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Abstract—We describe a novel method for the analysis
multivariate time series that exploits the dynamic relationsh
among the multiple signals. The approach resolves the m
variate time series into hierarchically dependent underly
sources, each driven by noise input and influencing subordi
sources in the hierarchy. Implementation of this hierarchi
decomposition~HD! combines principal components analys
~PCA!, autoregressive modeling, and a novel search stra
among orthogonal rotations. For model systems conforming
this hierarchical structure, HD accurately extracts the unde
ing sources, whereas PCA or independent components ana
does not. The interdependencies of cortical, subcortical,
brainstem networks suggest application of HD to multivari
measures of brain activity. We show first that HD indeed
solves temporal lobe ictal electrocorticographic data into ne
hierarchical form. A previous analysis of these data identifi
characteristic nonlinearities in the PCA-derived temporal co
ponents that resembled those seen in absence~petit mal! sei-
zure electroencephalographic traces. However, the compon
containing these characteristic nonlinearities accounted for o
a small fraction of the power. Analysis of these data with H
reveals furthermore that components containing character
nonlinearities, though small, can be at the origin of the hier
chy. This finding supports the link between temporal lobe a
absence epilepsy. ©2001 Biomedical Engineering Societ
@DOI: 10.1114/1.1424914#

Keywords—Nonlinear dynamics, Autoregression, Epileps
Principal components, Independent components, Spatiotem
ral, Electroencephalography, Electrocorticography.

INTRODUCTION

Multivariate time series are abundant in biomedic
systems, from spatiotemporal signals such as the elec
encephalogram~EEG!, to temporal patterns of gene ex
pression observed with GeneChip21 technologies. One
common approach for the analysis of multivariate d
involves decomposition into several independent time
ries ~e.g., by principal components analysis4!, followed
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by analysis of the individual time series~e.g., autoregres-
sive modeling, spectral analysis, and nonline
techniques20!. Typically, the goal of the analysis is t
extract the underlying biological sources of the mul
variate temporal data, in order to characterize ea
source more fully and to describe the system more p
cisely. Unfortunately, the criterion of independence
sources enforced by standard decomposition techniq
may not be appropriate for real biological systems,
which the underlying sources may well have dynam
interrelationships. With this in mind, we developed
novel approach to multivariate time series analysis
hierarchical decomposition~HD!—that exploits the
causal~i.e., forward in time! dynamic content of multi-
variate temporal data.

In contrast to HD, standard decomposition techniqu
including principal components analysis~PCA!, alone or
modified by varimax rotations~VR!,4 independent com-
ponents analysis~ICA!,2 and non-negative matrix factor
ization ~NMF!,10 do not exploit causality. Briefly, PCA
seeks sources that are uncorrelated~orthogonal!. ICA
seeks sources that are independent in an informat
theoretic sense. VR seeks a transformation that m
mizes the sum of the variances in each extracted sou
NMF attempts to find sources whose weights are n
negative ~i.e., only additive, not subtractive, combina
tions of sources are allowed!. These assumptions ar
appropriate for image analysis or for separation of ind
pendent time series~e.g., the ‘‘cocktail party problem,’’
separating one voice from the cacophony of other c
versations and background noise!, but may be unsuitable
for multivariate systems originating from dynamical
interrelated sources. In particular, these methods ass
that the order of data points is irrelevant, and thus wo
produce equivalent results for the original, time-revers
or randomly shuffled data.

As described below, the HD method takes advanta
of the signal dynamics, and thus may achieve a m
useful resolution of the sources of a multivariate tim
series. HD was designed with physiologically deriv
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1136 REPUCCI, SCHIFF, and VICTOR
multivariate time series in mind. Such time series oft
result from dynamically interrelated generators, in whi
some of the generators have a driving role. For exam
the EEG exhibits synchronizations, desynchronizatio
and rhythmic oscillations resulting from cortical, subco
tical, and brainstem network activity: these are char
teristics anticipated in a dynamically interrelate
system.18 To exploit these observations, we assume t
the generators are organized hierarchically. Namely,
assume that there is an autonomous generator w
state depends only on noise input and feedback fr
itself ~i.e., an autoregressive process!. Each successive
generator is influenced by an independent noise input
own state, and the state of more dominant generator
the hierarchy, such that the last generator is influen
by noise input and the state ofall generators. The HD
method, as presented below, attempts to account for
temporal dynamics in a multivariate data set by resolv
it into a model of this form.

We show that if a system does conform to this hi
archical structure, and the multivariate autoregress
model includes sufficient terms, then the HD resoluti
is unique and will recover the hierarchically relate
sources. Moreover, the HD approach will not be misle
ing for an independent system; if the underlying sour
are truly independent, the HD algorithm will uncov
them as well. On the other hand, there is no guaran
that all multivariate time series are reducible to hier
chical form—one such example is a system with rec
rocally related generators. For such systems, failure
this approach to identify a hierarchical resolution is po
tive evidence for the presence of a more complex n
work structure.

In brief, the HD approach consists of building a mu
tivariate linear autoregressive~MLAR ! model6 from the
PCA-derived components of the original data set. This
followed by seeking a coordinate transformation that
tates the MLAR model to make it as consistent as p
sible with a hierarchical interrelationship among comp
nents. We demonstrate that for simulated multivari
time series with truly hierarchical structure, HD acc
rately extracts the underlying generators of the syst
We then use the HD method to analyze ictal electroc
ticographic~ECoG! records, the application that inspire
the HD approach. Analysis of these data reveals t
significant hierarchical structure is present in all recor
this fact is not obvious by PCA or ICA decompositio
alone. Subsequent analysis of these HD resolved com
nents adds further insight to the dynamic nature of
ictal discharge.

In previous work,15 we identified certain characteristi
dynamic nonlinearities in EEG traces obtained dur
absenceseizures~also known aspetit mal seizures! and
in the PCA-derived temporal components from tempo
lobe ictal ECoG data. The similarities, most notably t
,

e

e

.

-

nonlinear interactions at lags around 90 and 150 m
suggested a common underlying mechanism. These c
acteristic dynamics, however, were observed only
components that accounted for a small fraction of
variance of the original data~third, fourth, or fifth rank-
ing components, when ordered by the amount of va
ance explained!, thus leaving their biological significanc
uncertain. By contrast, the HD method demonstrates
these nonlinearities are present in the more autonom
components~i.e., the components in the system th
drive the remaining components!. This indicates that the
size of the components does not necessarily corre
with their physiological importance, and thus strengthe
the evidence that temporal lobe and absence seiz
share a common mechanism. Here, the ability of HD
resolve the underlying generators on the basis of dyna
cal interrelationships, rather than by independence
power, sheds light on a prior puzzle.

