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Abstract The apparent receptive field characteristics of
sensory neurons depend on the statistics of the stimulus
ensemble—a nonlinear phenomenon often called contextual
modulation. Since visual cortical receptive fields deter-
mined from simple stimuli typically do not predict
responses to complex stimuli, understanding contextual
modulation is crucial to understanding responses to natural
scenes. To analyze contextual modulation, we examined
how apparent receptive fields differ for two stimulus
ensembles that are matched in first- and second-order
statistics, but differ in their feature content: one ensemble
is enriched in elongated contours. To identify systematic
trends across the neural population, we used a multidimen-
sional scaling method, the Procrustes transformation. We
found that contextual modulation of receptive field compo-
nents increases with their spatial extent. More surprisingly,
we also found that odd-symmetric components change

systematically, but even-symmetric components do not.
This symmetry dependence suggests that contextual mod-
ulation is driven by oriented On/Off dyads, i.e., modulation
of the strength of intracortically-generated signals.
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1 Introduction

Neurons in primary visual cortex are often described as
detectors of oriented features (Hubel and Wiesel 1959,
1968), or as oriented filters (De Valois et al. 1982a, b; De
Valois and Thorell 1988). Such spatial processing can be
adequately characterized by stimuli that vary along only
one dimension, such as bars, edges, and gratings. More-
over, implicit (or sometimes explicit) in this view is the
notion that the main qualitative features of a V1 neuron’s
response can be described in terms of a linear spatial filter,
or a linear spatial filter followed by a simple nonlinearity
such as a threshold, or an energy operation.

However, there is a large and increasing body of
evidence that this simple picture is incomplete. First, there
is the intriguing role of the surround of the receptive field.
Increasing stimulation of the surround increases sparseness
(Vinje and Gallant 2000) and efficiency of information
transmission (Vinje and Gallant 2002) during natural
vision. Second, even simple visual stimuli placed in the
surround strongly influence a cell’s responses. These
modulatory effects may arise at several levels. Some may
reflect processes that have already occurred in the retina
(Shapley and Victor 1978) and lateral geniculate nucleus
(Ohzawa et al. 1985). Some can be explained by the
nonlinearities of processing within a single cortical cell

J Comput Neurosci
DOI 10.1007/s10827-008-0107-5

Electronic supplementary material The online version of this article
(doi:10.1007/s10827-008-0107-5) contains supplementary material,
which is available to authorized users.

Action Editor: Matthew Wiener

T. O. Sharpee (*)
Computational Neurobiology Laboratory,
The Salk Institute for Biological Studies,
La Jolla( CA 92037, USA
e-mail: sharpee@salk.edu

T. O. Sharpee
Center for Theoretical Biological Physics,
University of California, San Diego,
La Jolla( CA 92093, USA

J. D. Victor
Weill Cornell Medical College,
New York, NY 10065, USA
e-mail: jdvicto@med.cornell.edu

http://dx.doi.org/10.1007/s10827-008-0107-5


(Priebe and Ferster 2006) or synapse (Carandini et al. 2002;
Freeman et al. 2002). Others appear to require cortical
network mechanisms (Das and Gilbert 1999) including
suppressive connections between neurons of different
orientations and spatial frequencies (Bonds 1989; Carandini
et al. 1997; Heeger 1992).

Here we examine how the shape of the apparent
receptive field sensitivity profile depends on context, and
focus on aspects of context that are not likely to trigger
simple gain control mechanisms. We do this by analyzing
responses of neurons to two sets of two-dimensional
Hermite functions (Fig. 1). The two stimulus sets are
matched in spatial extent, contrast, and second-order
statistics, but differ in their higher-order statistics. These
differences are visually obvious and lead to qualitatively
different two-dimensional patterns: one set has Cartesian
symmetry and contains Gabor-like patterns, checkerboard-
like patterns, and elongated contours; the other set has polar
symmetry and contains target-like and pinwheel patterns. If
the neural response were described by a linear function of
the stimulus (perhaps followed by a nonlinearity), then both
stimulus ensembles would provide identical reconstructions
of the neural receptive field. This is because individual
stimuli within one stimulus ensemble can be expressed as
linear combinations of stimuli from the other stimulus
ensemble. Moreover, even if the spatial sensitivity were
modulated by mechanisms sensitive to the “context” of
first- and second-order statistics (such as mean luminance,
contrast, and power spectrum), the two ensembles would
still provide identical reconstructions—because their statis-
tics are matched at first and second order.

The focus on context-dependence induced by statistics of
order greater than two might at first seem like a
mathematical curiosity, but it is actually of central impor-

tance. This is because it is these high-order statistics (phase
correlations) that lead to visually salient structure such as
lines and edges, both in artificial stimuli (Morrone and Burr
1988) and in natural scenes (Oppenheim and Lim 1981;
Ruderman and Bialek 1994; Simoncelli and Olshausen
2001). Moreover, standard models for V1 neuronal
responses tend to be inaccurate specifically for natural
scene stimuli in which such high-order correlations are
present (Felsen et al. 2005). Thus, delineation of the
influence of high-order statistics on V1 neurons is crucial
to advance our understanding of the computations that they
carry out.

However, studying context-dependence induced by high-
order statistics via responses to natural scenes is difficult,
because high-order statistics of natural scenes are complex
and incompletely characterized. This, specifically, motivat-
ed our study of context-dependence driven by Hermite
functions, which are analytically simple, and have fully-
characterized statistics. We recently showed (Victor et al.
2006) that Hermite functions induced significant context-
dependent changes in a large fraction of V1 cat and
macaque neurons. However, it was not clear how those
changes in apparent receptive field shape could be
succinctly characterized, or what features of these changes
were systematic. For example, across the population, we
found no consistent shifts in either spatial frequency or
orientation tuning. Therefore, we sought a more data-
driven, non-parametric approach to characterize these
changes.

The present study carries out such an approach. By
considering the population of V1 neurons as a whole, it
succeeds in identifying two systematic aspects of the
context-dependence of their receptive fields. First, receptive
field components covering a wider area show stronger
context-dependent changes that those that cover a narrower
area. Second, we find that consistency of context-dependent
changes across the population of cells depends on symme-
try properties of receptive field components: in particular,
components that invert their contrast under 180-degree
spatial rotation change in a more consistent manner than
components that remain unchanged with this rotation.

This latter conclusion is unexpected, and neither con-
clusion was apparent from casual inspection of the dataset.
Rather, they emerged from a novel method that we used to
study context-dependent changes, which we believe is
applicable far beyond the present scenario. The approach is
based on a version of the Procrustes transformation of multi-
dimensional scaling (Kabsch 1976). The main idea of this
method is to find the best transformation from a set of
receptive fields obtained in one context to a set of receptive
fields from the same neurons recorded in a second context.

