin()]cog 9)
—[a, pcog 0)+ap , sin(f)]sin(0)
=a, ,cos(0)
+(a, ,—ap,p)cod #)sin( 0)
—ay, Sirf(6)
=0.54a, ,—a,,p)sin(20)
+0.5a, pt+a,,)cog20)
+0.5a; p—a,,)

=Vcog260—¢)+0.8a, ,—a,,).

Finally, we calculate the square of the equation for the
group 5 element and are left with

a/5,=0.5v%cog46—2¢) +V(a, ,—a,,)cog 20— )

+0.25a, ,—a, )%+ 0.5V (A2)
P p,



Hierarchical Decomposition of Multivariate Time Series

Thus, we must minimize—as a function @ —an
expression that consists of the above contribution from
Eq. (A2) for the group 5 element, and a contribution
from Eq. (A1) for each pair of elements in groups 3 and
4 that are presentelements in a pair are alwaysoth
absent oboth presenk. Elements in groups 1 and 2 may
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by adaptive multivariate autoregressive modeling: Data pro-
cessing, model validation, and variability assessm&intl.
Cybern.83:35—-45, 2000.

6Gersh, W. and J. Yonemoto. Parametric time series models
for multivariate EEG analysis.Comput. Biomed. Res.
10:113-125, 1977.

"Granger, C. W. J. Investigating causal relations by economet-

be neglected, since they contribute a constant that does ric models and cross-spectral methodEconometrica

not depend ory, as may the constant terms present in
Egs. (Al) and (A2).

In our code, matrix entries iA that contribute to the
trigonometric functions governing group(8ee lines 81—
89) and, when necessary, groups 3 an¢sde lines 91—
104) are collected and combined into matrix constants,
including E andV, ¢, andy. The trigonometric equation
to be minimized is assembled from E@\2) for each
group 5 element(see lines 109-132and, as needed,
from Eq. (Al) for pairs of elements in groups 3 and 4.

37:424-438, 1969.

8Kaminski, M. J., and K. J. Blinowska. A new method of the
description of the information flow in the brain structures.
Biol. Cybern.65:203—-210, 1991.

%Kay, S. M. Modern Spectral Estimation: Theory and Appli-

cation. Englewood Cliffs, NJ: Prentice-Hall, 1988, pp. 141

and 142.

Lee, D. D., and H. S. Seung. Learning the parts of objects by

non-negative matrix factorizatioiNature (Londony01:788—

791, 1999.

HMirsky, L. An Introduction to Linear Algebra. New York:
Dover, 1990, pp. 236—247 and 306—311.
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When elements in groups 3 and 4 are present, the func-*?Mitra, P. P., and B. Pesaran. Analysis of dynamic brain im-

tion to be minimized may be quite largsee lines 125—
127), whereas the minimization is simpler when groups 3
and 4 are emptysee lines 128—-131Finally, we use a
customized bisection routine to find the value fthat
minimizes the complete trigonometric functigsee sub-
function “trigmin,” lines 240—266.

Creating Well-Spaced Initializing Rotatio®,)

The initializing rotationsQ, are determined as fol-
lows (see file “rotmesh.m”  archived in
“HD _ABME _code.zip” at http://www.med.cornell.edu/
research/hds For each possible choice of a pair of axes
[u,v] we build plane rotations at two rotation anglés
==*27/3 (see lines 56—74 Thus, for a system consist-
ing of P components there aré=P(P—1)/2 possible
pairs of axes, and @ possible initializing rotation€),.
We randomly order all possible initializing rotatio,
(see lines 76—78and use one for each parallel minimi-
zation performedsee Eq.(5) and associated telxt
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