METHODS

Multivariate ECoG data were previously collected
briefly described here~for further details, see Schif
et al.15!. Epilepsy patients with medication-resistant tem
poral lobe seizures were studied with subdural electr
grids and strips in the course of presurgical evaluat
for temporal lobectomy. ECoG signals were recorded
a 64-channel Telefactor Beehive~West Conshohocken
PA! telemetry system~sampling rate of 200 Hz, low-pas
filter at 0.3 Hz and high-pass filter at 70 Hz!, and con-
current video images of each patient were obtained. T
teen to 16 channels of clear artifact-free recordings
ictal events~occurring during wakefulness! were resa-
mpled at 100 Hz~2:1!; the mean was subtracted an
detrending applied. Typically, 5 s of data recorded from
within an ongoing ictal event were analyzed as describ
in the text.

All data analyses herein were carried out viaMATLAB

functions and scripts~version 5.3, release 11, Pentium
PC running Windows 2000!, which are archived, along
with a sample data set, at http://www.med.cornell.e
research/hds. We consider a multivariate data set con
ing of N evenly spaced observations in time, on each
M channels (M<N), represented as a matrixX (M
3N). In our application to ECoG dataN5512 ~approxi-
mately 5 s of data sampled at 100 Hz! and typically
M514 ~epicortical recording sites!.

Principal Components Analysis (PCA)

The original data matrixX is processed by PCA~see
file ‘‘pca.m’’ archived in ‘‘HD–ABME–code.zip’’ at
http://www.med.cornell.edu/research/hds!, yielding a sec-
ond matrixY (M3N), consisting of linear combination
of P orthogonal principal components,
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1137Hierarchical Decomposition of Multivariate Time Series
Y5CTWT. ~1!

C is a P3M matrix whose rows are the spatial weigh
T is a P3N matrix whose rows are the tempor
weights, andW is a P3P diagonal matrix of eigenvalue
whose elements, squared, are the amount of varia
explained by each principal component. For any num
of componentsP @P<min(M,N)#, PCA guarantees tha
the unexplained variance betweenX and Y,

RPCA5trb~X2Y!~X2Y!Tc, ~2!

is minimized ~i.e., Y is the ‘‘best fit’’ to X!.
This decomposition ofX into orthogonal~i.e., inde-

pendent or instantaneously uncorrelated! components
C andT, however, is not unique. Replacing the tempo
componentsT by GT ~for any nonsingular linear trans
formation G! and, accordingly, the spatial componen
C by W21(G21)TWC, leaves the matrix Y
unchanged: @(W21(G21)TWC)T#W@GT#
5CTWG21W21WGT5CTWT5Y, where we have used
basic properties of the transpose, and the fact thatW is
diagonal. The specific, but arbitrary, solution identifi
by PCA consists of matricesC and T whose rows are
orthonormal, and a matrixW whose diagonal element
are non-negative and ordered from largest to small
Resolving the nonuniqueness of the decomposition
tained with Eq.~1! is the focus of the remainder of th
HD analysis~i.e., finding a unique, nonarbitrary transfo
mation G!.

We use PCA as a first step in the analysis in order
reduce the dimension of the system by removing ins
mental noise from the signal~without removing biologi-
cal noise12!. For real data, theP temporal components
are selected such that each component accounts f
fraction of variance greater than or equal toM 21, except
where noted. Typically this allows us to reduce a 13-
16-channel system to 3–5 components that together
count for greater than 80% of the variance. Selectin
small number of components reduces the computatio
burden for the following analyses.

Multivariate Linear Autoregression (MLAR)

We next create a MLAR model of the temporal com
ponentsT in a form equivalent to that proposed by Ger
and Yonemoto ~see file ‘‘mlar.m’’ archived in
‘‘HD –ABME–code.zip’’ at http://www.med.cornell.edu
research/hds!.6 The P temporal components~i.e., each
element Tp,n—nth sample of thepth component! are
modeled by anL-term autoregression:

Tp,n5Rp,n1mp1 (
q51

P

(
l 51

L

Aq,p,lTq,n2 l , ~3!
e

.

a

-

l

whereR is a P3N matrix of residual values,mp is the
mean value of thepth component, andA is a P3P
3L three-dimensional array of model coefficients. It
helpful to view the model coefficientsA as a set ofL
planes, each of which is aP3P matrix. Thel th plane of
A describes the estimated influence of the signals a
time n2 l , on the signal values at timen. Namely,Aq,p,l

is the influence of theqth component at thel th time lag
on the current value of thepth component.

The model coefficientsA are determined by minimiz-
ing the sum of squared residual values~the innovations,
Rp,n! in the model

RMLAR5 (
p51

P

(
n51

N

Rp,n
2 , ~4!

via the Yule–Walker equations.22 We choose the maxi-
mum lag L ~the order of the MLAR model! by the
Akaike criterion ~AIC!,1 a statistical justification base
on whether the amount of reduction in residual varian
is sufficient to justify the inclusion of additional linea
model terms. In the examples below this typically yiel
a value ofL from 2 to 4 lags.

Decorrelation of the MLAR Innovations

The first step in resolving the nonuniqueness of
PCA decomposition relies upon theP3N matrix of in-
novationsRp,n . These quantities are viewed as rando
terms that drive theP channels of the MLAR model.
Thus, if T represents distinct underlying generators, th
the corresponding driving terms in Eq.~3! will be un-
correlated. For this reason, we require that the tra
formed temporal componentsGT decorrelateRp,n . Ad-
ditionally, it is analytically convenient to assume th
each channel of innovations has equal variance~i.e., no
particular source is noisier than another!. This amounts
to an arbitrary choice for the overall size of each ge
erator, but makes no further assumptions about the
namical structure of the system.

Under these assumptions, we seek transformationK
that orthonormalize the innovationsRp,n—that is, (KR)
(KR)T5KRRTKT5I , whereI is the identity matrix. One
such matrixK can be obtained by dividing the rows o
the eigenvectors ofRRT by the square root of the cor
responding eigenvalues.~The rows of the matrixK are
necessarily orthogonal, since they are scalar multiples
the eigenvectors of the positive symmetric matrixRRT.!
The transformationK applied to Eq.~3! yields new tem-
poral componentsT85KT, new autoregressive coeffi
cients Al8

T5KAl
TK21 ~for l 51¯L, where Al

T denotes
the transpose ofAl!, and decorrelated, normalized inno
vations R85KR. Nevertheless, this does not fully re
solve the nonuniqueness problem, since premultiplyingK
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1138 REPUCCI, SCHIFF, and VICTOR
by any orthogonal transformationQ ~i.e., Q such that
QQT5QTQ5I ! yields an alternative matrixG5QK,
for which GR is likewise decorrelated and norma
ized: (GR)(GR)T5(QKR)(QKR)T5QKRRTKTQT

5QIQT5I .