A distinctive feature of this approach is that it seeks to
identify a single transformation that applies to all measured
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Fig. 1 Stimulus patterns used in these experiments. Stimuli were two-
dimensional Hermite functions (Victor et al. 2006). Cartesian stimuli
(left panel) are products of one-dimensional Hermite functions in
vertical and horizontal coordinates. Each row contains all the
Cartesian stimuli of a given rank. Linear combinations of patterns of
the same rank can be constructed to be separable in radial and angular
coordinates. These are the polar stimuli (right panel). Modified with
permission from Victor et al. 2006
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receptive fields within a population. Thus, it can identify
patterns that would not be apparent if each neuron’s
receptive field were studied independently. As such, this
is an approach that is likely to be widely applicable to the
problem of characterizing how receptive field shapes
depend on some manipulation, such as contrast, attention,
or a pharmacologic perturbation.

2 Methods

Electrophysiological recordings The data presented here
were collected for a previous study (Victor et al. 2006), and
the experimental preparation has been detailed there.
Briefly, neural responses were collected using tetrodes from
the primary visual cortex of anesthetized, paralyzed cats
and macaques. Single units were tentatively identified
during recording using real-time spike-sorting software
(Datawave Technologies); quantitative analysis of receptive
fields was carried out off-line following spike sorting with
custom software (Reich 2001).

At each recording site, one well-isolated single unit with
signal-to-noise of the spike waveform >2:1, and usually
3:1, was selected as the “target” neuron. Orientation tuning
of the target neuron was determined from responses to
drifting gratings at orientations spaced in steps of 22.5° (or,
for narrowly tuned units, 11.25°), with spatial and temporal
frequency determined by initial assessment. Next, the
spatial frequency tuning was determined using drifting
gratings at an 8-to 16-fold range of spatial frequencies
straddling the value determined by auditory assessment.
Temporal tuning was determined from responses to 1-, 2-,
4-, 8-, and 16 Hz drifting gratings of optimal orientation
and spatial frequency. Finally, a contrast response function
was determined from responses to drifting gratings at
contrast of 0, 0.0625, 0.125, 0.25, 0.5, and 1.0, with
orientation, spatial and temporal frequencies previously
determined.

The center of the receptive field was determined from
the response to either a bright or a dark bar, moving slowly
(≤1deg/s) and symmetrically in both directions along the
preferred axis. The center of the receptive field along the
preferred axis was determined as the position corresponding
to the mean time of the peak responses elicited by bars
moving slowly in the preferred and anti-preferred direc-
tions. The center of the receptive field in the orthogonal
direction was taken as a halfway point between the upper
and lower edges of the receptive field, which in turn were
determined by the appearance of a response to slowly swept
patches along multiple trajectories parallel to the preferred
axis.

Once centered, the size of the classical receptive field
was determined from response to a drifting grating (all

parameters optimized) presented in disks of increasing
diameter and in a series of annuli. The effective diameter D
of the receptive field was taken to be the smallest inner
diameter of an annulus that did not produce a statistically
significant response above zero. The set of annuli were
chosen so that D was determined to within 1/2 deg or, for
smaller receptive fields, 1/4 deg. The effective diameter D
was used (below) to set the width of the zero-rank two-
dimensional Hermite function, a Gaussian. Higher-rank
functions were scaled in proportion to this Gaussian, as in
Fig. 1.

Stimulus presentation Neurons were probed with visual
patterns derived from two-dimensional Hermite functions
(see Fig. 1). The contrast profiles of these patterns are
polynomials multiplied by a Gaussian envelope. Stimuli
were rotated so that the x-axis was along the target neuron’s
preferred orientation and the positive y-axis was the
preferred direction for drifting gratings. We set the spatial
parameter σ of the Hermite functions (Eqs. A1 through A5
of Victor et al. 2006) at σ=D/10, where D is the diameter of
the classical receptive field of the target neuron as
determined by responses to disks and annuli containing
optimal drifting gratings (see above and Victor et al. 2006).
This choice of σ creates Hermite function stimuli that have
one, two, or three oscillations within a region of space that
covers the receptive fields. Each stimulus was presented as
illustrated in Fig. 1, and also with luminance polarity
reversed.

Computation of receptive fields for Cartesian and polar
stimuli For the reverse-correlation modeling approach (L-
filters), receptive fields were computed in a manner similar
to a spike-triggered average. The contribution of each basis
function to the linear component of the estimated receptive
field (L-filter) was determined from the difference between
the response to that basis function, and to its contrast-
inverse. This yields the desired filter shapes because
individual stimulus patterns are orthogonal to each other.
See (Victor et al. 2006) and Supplementary Information for
further details, including characterization of the nonlinear
component of the receptive field.

For the MID modeling approach (M-filters), receptive
fields were computed using the method of (Sharpee et al.
2004). Any candidate receptive field shape can be inter-
preted as a direction in stimulus space. Stimuli can be
projected along that direction to yield a set of scalars. The
receptive field determined by this method is the direction
for which the mutual information between these scalars and
the firing rate is maximized. Advantages of this method are
that (a) it does not place requirements on the correlation
structure of the stimulus set, and (b) it does not postulate a
specific form for the relationship between the projection
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and the response—this can be an arbitrary nonlinear
function.

Details of the computational algorithm have been
previously described in (Sharpee et al. 2004) and in the
supplementary information of (Sharpee et al. 2006). Briefly,
the spike-triggered average was chosen as an initial guess.
Then, we used a combination of gradient ascent and
simulated annealing to maximize information; 1000 line
optimizations were used. Each line optimization was carried
out along the gradient of information evaluated along the
current candidate relevant dimension. No regularization by
the performance on the test set was implemented. Thus,
computation of jackknife estimates (by setting aside one
presentation, see below) was completely independent from
the data in the omitted presentation.

Debiasing and standard error estimation for correlation
coefficients We used correlation coefficients to compare
receptive field shapes. Two kinds of comparisons were
made: receptive fields derived from the two modeling
approaches (reverse correlation vs. MID) for a single
stimulus set (Cartesian or polar), and receptive fields
derived from two stimulus sets but according to a single
modeling approach. In each case, we used a jackknife
method to debias the estimates of the correlation coeffi-
cients, and to obtain estimates of their standard error.

We are interested in the absolute value of the correlation
coefficient cc ¼ ~v �~uj j between two receptive field esti-
mates,~v and~u. The absolute value is used because for MID,
receptive fields are defined up to a scaling factor, which
could be negative.

To carry out the jackknife procedure (Efron and
Tibshirani 1998), we computed receptive fields from all
stimulus presentations~vfull and~ufull, and also the “drop one”
jackknife estimates ~vi and ~ui computed by leaving out the
ith stimulus repetition from the analysis.