Novel Search Among Orthogonal Rotations

At this point, we have reduced the nonuniqueness
the PCA decomposition to an arbitrary scale factor
each channel—the normalization performed above w
suffice—and any orthogonal transformationQ. We now
search for a rotation of the temporal componentsQT8
that is consistent with the hierarchical structure propo
in the introduction. Recall that the autoregressive coe
cients A8 from the decorrelated MLAR model specif
the dynamic interrelationships among theP components
at up toL lags. Accordingly, the HD algorithm seeks
P3P transformationQ that simultaneously transform
all L matrices Al8 into upper-triangular form~see file
‘‘rotation.m’’ archived in ‘‘HD–ABME–code.zip’’ at
http://www.med.cornell.edu/research/hds!. We require
that Q be orthogonal, thereby guaranteeing that the
sidualsRMLAR are unchanged and that the orthonorma
of the innovationsR8 is preserved. The search is furth
restricted to the set of rotations@i.e., det(Q)51# to avoid
arbitrary changes in the sign of an odd number of
components.

Q is obtained iteratively via a procedure motivated
Jacobi matrix diagonalization.11,13 We begin with an ar-
bitrary rotationQ0 ~see below!, and successively apply
sequence of individual plane rotationsJ, each about a
pair of axes@u,v#. The sequence of plane rotations co
sists of multiple cycles through each of the possi
choices of axis pairs. That is,

Q5Jud ,vd
~u f d!¯Ju1 ,v1

~ud11!Jud ,vd
~ud!

¯Ju1 ,v1
~u1!Q0 , ~5!

whered5P(P21)/2 is the number of unique axis pai
~i.e., for a 333 matrix d53, for a 434 matrix d56,
and so on!, f is the number of cycles through all ax
pairs, and eachJu,v(u) is a rotation by an angleu about
axes@u,v#. For example,

J4,2~u!5F 1 0 0 0

0 cos~u! 0 sin~u!

0 0 1 0

0 2sin~u! 0 cos~u!

G . ~6!

At the nth stage in the iteration,u1 ,...,un21 are held
fixed, andun is determined by minimizing the sum o
squared elements below the diagonal~the residuals,RHD!
in all L matricesAl8 ~see the Appendix!:

RHD5(
l 51

L

(
p52

P

(
q51

p21

@~QAl8Q
T!p,q#2. ~7!

The algorithm terminates when a full cycle ofd itera-
tions passes without further reduction ofRHD . In other
words, termination occurs when theL matricesAl8 are
concurrently transformed to be as close as possible
upper-triangular form. If the generators of the origin
system can be cast in a hierarchical form, this trans
mation returns a new set of upper-triangular matric
AHD ; for other systems, this procedure yields matric
AHD that are as nearly upper triangular as possible, in
sense thatRHD has reached the minimum attainab
value.

This process of minimization, by successive applic
tion of rotationsJu,v(u), in a manner analogous to th
Jacobi matrix diagonalization procedure, falls into t
class of ‘‘direction set’’ methods.13 Direction set methods
entail sequential one-dimensional minimizations—he
determination ofu f d about the axis pair@ud ,vd#—of a
multidimensional—here,d-dimensional—space. The se
quence of axis pairs is chosen to cycle through all p
sible pairs of axes~i.e., for a 434 matrix, we used
56 and the cycle@2, 1#, @3, 1#, @4, 1#, @3, 2#, @4, 2#, @4,
3#, @2, 1#,...!. Numerical experimentation indicates th
there is no particular advantage to any sequence,
vided that each axis pair is examined once per cycle.~In
general, however, direction set methods tend to be m
efficient when the gradient of the function is used
guide the sequence.13! As with any multidimensional
minimization, there is a risk of being trapped in a loc
minimum. While simulated annealing methods could
used to ensure that the global minimum is found,
have found that it is sufficient simply to run sever
minimizations in parallel, each preceded by a differe
initializing rotationQ0 chosen from a collection of well-
spaced rotations~see the Appendix and file ‘‘rotmesh.m
archived in ‘‘HD–ABME–code.zip’’ at http://
www.med.cornell.edu/research/hds!.

The rotationQ that attains the global minimum fo
RHD ~see file ‘‘globalmin.m’’ archived in
‘‘HD –ABME–code.zip’’ at http://www.med.cornell.edu
research/hds! is subsequently used to transform the te
poral componentsT8, thereby identifying component
THD5QT8, such that each component is, as nearly
possible, influenced only by itself and the more domina
components in the hierarchy.
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1139Hierarchical Decomposition of Multivariate Time Series
Nonlinear Analysis of HD Resolved Components

In our application of HD to ictal ECoG, we are inte
ested in the nonlinear features of the underlying ti
series identified by the HD procedure. We therefore a
lyzed the time seriesTHD:p ~for p51¯P! for nonlinear
characteristics via nonlinear autoregressive anal
~NLAR!, and compared them to the related NLAR ana
sis of the principal componentsTp ~for p51¯P!. The
NLAR method is discussed in detail elsewhere.16,17

Briefly, a 20-term linear autoregressive model f
each time series is augmented by a single nonlinear t
that models a joint influence of the signal at two pri
times ~timesn2 j andn2k! on the signal at timen. The
coefficientsB and C of this nonlinear model,

THD:p,n5RNLAR: p,n2Bp,02(
l 51

20

Bp,lTHD:p,n2 l

2Cj ,kTHD:p,n2 jTHD:p,n2k ,

~ j 51¯20, k51¯ j !, ~8!

are then determined separately for each of the 210 p
sible choices of a single nonlinear term~i.e., each of the
210 unique assignments ofj and k to pairs in the set
$1,..., 20%! by minimizing RNLAR . This yields C, a 20
320 symmetric matrix of nonlinear autoregressive co
ficients ~where each entry inC is resolved by separat
models!.

The addition of each nonlinear termCj ,k to the au-
toregressive model reduces the model varianceV by an
amountDVj ,k in comparison with the variance associat
with the best 20-term linear AR model. Via an extensi
of the AIC,19 we use NDV/V to assess whether thi
reduction in variance is significant. We also exami
NDVj ,k /V as a function ofj and k; this ‘‘NLAR finger-
print’’ summarizes the nonlinear dynamics of each tim
series over the lags considered, up to second order.

Definitions of Some Useful Quantities

In assessing the degree of hierarchical struct
present in any set of MLAR coefficients, it is useful
define four quantities as follows. For any such set
MLAR model coefficientsF ~whereF may beA, A8, or
AHD as below!, the sum of all squared elements is

RTOTAL5(
l 51

L

(
p51

P

(
q51

P

Fp,q,l
2 . ~9!

The size of the decoupled portion of the MLAR mod
~i.e., the extent to which the components’ dynamics
independent! is summarized by the sum of squared e
ments on the diagonal in allL matricesFl :
-

RDIAG5(
l 51

L

(
p51

P

Fp,p,l
2 . ~10!

The size of the hierarchical dynamic relationships in
MLAR model is summarized by the sum of squar
elements above the diagonal in allL matricesFl :

RUPPER5(
l 51

L

(
p51

P21

(
q5p11

P

Fp,q,l
2 . ~11!

The size of the dynamic relationships that are ‘‘antihie
archical’’ ~i.e., neither hierarchical nor independent! is
equal to the sum of squared elements below the diago
in all L matricesFl :

RLOWER5(
l 51

L

(
p52

P

(
q51

p21

Fp,q,l
2 . ~12!

Thus, RTOTAL5RDIAG1RUPPER1RLOWER.
These four quantities will be used to compare t

degree of independent and hierarchical drive in the v
ous MLAR models at each stage of analysis describ
above.RTOTAL before and after the transformation ide
tified by HD must be unchanged, since this transform
tion is orthogonal. However, the stage of noise decor
lation may changeRTOTAL because of the scale facto
implicit in the transformationK. For this reason, we will
typically focus on the quantitiesRDIAG , RUPPER, and
RLOWER, as fractions ofRTOTAL , and refer to these frac
tions as the independent, hierarchical, and antihierar
cal drives, respectively.

We draw the readers attention to the fact that
arbitrary order chosen for the principal and nois
decorrelated components will define one set of values
RUPPER and RLOWER for each model, and that any reo
dering of those components potentially yields differe
sets of values. Thus, theP! permutations of those com
ponents may change the apparent percent of hierarch
drive in the system. To distinguish the degree to wh
any such permutation will lead to a more or less hier
chical model versus the degree to which the HD meth
uncovers the inherent hierarchical structure in the s
tem, we shall use the maximum value ofRUPPER—where
RUPPER is considered for all permutations of th
components—for all models of the principal and nois
decorrelated components. This necessarily results in
minimum possible value forRLOWER, and guarantees
that RUPPER>RLOWER.
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FIGURE 1. HD analysis of a three-generator hierarchical system constructed from a two-lag MLAR model. „A… Time series of the
three hierarchical generators, showing one, two, and three dominant frequencies, respectively. „B… Sixteen time series com-
posed of random linear combinations of the three time series in „A…. „C… Time series of the first three principal components
obtained from „B…. „D… Time series of the three resolved hierarchical components obtained by rotation of the principal compo-
nents. The ability of the HD method to extract hierarchical sources is evidenced by the virtually identical time series „disre-
garding signal polarity … in „A… and „D…, as compared to the scrambled and dissimilar principal components in „C….
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RESULTS

HD Analysis of Simulated Multivariate Time Series

To demonstrate proof of principle of the HD metho
we present several analyses of simulated multivar
systems. We first consider systems composed of th
generators driven by Gaussian noise and linked in
hierarchical relationship. For the first system, the auto
gressive model has nonzero coefficients up to two lag
the past~i.e., L52!; this situation permits unambiguou
identification of the underlying generators~this data set
and the code to reproduce Fig. 1 is archived
‘‘HD –ABME–code.zip’’ at http://www.med.cornell.edu
research/hds!. We then limit the autoregressive model
a single lag ~i.e., L51! and show that this leads t
degeneracy in the possible minimizing rotationsQ, and
consequent lack of uniqueness in the hierarchical dec
position. Finally, we examine a system of threeindepen-
dent generators, with nonzero autoregressive coefficie
up to L52; this example demonstrates that HD is a
capable of extracting dynamically independent com
nents.

To create the first simulated system of three hierarc
cally related time series, we fix a two-lag hierarchic
MLAR model, and drive each generator with indepe
dent Gaussian white-noise input, generating three t
series of lengthN5512. Coefficients above the diagon
in the MLAR matrices—which correspond to hierarch
cal influences between channels—were randomly cho
-

n

from a Gaussian distribution with a mean of zero a
unit variance.~It can be shown that for a hierarchica
system off-diagonal coefficients do not affect stability.
our simulations, stability was ensured by choosing
MLAR coefficients on the diagonal to correspond
polynomials of orderL whose roots have absolute valu
less than unity.9! Figure 1~A! shows the three resulting
time series~the simulated generators!. The influence of
each generator on the subordinate generators is evid
the first generator exhibits a single dominant frequen
while the second and third generators have two and th
dominant frequencies, respectively.~Analysis of the
power spectra confirms this.! Estimation of the MLAR
coefficients for the simulated generators via the Yul
Walker procedure will approximate~but not equal! the
values used to construct the system. That is, the e
mated coefficients yieldRLOWER50.0003, a good ap-
proximation to the intendedRLOWER50. By comparison,
RDIAG58.0316 andRUPPER54.7208, indicating;63%
independent drive~i.e., RDIAG /RTOTAL'0.63! and;37%
hierarchical drive ~i.e., RUPPER/RTOTAL'0.37! in the
overall signal.

To simulate the kind of mixing of sources that mig
occur in EEG recordings, we take 16 random linear co
binations of the three generators@see Fig. 1~B! and the
file ‘‘lincomb.m’’ archived in ‘‘HD –ABME–code.zip’’ at
http://www.med.cornell.edu/research/hds#. PCA decom-
position of these 16 time series—the first step in the H
analysis—yields components that are remarkably d
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1141Hierarchical Decomposition of Multivariate Time Series
similar to the original generators@see Fig. 1~C!#. Each
principal component contains a mixture of frequenci
and the MLAR model of them gives no hint of th
hierarchical structure~RTOTAL522.9593,;64% indepen-
dent and;24% hierarchical drive!. Because these sig
nals are Gaussian, decorrelation by PCA guaran
information-theoretic independence at each time po
and is thus equivalent to ICA. In other words, examin
tion of the higher-order momentsat zero lagwould not
help to reveal the hierarchical structure. By contrast,
explicit use of signal dynamics allows HD to resolv
hierarchically related components: the resulting MLA
model is characterized by;64% independent and;36%
hierarchical drive (RTOTAL512.5284), close to the value
obtained from the original generators. Strikingly, the
solved components@see Fig. 1~D!# are virtually identical
to the original generators, other than signal polar
~Amplitudes of the extracted components also match
original generators because we chose equal-varia
noises as the driving terms.!

For a three-dimensional system such as this, we
visualize the search for the rotationQ ~see the Methods
section! by creating a representation of the space of p
sible three-dimensional rotations. To construct this rep
sentation of the rotation space, we recognize that
three-dimensional rotation is specified by an angle
rotation ~u, from 0 to p rad! around a unique axis in
space. We can thus represent a three-dimensional rota
as a pointr in a solid sphere, where the direction fro
the center of the sphere tor indicates the axis of the
rotation, and the length of this vector representsu. Fig-
ure 2 uses this representation of the rotation space
examine the global behavior of the residual valuesRHD

for the example outlined in Fig. 1. Notice that there is
local minimum in the neighborhood of the global min
mum that provides a potential trap for the HD minim
zation algorithm.