The jackknife estimate of the bias of a statistical
estimator θ that has an approximately Gaussian distribution
is

01 ¼ qfull � N � 1ð Þ qih i � qfullð Þ; ð1Þ
where θfull is estimated taking all of the data into account,
and qih i is the mean of the drop-one estimates, obtained by
successively omitting one of the N repetitions (in this
dataset N ranged from 8 to 16). Correlation coefficients are
limited to the range between −1 and 1, and their distribution
is not well approximated by a Gaussian. To normalize their
distribution and make the jackknife procedure applicable,
we first applied the Fisher z-transform to the correlation
coefficients (Efron and Tibshirani 1998), i.e., θ=arctanh(cc).
After the z-transformed correlation coefficients were
debiased according to Eq. (1), we applied the inverse
transformation, i.e., cc=tanh(θ), to obtain debiased correla-

tion coefficients. We note that even though correlation
coefficients computed from jackknife estimates and the full
dataset are always positive, negative values can appear after
debiasing.

The standard error of jackknife estimates was also
first computed on the z-transformed variables θ: Δq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�1
N

PN
i¼1

qi�qfullð Þ2
s

and then transformed back to obtain

standard error for the correlation coefficients:

s jack;� ¼ tanh q1 �Δqð Þ � tanh q1ð Þ; ð2Þ
where q1 was computed according to Eq. (1). This results
in an asymmetric confidence interval. We quote the larger
of the two values when describing correlation coefficients
in figure legends.

3 Results

3.1 Context-dependence of responses to Cartesian and polar
stimuli

Our analysis is based on n=51 single neurons (n=34 from
cat visual cortex and n=17 from monkey visual cortex)
previously recorded (Victor et al. 2006). This study found
differences between the receptive fields measured with the
Cartesian and polar stimulus sets showed in Fig. 1, but was
unable to characterize the nature of this context-induced
change—which is the goal of the present study.

To pursue this goal, the first step is to characterize the
responses to each stimulus set in a concise fashion—i.e., by
determining the effective receptive field in each context.
This characterization necessarily entails assumptions (a
receptive field model) and approximations (which aspects
of the response are incorporated into the model). Therefore,
before drawing conclusions about the differences between
Cartesian and polar stimulus sets, a prerequisite is to show
that our characterization is robust. To do this, we will use
two complementary strategies to estimate the receptive
fields from each context, and show that these two modeling
approaches lead to the same estimate.

The basic element of our receptive field model is a linear
filter followed by a static nonlinearity (an “LN” model, de
Boer and Kuyper 1968; Meister and Berry 1999; Schwartz
et al. 2006; Victor and Shapley 1980). One way of fitting
this model consists essentially of reverse correlation (Victor
et al. 2006). The key assumption of this approach is that the
nonlinearity can be decomposed into a linear component
and an even-symmetric component. In the second approach,
known as the maximally informative dimension (MID)
method (Sharpee et al. 2004), the best LN approximation is
determined according to an information-theoretic criterion.
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This allows us to avoid making assumptions about the
shape of the nonlinearity. Another difference between these
two approaches is that in the reverse-correlation method,
the estimate of the L-filter is unaffected by the spatial
distribution of On/Off responses (instead, the On/Off
responses are characterized by a second LN pathway),
while in the MID method as implemented here, a single LN
pathway is used to model all responses. These approaches
also differ in their sensitivity to response variability and
limited amounts of data. This is because the MID method
relies on a nonlinear optimization, while the reverse
correlation method does not.

We will refer to the linear component of the LN model
extracted by reverse correlation as L-filters, and those
computed as MIDs as M-filters.

As we now show, despite these differences in how the L-
filters and M-filters are estimated, they have similar shapes
when estimated from responses to the same basis set (i.e., in
the same context), and show parallel changes in shape when
context is altered (Fig. 2 and Supplementary Figs. 1 and 2).
Thus, the LN model (as determined by either method) is a
meaningful way to characterize the response to either basis
set, and how this characterization changes with context.

Figure 2 shows several example cells that cover the
observed range of context dependence. In all cases, the L-
filters and the M-filters were similar to each other when
obtained with the same stimulus set (Cartesian or polar
stimuli). Both characterizations (L-filters and M-filters) also
had a similar dependence on context (Cartesian vs. polar
stimuli). In Fig. 2(a) we show examples of cells that did not
show contextual modulation. In these cells, the L-filters and
the M-filters (compare two columns shown for each cell)
are similar, as are the filters obtained from Cartesian and
polar stimulus sets (compare the two rows shown for each
cell). The example cells of Fig. 2(b,c) show a context
effect: the L-filters and the M-filters determined from the
same stimulus set (either Cartesian or polar) are similar, but
the filters depend on which stimulus set (Cartesian vs.
polar) is used. For the cells of Fig. 2(b), the context-
dependence was statistically significant (p<0.05, see
Methods) for both the L-filters and the M-filters. For the
cells of Fig. 2(c), the context-dependence was statistically
significant only for the L-filters. For the M-filters, the
differences between the Cartesian and polar M-filters are
qualitatively similar to the differences seen for the L-filters,
but did not reach statistical significance.

To quantify the magnitude of context-dependent changes
at the population level, we compute the distribution of
correlation coefficients between normalized L-filters com-
puted from Cartesian and polar stimulus set [Fig. 3(a)]. This
quantity measures the extent to which the receptive field
map, as determined by reverse correlation, depends on the
stimulus set. In agreement with the previous report (Victor

et al. 2006), more than half (39/51) of the cells in our
dataset had significant differences in receptive fields of the
linear model between Cartesian and polar stimuli, with 28
cells showing differences significant at p<0.01, and 11 cells
showing differences significant at 0.01<p<0.05. For the
remaining 12 cells, there was no significant difference in
receptive fields determined from Cartesian and polar
stimuli. Figure 3(b) shows a parallel analysis using the
correlation coefficient determined from the M-filters: 20 out
of 51 cells showed significant context-dependence (17
cells at p<0.01 and three cells at 0.01<p<0.05). Fewer
cells with significant differences between receptive fields
for Cartesian and polar stimuli were found for the M-
filters (20) than for the L-filters (39). Most likely this is
due to larger uncertainty in the M-filter profiles than for
the L-filters, which is in turn a consequence of the absence
of assumptions on the shape of the nonlinear gain function
in the MID method (see Supplementary Fig. 3). As
examples in Fig. 2(c) illustrate, the context-dependence
revealed by the two methods is qualitatively similar, even
if it does not reach statistical significance with one of the
approaches.