The second example consists of three hierarchic
related generators, but one in which the predefin
MLAR model stipulates only single-lag influence
~RTOTAL511.8557,;7% independent and;93% hierar-
chical drive!. Figure 3 shows the time series (N5512)
for this example in the same format as Fig. 1. Aga
PCA is unable to resolve the hierarchical generat
~RTOTAL51.6037,;73% independent and;23% hierar-
chical drive!. By contrast, the HD algorithm uncovers th
hierarchical components~RTOTAL511.8533,;8% inde-
pendent and;92% hierarchical!, as is evidenced by the
similarity between Figs. 3~A! and 3~D!. However, the
hierarchical decomposition is not unique: the global b
havior of the residuals, as shown in Fig. 4, demonstra
the existence of multiple global minima.

It can be shown that this nonuniqueness is expec
for single-lag hierarchical MLAR models. For a gener
P-component system, there areP! rotationsQ ~not lim-
s

e

n
ited to permuting the generators or changing their si!
that minimizeRHD . These rotations correspond to theP!
possible orderings of eigenvalues in the matrixAHD . ~To
see this, we observe that transformingA8 into upper-
triangular form by a rotation amounts to choosing
appropriate orthonormal basis to form the columns ofQ.
When hierarchical generators exist, application of t
Gram–Schmidt procedure to the eigenvectors ofA8 pro-
vides such an orthonormal basis. This is because tr
gular form for a matrix implies a full set of real eigen
values and eigenvectors.11 Each of theP! orderings of
the P eigenvectors yields a different basis via the Gram
Schmidt procedure, and hence, a distinct rotationQ and
a distinct set ofL triangular matricesAHD: l5QAl8Q

T.!
This degeneracy does not occur withL>2, since rota-
tions Q that makeQA18Q

T triangular do not necessaril
makeQA28Q

T triangular.
An extension of this analysis allows us to state t

conditions under which a set of matricesA1 ,A2 ,...,AL

can be simultaneously transformed to upper-triangu
form by an orthogonal matrixQ. First, each matrix mus
have a full set of real eigenvalues, so that each ma
can be individually transformed into upper-triangul
form.11 Second, it must be possible to order the eige
vectors for each matrix in such a way that~a! the first
eigenvector of each matrix is identical~other than a scale
factor!, and~b! for eachk<Q, the firstk eigenvectors of

FIGURE 2. Graphical representation of a portion of the rota-
tion space for the HD analysis of the system displayed in
Fig. 1. Each rotation Q is specified by a point r in a solid
sphere, where the direction from the center of the sphere to
r indicates the axis of the rotation, and the length of this
vector represents u. The residual value RHD for each rotation
is represented in color „see scale to the right …. In this portion
of space „angle of rotation uÉ1.9478 rad …, we can see both a
global minimum and a local minimum, which provides a po-
tential trap for the HD algorithm.
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FIGURE 3. HD analysis of a three-generator hierarchical system constructed from a one-lag MLAR model. „A… Time series of the
hierarchical generators. „B… Sixteen time series composed of random linear combinations of the three time series in „A…. „C…

Time series of the first three principal components obtained from „B…. „D… Time series of the three resolved hierarchical
components obtained by rotation of the principal components. Although HD extracts hierarchical sources, the hierarchical
decomposition for the single-lag case is not unique „see Fig. 4 ….
.
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each matrix span the samek-dimensional subspace
These conditions fix the order of the eigenvectors, p
vided that the number of lagsL.1.

The final simulated example consists of three ind
pendent generators, each driven by independent Gaus
noise. To simulate independence, the two-lag MLA
model has no off-diagonal terms. MLAR coefficients e
timated from the time series (N5512) generated by this
model @see Fig. 5~A!# indeed indicate essentially 100%
n

independent dynamics:RDIAG57.5851 and RTOTAL

57.5875. When PCA is applied to a set of 16 rando
linear combinations of these generators@see Fig. 5~B!#,
the extracted components see@Fig. 5~C!# depend in part
on the sizes of the contributions of the individual ge
erators to each channel, and thus do not fully reveal
independent dynamics~RTOTAL57.5888,;94% indepen-
dent,;3% hierarchical, and;3% antihierarchical drive!.
FIGURE 4. Graphical representation of three portions of the rotation space for the HD analysis of the system displayed in Fig.
3. The residual value RHD for each rotation Q is represented as in Fig. 2. The three panels are chosen to contain three of the
global minima for RHD „uÉ0.1257 rad in panel A, uÉ0.3770 rad in panel B, and uÉ0.6283 rad in panel C …. This illustrates the
degeneracy in the rotation Q for single-lag models. „Small differences in the color of each minimum result from the rough, finite
sampling required by the graphical presentation. …
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FIGURE 5. HD analysis of a three-generator independent system constructed from a two-lag MLAR model. „A… Time series of the
independent generators. „B… Sixteen time series composed of random linear combinations of the three time series in „A…. „C…

Time series of the first three resolved principal components. „D… Time series of the three HD-resolved independent components.
Here, we see that the HD method is also capable of extracting dynamically independent sources.
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Following application of HD@see Fig. 5~D!#, we find
approximately 100% independent drive (RTOTAL

57.5862). However, since there is no hierarchical d
pendence in this example, the order of the compone
extracted by HD is arbitrary—here, the second and th
generators are interchanged in Fig. 5~D! compared with
Fig. 5~A!.

HD Analysis of Ictal ECoG Data

Here, we use HD to reanalyze the ictal electrocortic
graphic records examined by Schiff and co-workers.15 In
the analysis of electroencephalographic data, neither
number nor the time course of the underlying genera
is known in advance. Therefore, we select theP compo-
nents that constitute most of the original signal varian
~see the Methods section!, and are interested in both th
degree of the resolved hierarchical structure and the
namics of each component. We use the traditional A
~Ref. 1! to determine the order of the MLAR model
Application of a stricter AIC that doubles the relativ
weighting of the number of degrees of freedom19 typi-
cally reduces the model orderL by 1 but does not oth-
erwise significantly alter the results~data not shown!.
Since individual seizure generators are commo
thought of as cyclic~i.e., roughly periodic in time!, it is
important to point out that the hierarchical relationsh
between generators, which we seek here, is by no me
in contradiction to this view. That is, generators that a
related to each other in a hierarchical fashion may the
selves be cyclic in time.
-