3.2 Identifying systematic changes in receptive fields
across a population

Having found that approximately half of the neurons
exhibit changes in receptive field profiles when probed
with Cartesian versus polar stimuli, we now seek to
determine the extent to which these changes are systematic.
As previously reported in this population of cells (Victor et
al. 2006), the change in effective receptive field as a
function of Cartesian vs. polar context was not associated
with a systematic change in sensitivity, spatial frequency
tuning, or orientation tuning. This motivated us to pursue a
more data-driven, nonparametric approach to this problem.
As a first step, we make use of the fact that each receptive
field profile (e.g., the profiles shown in Fig. 2) can be
considered to be members of a vector space of moderate
dimension. This is because each filter shape is a linear
combination of the stimuli. Moreover, since each set of
stimuli is a linear combination of the other one, we can use
either stimulus set as a basis for describing the filter shapes.
For definiteness, we choose the polar ones. With this
convention, the filter shape of a single cell is described by a
vector of 36 numbers—the coefficients in the linear
combination of the 36 polar functions.

Extending this idea, the set of filters obtained from all
cells with Cartesian stimuli can be thought of as a set of
vectors in a 36-dimensional space of polar filter shapes.
Similarly, the set of filters obtained from the same cells
with the polar stimuli can be thought of as a corresponding
set of vectors in the same 36-dimensional space.

J Comput Neurosci
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Fig. 2 Comparison of receptive fields for Cartesian and polar stimuli
computed within two models. (a) Cells with no consistent differences
between receptive fields determined from Cartesian or polar basis sets
by reverse correlation (L-filters) or MID (M-filters). Lcart: Linear filter
derived from reverse correlation of Cartesian responses, Mcart: filter
derived from MID analysis of Cartesian responses, Lpolar: linear
filter derived from reverse correlation of polar responses, Mpolar: filter
derived from MID analysis of polar responses. Correlation coefficients
of filters determined from the two stimulus contexts (Lcart vs. Lpolar,
Mcart vs. Mpolar) were not significantly different from 1. L-filters (from
left to right): 0.89±0.09, 0.97±0.02, 0.92±0.05 (all p>0.05); M-
filters: 0.92±0.07, 0.991±0.009, 0.99±0.01 (all p>0.05). (b) Cells
with context-dependent receptive fields as determined by reverse
correlation (L-filters) and MID (M-filters). Correlation coefficients of
filters determined from the two stimulus contexts were all significantly

different from 1 (marked by arrows). L-filters: 0.89±0.03 (p<0.01),
0.70±0.10 (p<0.01), 0.73±0.08 (p<0.05); M-filters: 0.70±0.10 (p<
0.05), 0.92±0.04 (p<0.05), 0.60±0.10 (p<0.01). (c) Cells with
context-dependence of receptive fields as determined by reverse
correlation (L-filters) but not by MID (M-filters). Correlation
coefficients of filters determined from the two stimulus contexts were
significantly different from 1 (marked by arrows) for L-filters: 0.40±
0.15, 0.50±0.10, cc=0.91±0.03 (all p<0.01) but not for M-filters:
0.91±0.16, 0.98±0.03, 0.90±0.10 (all p>0.05). None of these nine
cells had consistent differences between L- and M-filters for either
Cartesian or polar basis sets. Color scale is arbitrary, but is the same
for all of the four filters pertaining to a neuron. For each neuron, the
color scale covers the range from the minimal to the maximal value
across the four filters

J Comput Neurosci



It is then natural to ask what linear transformation best
accounts for differences between the two sets of receptive
fields. That is, can we find a transformation of the 36-
dimensional space that maps the Cartesian filter shapes into
the corresponding polar filter shapes?

There are many linear transformations that will trans-
form one vector (e.g., the filter from Cartesian stimuli for a
particular cell) into a second vector (e.g., the filter for that
cell from polar stimulus set). However, since each cell
within the population has its own set of filters, the problem
of finding a single transformation that works for all cells is
highly constrained. Indeed, since we have more cells (51)
than coordinates (36), it would be surprising if a single
transformation would be able to map each cell’s filter
obtained from Cartesian stimuli into each cell’s filter
obtained from polar stimuli. Since we cannot expect to
account for all of the variance with a single linear
transformation, instead we seek the linear transformation
that accounts for the largest possible fraction of the
variance. This linear transformation indicates the differ-
ences between the Cartesian and polar filters that are
systematic across the population.

This is generally known as the Procrustes problem, often
encountered in multidimensional scaling (Cox and Cox
2000). Because we are interested in how the shapes, not the
amplitudes, of receptive fields depend on context, we
normalize filters to unit length, and look for the best
rotation that can transform one set of vectors into another
with minimum least square error. Note that the rotations we
seek are not literal rotations in space, but abstract rotations
within the 36-dimensional shape space defined by the
stimulus patterns. For example, a rotation might specify
that neurons whose sensitivity profiles had had a large
component of the rank-0 (Gaussian) basis function when
studied with Cartesian stimuli tended to have a large
component of the rank-2 target-like basis function when
studied with polar stimuli.

3.3 No systematic differences between L-filters
and M-filters

As a test of this approach, we first compare receptive fields
obtained from Cartesian stimuli via reverse correlation
(Lcart) and with those obtained from the same stimulus set
by MID (Mcart). Since we have already seen that the L-
filters and the M-filters were similar (Fig. 2), we expect that
the best rotation matrix is close to the identity—and this is
what we found [Fig. 4(a)]. Similarly, the best rotation
matrix that transforms the receptive fields obtained from
polar stimuli via reverse correlation (Lpolar) into the
receptive fields obtained from the same stimulus set by
MID (Mpolar) is also close to the identity matrix [Fig. 4(b)].
This supports the validity of the approach.

Because the rotation matrices identified by this proce-
dure are not precisely the identity, the possibility remains
that there are systematic differences between the receptive
fields determined by the two methods that not evident from
casual inspection of Fig. 4(a,b). To determine whether this
is the case, we exploit the symmetry of the Hermite
functions (Fig. 1). Note, for example, that reflection of the
coordinate system across the horizontal axis inverts the
polarity of some stimulus patterns, but leaves others
preserved. Thus, when a given receptive field shape is
represented as a vector, the sign assigned to some
coordinates depends on the (arbitrary) choice of which
horizontal direction is “positive”, while the sign assigned to
other coordinates does not have this dependence. Conse-
quently, any apparent linear relationship between the
inverting and non-inverting coordinates must be due to
chance. A similar argument holds for reflection across the
vertical axis. Thus, we can restrict the search for rotations
to those that do not violate these parity rules. This
eliminates rotations that mix basis functions of even and
odd ranks, or that mix basis functions in even and odd
positions within ranks (Fig. 1). This procedure has another
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Fig. 3 Distribution of correlation coefficients between receptive fields
determined from Cartesian and polar stimulus sets. Left Stimulus-
dependent changes in filters calculated by reverse correlation, right
stimulus-dependent changes in filters calculated by MID. For both
kinds of models, significant context-dependent changes (correlation