s

Strikingly, the components resolved by HD are bo
proportionally more hierarchically influenced~compare
columns labeled ‘‘RUPPER/RLOWER’’ in Table 1! andmore
independently driven ~compare columns labele
‘‘% RDIAG’’ in Table 1! than the components resolved b
PCA. For example, the MLAR model coefficients of th
principal components—A in Eq. ~3!—obtained from the
third seizure record of patient 2 are characterized
;94.3% independent drive (%RDIAG) and ;4.4% hier-
archical influence (%RUPPER), yielding a hierarchical to
antihierarchical ratio (RUPPER/RLOWER) of 3.4 ~sixth row,
first column, Table 1!. By contrast, the MLAR model
coefficients of the hierarchical components (AHD) reveals
that ;96.2% of the drive is independent (%RDIAG),
;3.6% is hierarchical (%RUPPER), and the ratio of hier-
archical drive (RUPPER/RLOWER) is 16.3 ~sixth row, third
column, Table 1!. Some, but not all, of this simplification
of model structure is due to the reorganization of t
model coefficients by the noise decorrelation procedu
which yields model coefficientsA8. For this example,
noise decorrelation alone yields;96.0% independen
(%RDIAG) and ;2.5% hierarchical drive (%RUPPER).
But, in most instances, noise decorrelation fails to ide
tify a proportionally more hierarchical organizatio
~RUPPER/RLOWER is only 1.7!, whereas HD extracts com
ponents that are both more independent~larger
RDIAG /RTOTAL , all records! and proportionally more hi-
erarchical ~greater ratio ofRUPPER to RLOWER in 7/9
records!, as detailed in Table 1. Moreover, the contrib
tion of each of theL coefficient matrices to the indice
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1144 REPUCCI, SCHIFF, and VICTOR
RUPPER andRLOWER are approximately equal in all case
~data not shown!, perhaps as a consequence of the f
that the HD algorithm treats allL matrices equally.

As alluded to in the Introduction, examination of th
nonlinear dynamics present in the extracted compone
provides another means to interpret the results of the
method. To assess the nonlinear dynamics in an in
vidual time series we use the NLAR fingerprint.19 This
approach identified common nonlinear dynamics betw
3/s spike-and-wave seizure traces,16,17 and the principal
components derived from the partial complex seizu
records of patients 1 and 2.15 Figure 6 compares the
NLAR analyses of the principal components~as analyzed
in Ref. 15! with that of the hierarchical components. I
Fig. 6, the percent of variance of the original signal th
each component explains is shown by the height of a
~For PCA this necessarily decreases as the compo
number increases.! The significance of the nonlinear dy
namics identified in each component, as summarized
NDV/V, is shown by the corresponding point on a so
line @the dashed line indicates significant nonlinearitie
NDV/V54 ~Ref. 19!#. Whereas the principal compo
nents with the largestNDV/V are typically those com-
ponents that explain only a small fraction of the varian
~leaving their significance unclear!, HD analysis reveals
that the hierarchical components with the greatest n
linear structure can be the most autonomous compon
~lowest numbered component!. This is seen in seizure 1
of patient 1, and in seizures 1 and 3 of patient 2.

This latter record is particularly striking because H
analysis uncovers a hierarchical component with sign
cant nonlinearities (NDV/V'8) even though none o
the principal components display significant nonline
characteristics (NDV/V,4). We hypothesize that this
reflects a more effective separation of underlying gene
tors by HD, and that the components extracted by P
reveal only diluted effects of the nonlinearity due
mixing. Additionally, five components were retained f
seizure 3 of patient 1~following Schiff et al.!15—this is
an exception to the guidelines mentioned in the Metho
section—because the fifth component has anNDV/V
'5.2. Here, HD analysis with five components expos
significant nonlinear characteristics in the third hierarc
cal component, which accounts for nearly 50% of t
original signal variance. Finally, we note that there a
differences in the analyses of individual records with
and across patients, both in terms of the relative size
the hierarchical components and in the HD compone
that demonstrate the greatest nonlinearities. We sus
that these differences reflect physiologic differences
the events themselves rather than nonrobustness of
analysis method, since~a! the records themselves ap
peared artifact free,~b! the results of the analysis are n
significantly altered by small changes in the model ord
er,TA „

A th re th cl P P P P
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FIGURE 6. Summary of the NLAR analyses of the principal components „see Ref. 15 … and hierarchical components derived from
each record of patients 1 and 2. The percent variance explained by each component is shown by the height of a bar, while the
maximum NDVÕV for that component is shown by the corresponding point on a solid line. The dashed line in each graph
indicates NDVÕVÄ4, the criterion we have used for detection of significant dynamical nonlinearities „see Ref. 19 …. Often HD
analysis reveals that the component with the greatest nonlinear structure is one of the more autonomous components. Patient
2, seizures 1 and 3 are particularly striking examples of this.
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1146 REPUCCI, SCHIFF, and VICTOR
and ~c! for systems in which the internal structure
known ~Figs. 1–5!, HD provides an accurate decomp
sition.

DISCUSSION

Hierarchical Decomposition (HD) Method

In summary, the ability of HD to uncover hierarch
cally related components results from its fundamen
use of the dynamics inherent in any multivariate tim
series. We use a MLAR model to simultaneously enfo
two conditions upon the components. The first assum
tion is that the noise~i.e., residual values between th
observed behavior and the MLAR model! in each com-
ponent is independent and of equal magnitude. T
makes concrete the assumption that the stochastic c
ponents of the generators are independent, and it a
trarily sets a scale for the size of each generator. I
implemented in a single step, and can always
achieved, independent of the dynamics of the syst
The second condition seeks a hierarchical relations
among components. It is implemented iteratively, v
successive orthogonal rotations of the components to
tain a set of MLAR matrices that are as triangular
possible.

Using simulated systems of hierarchically organiz
generators, we show that HD is capable of extracting
original sources, whereas PCA or ICA cannot~Figs. 1
and 3!. The hierarchical minimization procedure
graphically depicted in Figs. 2 and 4, and highlights tw
important caveats:~a! finding the global minimum for
the model ~i.e., the most triangular! requires avoiding
various local minima, and~b! models with simple dy-
namics~i.e., where only single-lag influences are signi
cant! are degenerate, having multiple global minima. T
latter point underscores the fact that separation of
generators relies intimately on their dynamics. If t
MLAR model is trivial ~i.e., L50, no significant dynam-
ics in the individual components!, then the HD procedure
is trivial, too, and the continuum of ambiguities intrins
to PCA remain. If the MLAR model contains one la
only, then the HD procedure can narrow down possi
models of the system to a discrete set of sizeP! ~where
P is the number of generators!. If the MLAR model
contains two or more lags, then the HD decomposition
typically unique, and if the original system has a hier
chical structure, the algorithm will identify it.

In these simulations, we know exactly how many ge
erators~i.e., three! contribute to each 16-channel data s
we create. Moreover, the first three principal compone
necessarily account for 100% of the variance of the s
tem. This highlights two potentially important limitation
of the HD method. In real-world data, by selecting on
the most important principal components~see the Meth-
ods section!, we make the explicit compromise of no
-
-

.