coefficients <1) are prevalent. Cells with no significant changes (p>
0.05) are shown in white, those with significant changes in gray (0.01<
p<0.05) and black (p<0.01). The abscissa labels indicate the filters
whose profiles are compared. Debiasing (see Methods and Supplemen-
tary Material) can result in estimated correlation coefficients <0
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Fig. 4 Comparison of receptive
fields computed by the two
models. Panels (a)–(b) pseudo-
color display of the rotation
matrix that is the optimal trans-
formation between receptive
fields estimated by two methods
(reverse correlation (L-filters)
and MID (M-filters)) from one
set of stimuli. (a) Cartesian
stimuli. (b) Polar stimuli. Panels
(c) and (d) the same calcula-
tions, augmented by adding re-
ceptive fields reflected around
horizontal and vertical axes
(panel e). The heavy lines in
panels (a)–(d) separate the
ranks, shown increasing from 0
to 7. Within each rank, basis
elements are ordered from most
centrally-weighted (middle of
pyramid of Fig. 1, right) to most
peripherally-weighted (edges of
pyramid of Fig. 1, right). Color
scale covers the interval [−1, 1],
with green indicating 0, red-
brown indicating 1, and blue
indicating −1. The matrices are
all similar to the identity matrix,
indicating close correspondence
between receptive fields derived
by the two methods
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interpretation [Fig. 4(e)]. It is equivalent to adding cells to
the dataset whose receptive fields are related by mirror
symmetry to the cells actually recorded. The above analysis
corresponds to assuming that since these added cells have
the same relationship to the center and axes of the stimuli as
real recorded neurons, their responses will be the same.

As seen in Fig. 4(c,d), this refinement increases the
similarity of the inferred rotation to the identity matrix.
Thus, the results of Fig. 2 are not only corroborated, but
also extended: we do not identify any systematic difference
between the L-filters and the M-filters obtained with the
same stimulus set (i.e., in the same context).

3.4 Context-dependence of a component depends on its size
and symmetry

A qualitatively different result emerges when we use this
approach to compare receptive fields measured in different

contexts (Cartesian vs. polar). Comparisons of the L-filters
derived from neural responses to Cartesian and polar
stimulus sets are shown in Fig. 5(a), while those based on
the M-filters are shown in Fig. 5(b). Because there is
typically some correlation between receptive field profiles
derived from Cartesian and polar stimulation, we expect
that a component of the identity matrix will be present. This
is indeed the case, but it is strongest for low-rank
coefficients, and becomes less pronounced as the rank
increases. Thus, higher-rank components, which have larger
spatial extent (Fig. 1), are more subject to systematic
stimulus-dependent changes than the lower-rank components.

The deviations of diagonal elements from unity measures
the size of the systematic change of the corresponding
coordinates. In Fig. 5(e) we plot diagonal elements of the
best rotation matrices derived for L-filters (magenta) and M-
filters (blue). In both cases, the amplitude of diagonal
elements decreases with rank, indicating increasing devia-
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Fig. 5 Comparison of receptive fields derived from Cartesian and
polar stimuli. Panels (a)–(b) pseudocolor display of the rotation matrix
that is the optimal transformation between a set of receptive fields
determined from responses to the two contexts (Cartesian vs. polar)
with either modeling method: L-filters (panel a) or M-filters (panel b).
Panels (c) and (d): The same calculations, augmented by adding
receptive fields reflected around the vertical and horizontal axes. For
both models, rotation matrices show that odd-ranked coefficients
change more between Cartesian and polar stimuli than the even-
ranked coefficients. Display details as in Fig. 4. (e) root-mean-square
(rms) of rotation matrix diagonal elements at each rank, derived from
L-filters (magenta, based on panel a) and M-filters (blue, based on
panel b). (f) Shows the analogous rms values computed using the

symmetry-augmented datasets, taken from panels (c) and (d). Error
bars in panels (e) and (f) show standard errors of the mean within each
rank. The decrease in the amplitude of diagonal values is strongly
non-monotonic: odd ranks are further from the identity than even
ranks, showing that odd ranks have a greater systematic context-
dependence than even ranks. Panels (g) and (h) show the overall
magnitude of the receptive field components derived from responses
to Cartesian and polar stimuli. Error bars in panels (g) and (h) show
standard deviations across different cells and components within a
given rank. The difference between even and odd rank receptive field
components in (e) and (f) is not explained by the difference in their
magnitude or estimation error, which changes monotonically
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tions from the identity matrix. In other words, the higher the
rank of the receptive field component, the more it depends
on context.

Applying the above symmetry argument removes some
of the off-diagonal points of the matrix, but a significant
discrepancy between the transformation matrix and the
identity persists [Fig. 5(c,d)]. The decrease in amplitude of
the on-diagonal elements with increasing rank remains
evident [Fig. 5(f)]. Intriguingly, the odd-rank diagonal
elements (ranks 3, 5, and 7) are significantly smaller than
the even-rank elements (ranks 2, 4, and 6). Since the
Procrustes matrix, by definition, is orthogonal, these
reductions in the on-diagonal components are accompanied
by nonzero components off the diagonal, in the cor-
responding rows and columns. This, in turn, implies that
when odd-rank components are present in one context (e.g.,
Cartesian), there is a significant tendency for other odd-
rank components to be present in the alternative context
(e.g., polar). That is, the odd-rank components of the
receptive fields profiles are modified in a systematic way
by context.

No comparable changes are seen in the even-rank
components. (For ranks 0 and 1, a comparison is not
meaningful, since Cartesian and polar stimuli are identical
at these ranks.)

These two findings—a decline in the responses on the
diagonal as rank increases, and smaller on-diagonal values
for odd ranks than even ranks—are present both for the
analysis based on reverse correlation [Fig. 5(c)] and MID
[Fig. 5(d)]. The diagonal elements are generally smaller in
the MID analysis [Fig. 5(f)]; this is likely due to greater

uncertainty in determination of the MID receptive field
profiles (Supplementary Fig. 3).

There are two ways that the above difference between
odd and even components can be interpreted: One
possibility is that only the odd-order components depend
on context. The second possibility is that the even-order
components also depend on context, but, this dependence is
not systematic—so that the best prediction for the size of an
even-order component in one context is its size in the other
context. Our data indicate that the second alternative is
correct.