-

accounting for all of the variance of the signal~;20% in
the current application to EEG!. Although in principle
HD analysis could be performed on the raw data, t
compromise is often necessary because identification
minimum in the extremely high-dimensional space of
possible rotations is not likely to be robust. Additionall
one might wonder how HD would behave if performe
on fewer components than the number of genera
known to be present. Here, the results of HD analysis
numerical simulations provide reassurance~data not
shown!, since main features of the decomposition a
preserved. For example, three hierarchical sources
tracted by HD from a system built with four generato
look more similar to the four original generators than
any of the principal components, in so far as they se
to be less arbitrarily mixed.

For many previous approaches to the analysis of m
tivariate time series~including methods based exclu
sively upon PCA and related methods!, the underlying
rationale is that the observed signals represent lin
mixtures of independent sources~or generators!. In many
systems, such as the brain, the observed time series
resent mixtures of sources that are not strictly indep
dent, but rather dynamically influence one another, of
in stereotyped patterns.18 This is the rationale for the
present approach, in which we separate multivariate t
series by assuming instead that the sources influe
each other in a hierarchical fashion. More generally,
method can be adapted to seek interrelationships of o
canonical types~e.g., cyclic! by appropriate modification
of Eq. ~7!. Thus, the HD method may be considered
be a special case of a large set of canonical decomp
tion procedures.

The use of causality~i.e., the influence of prior ob-
servations on the current observation! and its importance
in the HD algorithm deserves emphasis. The MLA
technique used by HD is implicitly dependent upo
causal relations among the observations in a multivar
time series data set. That is, the MLAR model descr
tion of the data relies upon the order of the observatio
as it describes the effect of prior observations upon c
rent observations. This description would be obscured
time-reversing or shuffling the data. HD uses the
causal relationships to guide the search for a rotationQ
~see the Methods section! that yields a hierarchical inter
relationship among components. The hierarchy of co
ponents delineates a specific type of causal relations
in a data set, namely, that the current value for ea
component is affected by prior values of itself and mo
dominant components in the hierarchy.

This approach is in direct contrast to other cau
techniques for multivariate data analysis, includi
Granger causality,7 generalized autoregressive cond
tional heteroskedasticity~GARCH!,3 adaptive multivari-
ate autoregressive modeling~AMVAR !,5 and directed
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1147Hierarchical Decomposition of Multivariate Time Series
coherence.8 These methods assume that the original ti
series represents the unmixed sources, and then loo
and characterize the degree and type of causal relat
among the data. In contrast, HD assumes a general f
for the causal interaction, and uses this assumption
direct the decomposition into sources.~Granger7 notes
that multivariate data sets can have a ‘‘spurious cau
chain appearance,’’ and examples of this can be rea
constructed by linear mixing of independent time seri
However, as pointed out above, for multivariate data s
whose MLAR structure includes more than one lag,
duction to hierarchical form is not guaranteed, and
such a reduction is possible it is typically unambiguou!
From this point of view, HD appears to be unique.

Application of HD to Ictal ECoG

The degree of hierarchical and independent struc
in all components derived from ictal ECoG records
patients 1–4 is summarized in Table 1. Examination
Table 1 indicates that the components resolved by
are both proportionally more hierarchical~i.e., see the
columns labeled ‘‘RUPPER/RLOWER’’ under each type of
component! and more independently driven~i.e., see the
columns labeled ‘‘%RDIAG’’ under each type of compo
nent! than the components resolved by PCA. Also e
dent from Table 1 is the fact that reorganization of t
components by noise decorrelation is partially resp
sible for this simplification of model structure. Howeve
noise decorrelation alone typically results in a more ev
distribution of off-diagonal coefficients~i.e., values for
RUPPER/RLOWER that are closer to 1!. In addition, notice
that the proportion of hierarchical drive in these syste
revealed by HD is sometimes quite large, particularly
seizures 2 and 3 of patient 2~RUPPER/RLOWER equals
14.7 and 16.3, respectively!. Nevertheless, there is als
variability, both from patient to patient and within pa
tients, in the degree of hierarchical relationship betwe
the underlying seizure generators.

Previously, we showed that PCA decomposition
temporal lobe seizure records uncovers compone
whose nonlinear dynamics, as characterized by NL
fingerprints, resemble those of the EEG during abse
seizures.15 Because the principal components exhibiti
significant nonlinear characteristics account for relativ
small fractions of the original signal variance, the bi
logical significance of the nonlinear signal was uncle
In contrast, HD analysis of these same records unco
components containing the same nonlinearities, but t
can appear relatively early in the hierarchy~see Fig. 6!.
The position of these nonlinearities in the hierarchy a
pears to be independent of the amount of original sig
variance that these components explain. Furtherm
HD analysis may clarify the biological significance
these nonlinearities: they possibly reflect deep genera
r
s

-

s

,

s

that contribute little to the surface EEG, but affect
large portion of the entire neuronal system. More gen
ally, the HD analyses demonstrate that although the n
linearities are not always a major contribution to t
overall signal variance, they nevertheless may exert
fluence over all or most of the system.

In addition, the NLAR fingerprints of the hierarchica
components support the connection between temp
lobe and absence seizures, and strengthen the sugge
that both seizure types may result from similar under
ing neuronal mechanisms.14,15 Significant nonlinearities
in these fingerprints appear in the vicinity of 90 and 1
ms,14 as is seen in the NLAR fingerprints of absen
seizure traces,17 and as reported earlier for the NLAR
fingerprints of the principal components.15 Notice, how-
ever, that the nonlinearities tend to be more statistica
significant in the hierarchical components than in t
principal components. Our findings may help expla
why even focal temporal lobe seizures produce glo
alterations in awareness and behavior: the importanc
a neuronal circuit in driving global brain activity~i.e., its
position in the hierarchy! may be disproportionate to th
fraction of the variance of the surface activity that
explains, especially for generators that are deep.
results of HD modeling are thus consistent with the n
tion that temporal lobe and absence seizures reflect
teration of selective circuit mechanisms that play a k
role in forebrain integration.15 The application of the HD
technique to ECoG records of temporal lobe epilep
suggests that there is an interpretive benefit gai
by extracting hierarchical, rather than independe
components.
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APPENDIX

This Appendix provides additional details for two a
pects of the algorithm we have presented above~see the
Methods section!. The description is keyed toMATLAB

code, archived in ‘‘HD–ABME–code.zip’’ at http://
www.med.cornell.edu/research/hds, but does not fully
scribe the code itself~see embedded documentatio
within the code for further details!. Where the code dif-
fers slightly from the calculations presented in this e
position such differences are noted. We make no cla
that this code is optimized but rather hope that it w
provide a useful starting point for other researchers.
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Determination of the Rotation Angle(un)

This calculation is carried out by the file ‘‘rotation.m
archived in ‘‘HD–ABME–code.zip’’ at http://
www.med.cornell.edu/research/hds.