To see this, we first examine the difference between the
responses in each of the two contexts, broken down by
parity. As Fig. 6(a) shows, there is approximately the same
amount of context-dependent change in the odd- and the
even-order components. However, when we compare the
actual responses in the polar context with the response
predicted by the Procrustes transformation of the Cartesian
response, we see a significant difference between odd- and
even-order responses. For the even-order responses, virtu-
ally none of the context-dependent change is accounted for
by the Procrustes transformation [(Fig. 6(b)], while for the
odd-order responses, approximately half of the context-
dependent change can be accounted for in this fashion
[Fig. 6(c)]. After the Procrustes transformation, the mean
square difference per component was significantly smaller
for odd-rank than for even-rank components (p=0.008,
Wilcoxon paired test). This was also evident from smaller
slopes of the regression line between variance values before
and after the Procrustes transformation in the case of odd
components (0.64) vs. even components (0.86).
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Fig. 6 Analysis of context-dependent changes in receptive fields
according to symmetry. Panel (a) shows the overall context-dependent
change in receptive fields broken down by the parity of the basis
element, and quantified as the mean square difference per basis
element computed between components of L-filters for Cartesian and
polar stimuli. Even and odd-parity components show an equal amount
of overall context dependence. Panels (b) and (c) compare the overall
context-dependent change (abscissa) to the context-dependent change

that is not accounted for by the Procrustes transformation. Comparison
is based on the mean square difference between components of L-
filters for polar stimuli and those of L-filters for Cartesian stimuli after
the Procrustes transformation. For even-parity components (panel b),
the Procrustes transformation does not account for a substantial
fraction of the variance, but for the odd-parity components (panel c), it
accounts for approximately half of the variance
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To emphasize that the Procrustes analysis has identified
an overall change in the population that would not be
evident from analyzing individual neurons, we show
examples of two typical cells (Fig. 7). For each cell, the
left column shows the L-filter obtained with Cartesian
stimuli, and its decomposition into odd-symmetric and
even-symmetric components. The right column shows the
analogous filters obtained with polar stimuli. While it is
clear that there are changes in receptive field shape [20%
of the variance per component in Fig. 7(a), 50% in
Fig. 7(b)], the systematic aspect of these changes is not at
all apparent.

The middle column of each panel shows the prediction
of the polar filters from the Procrustes transformation
determined from the entire dataset. For the cell of panel
(a), the Procrustes transformation correctly predicts the blobs
above and below the center of the receptive field in the odd-
rank component of the polar filter (middle row, last two
plots). For the cell of panel (b), the Procrustes transformation
correctly predicts a loss in the number of lobes in the odd-
rank component of the polar filter (middle row, last two
plots). The even-rank components also show changes in the
effective receptive field for Cartesian and polar plots, but
these are not predicted by the Procrustes transformation.
These observations are quantified by the average mean
square difference per component accounted for by the
Procrustes transformation. For the odd ranks, the average
mean square difference was decreased by 43% [Fig. 7(a)]
and 65% [Fig. 7(b)]; for the even ranks, it was decreased
only by 3% [Fig. 7(a)] and 8% [Fig. 7(b)].

3.5 Exclusion of potential confounds

Finally, we consider (and exclude) three potential con-
founds in this analysis. First, because higher-rank Cartesian
and polar stimuli tend to elicit smaller responses than
lower-rank stimuli, estimation of higher ranks’ contribution
to receptive field shape would be subject to greater
measurement error, and the similarity of the inferred
rotation matrix to the identity would be artifactually
reduced. However, this cannot account for our findings.
As shown in Fig. 5(g,h), the average magnitude of
receptive field components decreases monotonically and
gradually as the rank increases. In contrast, the difference
between the Procrustes matrix and the identity increases
abruptly at rank 3, and the high-order odd ranks are more
discrepant than adjacent even ranks [Fig. 5(f)]. Second, we
consider the effect of imperfect alignment of the center of
stimulus patterns relative to the center of the receptive field.
While such imperfect alignment was likely present, it
would not result in a difference between odd- and even
ranks, but would instead tend to dilute such differences.
This is because a shift in position of an nth-rank pattern
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Fig. 7 Procrustes transformations for two example cells. Left column
shows L-filters obtained from Cartesian stimulus set; middle column
shows the effect of Procrustes transformation [Fig. 5(c)] on these three
different profiles, and right column shows L-filter obtained from polar
stimulus set. The top row is the complete L-filter; the middle row is
the odd-rank component, and the bottom row is the even-rank
component. Consistent with the analysis of Fig. 6, the Procrustes
transformation of the Cartesian L-filter recovers some of the features
of the polar L-filter for odd ranks (middle row), but not for even ranks
(bottom row)
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leads, in a first approximation, to addition of a small
amount of a pattern of rank n+1. Thus, any phenomenon
that would be confined to either even or odd ranks (if all
cells were perfectly centered) would spread to the other
parity by misalignment. Thirdly, the fact that odd-rank
components show more stimulus-dependent changes is not
due to the dataset extension by symmetry (Supplementary
Fig. 4).

3.6 Hypothesis: context-dependence arises from independent
local perturbations with anti-symmetric profiles

Above we have shown that lability (context-dependence) of
receptive field components (a) increases with their rank, i.e.
spatial extent, and (b) is more systematic for the odd-
symmetric components, than for the even-symmetric ones.
We now turn to a consideration of possible explanations for
these findings. To begin, we make the general hypothesis
that the observed changes in the receptive field profile
occur as the net result of independent local perturbations at
different positions within the receptive field. The overall
change in the receptive field profile is the combined result
from all of these separate perturbations. At a circuit level,
these local perturbations could correspond to perturbations
affecting the strength of synapses from neurons that are
presynaptic to the neuron under study, or the intrinsic
sensitivities of these presynaptic neurons. (Note we use the
term “perturbation” is to refer to an elementary physiologic
process that affects the receptive field, but the term
“receptive field component” to a basis function used to
describe or measure the receptive field profile.) As we now
show, the observation that the changes in the odd-
symmetric components are more systematic than the even
ones has implications both for the spatial profiles of these
perturbations, and their distribution. Our reasoning is
qualitative, and relies on an observation concerning the
interpretation of the Procrustes matrix elements. This
observation, which is formalized in the Appendix, is as
follows: for a sufficiently diverse set of receptive fields, a
matrix element of the Procrustes transformation will deviate
from the identity if, on average across the population,
perturbations of individual neurons’ receptive fields are
spatially correlated with their expression of that basis
element.

As a simple example, consider a scenario in which
perturbations are Gaussian blobs placed randomly within
the receptive field, and of random polarity (ON or OFF).
Because of their random nature, they will not be correlated
with the receptive field. Thus, they will not lead to a
deviation of the Procrustes matrix from the identity. Put
another way, although these perturbations might strongly
affect each cell’s receptive field, there is no systematic way
of predicting how they will change the receptive field from

the Cartesian to the polar context—because they are
random. So the best prediction of the polar receptive field
is that it is equal to the Cartesian receptive field, i.e., the
Procrustes transformation is the identity.