For any square matrixA, transformation via a plane
rotation Ju,v(u) @see Eqs.~6! and ~7!# produces a new
square matrixJu,v(u)AJu,v

T (u)5A8. This transformation
only alters the elements in both the rows and columnu
andv in matrix A—whose elements are denotedai , j . We
are interested in minimizing the sum of squared eleme
below the diagonal inA8—whose elements are denote
ai , j8 . Thus we require equations for those elementsai , j8
below the diagonal~i.e., such thati . j ! that are altered
by the rotation.@For historical reasons, the code min
mizes the sum of squared elementsabovethe diagonal of
A8T, and each rotation induces the transformat
Ju,v

T (u)ATJu,v(u)5A8T. BecauseJu,v(u) is antisymmet-
ric this is fundamentally equivalent to performing th
rotation as described in Eq.~7!.#

For convenience we can divide the analysis of ma
entries below the diagonal ofA8 ~above the diagonal o
A8T! into five groups of elements~depending on the axe
valuesu andv, some of these groups may be empty!. In
what follows, sP$u,v%, p5min(u,v), r 5max(u,v), and
n,p,q,r ,t: ~1! as,n8 , ~2! at,s8 , ~3! ar ,q8 , ~4! aq,p8 ,
and~5! ar ,p8 . Elementary matrix algebra used in conjun
tion with trigonometric identities shows that groups
and 2 will never affect the residual valueRHD @see Eq.
~7!#. For group 1 elements

au,n82 1av,n82 5@au,n cos~u!1av,n sin~u!#21@av,n cos~u!

2au,n sin~u!#25au,n
2 1av,n

2 ,

and similarly for group 2 elements,

at,u821at,v825@at,u cos~u!1at,v sin~u!#21@at,v cos~u!

2at,u sin~u!#25at,u
2 1at,v

2 .

In contrast, elements in groups 3 and 4, when pres
typically affect the residual valueRHD , as will the group
5 element, which is always present.

For groups 3 and 4, we use the trigonometric iden
ties cos2(u)50.510.5 cos(2u), sin2 (u)50.520.5 cos(2u),
and 2 sin(u)cos(u)5sin(2u), and find:

ar ,q82 1aq,p82 5@ar ,q cos~u!2ap,q sin~u!#2

1@aq,p cos~u!1aq,r sin~u!#2

5ar ,q
2 cos2~u!22ar ,qap,q cos~u!sin~u!

1ap,q
2 sin2~u!1aq,p

2 cos2~u!
,

12aq,pap,rcos~u!sin~u!

1aq,r
2 sin2~u!

5~ar ,q
2 1aq,p

2 !cos2~u!

12~aq,paq,r2ar ,qap,q!cos~u!sin~u!

1~ap,q
2 1aq,r

2 !sin2~u!

5~aq,pap,r2ar ,qap,q!sin~2u!

10.5~ar ,q
2 1aq,p

2 2ap,q
2 2aq,r

2 !cos~2u!

10.5~ar ,q
2 1aq,p

2 1ap,q
2 1aq,r

2 !.

This equation may be further simplified by combinin
the sine and cosine terms into a single trigonome
function. ~The addition of sine and cosine waves of t
same frequency yields another sinusoidal wave at
same frequency, whose amplitude is the square roo
the sum of the squared amplitudes of the original wav
and whose phase is the arctangent of the ratio of
amplitudes of the original waves.! Accordingly, we make
the substitutions E sin(f)5(aq,paq,r2ar,qap,q) and
E cos(f)50.5(ar ,q

2 1aq,p
2 2ap,q

2 2aq,r
2 ) which, used in

conjunction with the trigonometric identity sin(a)sin(b)
1cos(a)cos(b)5cos(a2b), leads to

ar ,q82 1aq,p82 5E cos~2u2f!10.5~ar ,q
2 1aq,p

2 1ap,q
2 1aq,r

2 !.
~A1!

Additionally, the equation for the group 5 element sim
plifies in an analogous manner, using the substitutio
V sin(c)50.5(ar ,r2ap,p) and V cos(c)50.5(ar ,p1ap,r),
and the trigonometric identities above:

ar ,q8 5@ar ,p cos~u!1ar ,r sin~u!#cos~u!

2@ap,p cos~u!1ap,r sin~u!#sin~u!

5ar ,p cos2~u!

1~ar ,r2ap,p!cos~u!sin~u!

2ap,r sin2~u!

50.5~ar ,r2ap,p!sin~2u!

10.5~ar ,p1ap,r !cos~2u!

10.5~ar ,p2ap,r !

5V cos~2u2c!10.5~ar ,p2ap,r !.

Finally, we calculate the square of the equation for t
group 5 element and are left with

ar ,p82 50.5V2 cos~4u22c!1V~ar ,p2ap,r !cos~2u2c!

10.25~ar ,p2ap,r !
210.5V2. ~A2!
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1149Hierarchical Decomposition of Multivariate Time Series
Thus, we must minimize—as a function ofu—an
expression that consists of the above contribution fr
Eq. ~A2! for the group 5 element, and a contributio
from Eq. ~A1! for each pair of elements in groups 3 an
4 that are present~elements in a pair are alwaysboth
absent orboth present!. Elements in groups 1 and 2 ma
be neglected, since they contribute a constant that d
not depend onu, as may the constant terms present
Eqs. ~A1! and ~A2!.

In our code, matrix entries inA that contribute to the
trigonometric functions governing group 5~see lines 81–
89! and, when necessary, groups 3 and 4~see lines 91–
104! are collected and combined into matrix constan
including E andV, f, andc. The trigonometric equation
to be minimized is assembled from Eq.~A2! for each
group 5 element~see lines 109–112! and, as needed
from Eq. ~A1! for pairs of elements in groups 3 and
When elements in groups 3 and 4 are present, the fu
tion to be minimized may be quite large~see lines 125–
127!, whereas the minimization is simpler when groups
and 4 are empty~see lines 128–131!. Finally, we use a
customized bisection routine to find the value foru that
minimizes the complete trigonometric function~see sub-
function ‘‘trigmin,’’ lines 240–266!.

Creating Well-Spaced Initializing Rotations(Q0)

The initializing rotationsQ0 are determined as fol
lows ~see file ‘‘rotmesh.m’’ archived in
‘‘HD –ABME–code.zip’’ at http://www.med.cornell.edu
research/hds!. For each possible choice of a pair of ax
@u,v# we build plane rotations at two rotation anglesu
562p/3 ~see lines 56–74!. Thus, for a system consis
ing of P components there ared5P(P21)/2 possible
pairs of axes, and 2d possible initializing rotationsQ0 .
We randomly order all possible initializing rotationsQ0

~see lines 76–78! and use one for each parallel minim
zation performed@see Eq.~5! and associated text#.
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