Now suppose that these Gaussian blobs tend to be
centered in the receptive field. We further suppose that the
sign of the perturbation is correlated with the sign of the
receptive field at that location—e.g., a localized ON-
perturbation tends to lie in an ON-portion of the receptive
field. The even-rank basis elements would in turn tend to be
correlated with these perturbations, since they either peak in
the receptive center or are zero in the receptive field center
but have adjacent flanks of the same sign. Thus, the even-
rank Procrustes matrix elements would be expected to
deviate from the identity. The odd-rank receptive field
components would not be expected to change, because the
dot-product of an odd-rank (antisymmetric) component
with an even-rank (symmetric) perturbation is zero. A
similar argument holds if the perturbations were some other
even-symmetric profile, such as a circular center-surround
patch, or an oriented bar with antagonistic flankers, or a
cosine Gabor. So in the scenario of even-symmetric, centrally-
located perturbations, we would expect that only the even-
rank receptive field components would change, resulting in
even-rank matrix elements of the Procrustes transformation
that deviate from the identity. This is contrary to our
observations: we find that both even and odd-rank compo-
nents are labile, and it is the odd components, not the even
components, that change systematically.

This motivates us to consider a contrasting situation, in
which the perturbations are odd-symmetric. Examples of
odd-symmetric perturbations include a dyad of adjacent on
and off regions, or a sine Gabor, or an idealized simple cell
receptive field. The symmetry argument now implies that
only the odd rank components will change. Moreover,
provided that these perturbations are correlated with the
receptive field profile, the changes will be systematic.
The result will be deviations of the odd-rank elements of
the Procrustes matrix from the identity, as we observe.

In addition to the systematic lability of the odd-rank
components, we also need to account for non-systematic
lability of the even-rank components [Fig. 6(a)]. There are
at least three factors that may contribute to changes in the
receptive field profiles that are not identified as systematic
by the Procrustes analysis. First, if the On/Off perturbations
are not perfectly centered, then their effects will “leak” into
the even ranks. Since the sign of the effect will depend on
exactly where the perturbations are placed in the receptive
field (i.e., how the lobes of the perturbation line up with the
lobes of the basis element), this contribution will not be
systematic. A scatter of perturbations throughout the
receptive field would also account for the greater lability
of the higher ranks, compared to the lower ranks. Second, if
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the perturbations themselves have a random even-symmetric
component, this will lead to random changes in the even-
rank basis elements. And finally, any measurement error
would contribute to an apparent non-systematic variation of
the receptive field components. But measurement error can
be no more than the variability of the odd-rank components
that is not explained by the Procrustes transformation
[Fig. 6(c)].

We sum up the main points of our analysis. First,
deviation of the Procrustes matrix from the identity implies
that the perturbations of the receptive field are correlated
with specific receptive field components. Second, assuming
that receptive field lability is a consequence of spatially
localized perturbations, our observation that primarily the
odd-rank elements of the Procrustes matrix deviate from the
identity implies that these local perturbations tend to be
odd-symmetric (like On/Off dyads).

4 Discussion

Stimulus-dependent changes in receptive fields have been
observed in a variety of species and in both auditory (Rieke
et al. 1995; Theunissen et al. 2000, 2001; Woolley et al.
2006) and visual (Baccus and Meister 2002; Chander and
Chichilnisky 2001; David et al. 2004; Hosoya et al. 2005;
Kim and Rieke 2001; Sharpee et al. 2006) neurons. It is
often difficult to go beyond stating that the receptive fields
depend on the stimulus set and to provide a parametric
description of how receptive fields change between two
different stimulus sets. Recent reports point to changes in
inhibitory components of visual receptive fields (David et
al. 2004), with the strongest effects at low-to-medium
spatial frequencies (Sharpee et al. 2006). However, a
unified picture of how neural receptive fields change
between different stimulus ensembles remains elusive.

4.1 Summary of findings

Here we examine stimulus-dependent changes in V1
receptive fields that occur when high-order statistics
change, but first- and second-order statistics (mean lumi-
nance, contrast, spatial frequency composition) are held
constant. We chose to study the effects of high-order
statistics, since their presence distinguishes natural scenes
from structureless noise. There are two ingredients in our
analysis.

First, we used two complementary methods of receptive
field analysis to show that our measures of contextual
modulation did not depend on assumptions made in
computing receptive fields. Consistent results were
obtained with two different models. In one approach, we
assumed that the gain function that relates stimulus

components along the receptive field to firing rate was
described as a combination of a linear and full-rectifying
function (Victor et al. 2006). In the other approach, we used
a nonlinear optimization method of maximally informative
dimensions without introducing a parametric description for
the gain function. We found that both approaches produced
receptive fields that were consistent and exhibited similar
context-dependent changes.

Second, we introduce a new approach to analyzing these
stimulus-dependent changes that seeks to identify consis-
tent changes across a neural population. This analysis
yields two findings: the lability of receptive field compo-
nents increases with their spatial extent, and, perhaps
unexpectedly, that odd-symmetric components of the
receptive field (i.e., those that are anti-symmetric with
respect to 180-degree rotation) change in a more consistent
manner across the neural population than even-symmetric
ones.

4.2 A mechanistic hypothesis

To explain these findings, we suggest a hypothesis based on
the idea that global changes in receptive fields arise as a
result of independent, local perturbations. Arguing primar-
ily from symmetry considerations, our observation that
odd-rank components change in a more systematic fashion
than even-rank ones can be explained if we postulate that
the individual perturbation profiles are predominantly odd-
symmetric, such as sine-Gabor profiles or a pair of adjacent
On/Off subregions (Ringach 2004, 2007; Soodak 1987).
The difference between odd- and even-rank components
will depend on many factors, including the degree to which
the perturbation profiles are clustered at the center of the
receptive field, the extent to which they are purely odd-
symmetric, whether their occurrence is correlated with the
sensitivity profile of the unperturbed receptive field, and the
accuracy with which the receptive field profiles can be
measured. Our data are not sufficient to analyze the
contributions of these factors. However, point-like profiles,
circularly-symmetric center-surround profiles, cosine Gabors,
and random perturbation profiles will not account for our
observation—since they would predict that even-rank recep-
tive field profiles are systematically modified, opposite to
what we observe.

The proposition that a localized profile with a pair of
adjacent On/Off subregions can serve as a unit for receptive
field changes is a natural one, given the known properties
of cortical circuitry. Recent theoretical models of primary
visual cortex have shown that On/Off receptive field
profiles can arise during development simply as a result
of “haphazard sampling” from the discrete mosaic of retinal
ganglion cells (RGC; Ringach 2004, 2007; Soodak 1987).
This argument works because nearest neighbors in the X-
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cell RGC mosaic tend to be of similar size but opposite sign
(Wassle et al. 1981): pooling inputs from a small area in the
visual field is likely to result in two displaced Gaussians of
opposite contrast. This “haphazard sampling” argument can
account for many known experimental result on the
development of visual cortex (Ringach 2007), including
the early emergence of simple cells in layer 4 without a
prior stage of substantial On/Off overlap and that blocking
ON-center RGC cells precludes the development of
orientation tuning (Chapman and Godecke 2000). Here
we propose that in the adult cortex, the On/Off dyads that
are postulated to underlie orientation tuning also underlie
contextual modulation—that is, contextual modulation of
receptive fields involves adjustments at the level of the
output of an On/Off dyad, rather than separate adjustments
of its components.

Our analysis focused on changes in the spatial sensitivity
profile, and used only a specific, highly non-natural, set of
stimuli. But if our hypothesis is correct, then it should
generalize. In particular, we would predict that perturba-
tions similar to On/Off dyads, localized in space and time,
would account for context-dependence of the temporal
structure of receptive fields (Chander and Chichilnisky
2001; Hsu et al. 2004; Sharpee et al. 2006; Smirnakis et al.
1997), since these temporal context-dependent changes are
likely governed by the same principles. We would also
predict that the same proposed mechanism of context-
dependent changes could also explain receptive field
changes under more natural conditions (David et al. 2004;
Sharpee et al. 2006; Theunissen et al. 2000, 2001; Woolley
et al. 2006), for example between natural stimuli and
correlated Gaussian noise with the same second-order
structure (Felsen et al. 2005).

4.3 A method for studying receptive field transformations

Our analysis rests on a novel method for studying how
receptive fields change between two conditions. Although
our two conditions (Cartesian and polar stimulus patches)
are defined by highly structured statistics, this is by no
means a prerequisite for the approach. The approach can be
applied without regard to the nature of the two conditions,
which may include a change in the statistics of sensory
inputs, a behavioral manipulation such as modulation of
attention, or even a pharmacologic manipulation. The main
advantages of this approach are that it (a) does not rely on
preconceived notions of what types of changes may be
present and (b) can identify patterns that would not be
apparent if each receptive field were studied independently.

The main prerequisites of the method are that the same
neurons are studied under both conditions, and that their

receptive fields can be represented as vectors in a finite-
dimensional space. Here, we described receptive fields by
36-dimensional vectors of weights with respect to Hermite
functions, but other basis sets could be used, including
spatiotemporal basis functions or Fourier components.
Once the basis set is chosen, the receptive fields measured
under each condition (context) correspond to a set of
vectors, one vector for each neuron. The final, crucial step
is to find a rotation matrix that most closely transforms the
set of vectors measured under one set of conditions into the
set of vectors measured under the other set of conditions.
To do so, we use an algorithm that was first developed in
crystallography (Kabsch 1976).

At this stage, it is important that the number of neurons
(or receptive-field pairs under the two different conditions)
is larger than the number of dimensions in which the best
transformation is sought. Otherwise, the problem of
identifying the optimal rotation would be underdetermined.

Since we were interested in changes in shape but not
overall sensitivity (which, here, would be absorbed into the
nonlinear stage, and was previously analyzed, Victor et al.
2006), we did not allow for a dilation following the
rotation. However, the method can be readily extended
allow for dilations that follow the rotation matrix, or to look
for general linear transformations between the two sets of
vectors—thus providing an analysis of increases or decreases
in sensitivity.

5 Conclusion

Our analysis of how V1 receptive fields respond to changes in
higher-order stimulus statistics shows that stability of recep-
tive field components depends on both their spatial extent and
symmetry properties. Qualitatively, this finding can be
explained by a simple, physiologically plausible mechanism
based on the idea that receptive fields change as a result of
independent local perturbation events. To account for our data,
local perturbation profiles must be predominantly anti-
symmetric, e.g., constructed from a pair of adjacent On/Off
subregions. Recent theoretical models of cortical development
argue that such a profile can result just from local pooling in
space of a small number of RGC cells and is sufficient for
seeding the formation of cortical circuits. Perhaps the
mechanisms based on On/Off pairs that guide the develop-
ment of visual cortex continue to shape neural receptive fields
in the adulthood. Our approach can be used to determine
whether similar mechanisms underlie changes in spatiotem-
poral receptive fields, and adaptation to context driven by
natural scene statistics.
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Note added in proof: An analysis of an additional 57 macaque V1
neurons showed results comparable to those presented here.
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Appendix

Relationship between Procrustes matrix and receptive field
differences

In order to understand possible mechanisms that might
explain the observed difference in context-dependent
changes for even- and odd-rank components, we analyze
the relationship between the elements of the Procrustes
matrix and receptive field changes. The Procrustes trans-
formation implemented in Figs. 4, 5, 6, 7 determines the
best rotation matrix between the two sets of receptive fields
obtained in the two stimulus contexts. We will work in the
approximation where changes in the stimulus components
are small compared to the magnitude of stimulus compo-
nents. This approximation implies that the best rotation
matrix will also be close to the best linear transformation
that includes both rotation and scaling, because scaling
factor will be close to 1. This significantly simplifies
analysis, making the relationship between elements of the
Procrustes matrix and changes in receptive field compo-
nents more transparent. In this approximation, the elements
Cnk of the matrix given by the difference between the
Procrustes matrix and the unit matrix can be found by
minimizing mean square error:

X
n:i

da ið Þ
n � Cnka

ið Þ
k

� �2

where a ið Þ
k represents the kth component of receptive field of

the ith neuron obtained from the first, for example Cartesian,
stimulus set. We denote the difference between receptive
field coefficients for the two stimulus sets by da ið Þ

k , which we
assume to be small, so that the sum of identity matrix and C
is nearly orthogonal. The optimal matrix elements Cnk can be
found from the following equation:
X
k

Cnk a ið Þ
k a ið Þ

j

D E
i
¼ da ið Þ

n a ið Þ
j

D E
i
: ð3Þ

Here all averages are computed across the population of
cells.

If we first assume that receptive fields are sufficiently
diverse so that receptive field components are uncorrelated,
the expression for matrix C can be simplified:

Cnk ¼
da ið Þ

n a ið Þ
k

D E
i

a ið Þ2
k

D E
i

: ð4Þ

Thus, for small context dependent changes da ið Þ
k in

receptive fields, the deviations of the Procrustes matrix
from the unit matrix are determined the average product
between kth receptive field components and the change in
the nth receptive field component, normalized by the
average magnitude of kth component across all receptive
fields. The assumption of uncorrelation is clearly a strong
one, but a weaker assumption—namely, that there are no
correlations between even and odd components see
[Fig. 4(e)]—suffices to support the analysis in the main
text. That is, Eq. (3) shows that odd-parity elements of the
Procrustes matrix imply correlations of the perturbations
with odd-order basis elements.
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