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The Akaike minimum information criterion provides a means to determine the ap- 
propriate number o f  lags in a linear autoregressive model o f  a time series. We show 
that the Akaike criterion is closely related to the reliability estimates o f  successively 
determined parameters o f  a linear autoregressive (LAR) model. A similar criterion 
may be applied to determine whether the addition o f  a nonlinear term to an L AR  
model provides a statistically significant improvement in the description o f  the time 
series. As an example, we use this method to identify quadratic contributions to a non- 
linear autoregressive characterization o f  a typical 3 /s spike and wave seizure discharge. 
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I N T R O D U C T I O N  

Autoregressive (AR) modelling is a powerful technique for the efficient represen- 
tation of  time-series data (4,27). To construct an AR description of  a time series, the 
investigator must decide on the number of  terms to be included. Since coefficients of  
the included terms are determined by a least-squares procedure, the unexplained vari- 
ance necessarily decreases as the number of  terms is increased. Thus, a minimum-vari- 
ance criterion cannot be used to determine the number  of  terms, which should be 
included in the AR model. Rather, in order that  the addition of  a term be justified, 
the reduction in unexplained variance must be sufficiently large. Akaike (1) advanced 
an information-theoretic criterion for deciding just how large a variance reduction is 
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necessary. His argument was based on a maximum-likelihood estimate of  model pa- 
rameters,  which necessarily postulated that the driving terms (innovations) of  the 
model are Gaussian-distributed. Thus, in a strict sense, the Akaike criterion is lim- 
ited to linear AR (LAR) models. 

In this paper,  we deduce reliability estimates for both linear and nonlinear terms 
in an AR model. We demonstrate that for a fully linear AR model, a criterion based 
on reliability estimates essentially coincides with that of  Akaike.  This provides a ra- 
tionale for using the reliability estimate criterion for nonlinear AR (NLAR) models, 
where the Akaike criterion cannot rigorously be applied. As an example, we apply this 
technique to a segment of  electroencephalogram (EEG) recorded during a seizure dis- 
charge, and demonstrate  how the NLAR formalism suggests features of  the under- 
lying EEG dynamics. 

THEORY 

The N L A R  M o d e l  

We formulate  the N L A R  model for a t ime series composed of  samples y .  as 
follows: 

J 
Yn  = ~a  C j f J ( Y n - l , Y n - 2  . . . . .  Y n - L )  -I- X n . ( I )  

j = l  

The quantities x,  are assumed to be drawn independently f rom a probabili ty distri- 
bution p ( x ) ,  which we initially assume is a Gaussian distribution of  variance U. 

It is convenient to represent the current and previous values of  the time series at 
step n by II, = ( Y , , Y ~ - x  . . . .  ), and to use the notat ion fj(Y~) = f j ( Y n - l , Y n - 2  . . . . .  

Y~-c). In this analysis we will consider the time series { y ,  ] to form a cyclic sequence 
of  length N. Quantities such as f l  . . . . .  f j  and Cl . . . . .  cj  will be grouped as column- 
vectors f and c. With these conventions, Eq. 1 can be rewritten 

y,, = f (Y . ) r c  + Xn �9 (2) 

Our goal is to determine how estimates of  Ces t f rom time series generated by Eq. 2 
will differ from their exact values c. We assume that f is known, and we focus on lim- 
iting behavior as N becomes large in comparison with the number J of  terms in Eq. 2 
and the maximum lag L relevant to any of  the f j .  We will use ( )est to indicate aver- 
ages over an empirical data set and ( ) to indicate exact expected values (averages over 
the larger ensemble f rom which the empirical data set is drawn). 

Reliabi l i ty  o f  E s t i m a t e d  Parameters  

Estimates of  c may be derived from an empiric time series { y ,  J by minimizing the 
unexplained variance R = (1/N) S x  2. Under the hypothesis that the x.  are distributed 
in a Gaussian fashion with mean zero, this estimate is the maximum-likelihood esti- 
mate for c. Yule-Walker equations (7) for eest may, therefore, be obtained by setting 
OR/Ocj = 0 for each ej: 

( f ( Y . ) Y . ) ~ t  = (f(Y.)f(Y,,)T)estCr �9 (3) 
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We denote  the co lumn  vector  (f(Yn)Yn)est b y  bes t  and  the symmetr ic  matr ix  
( f (Yn) f (yn)T)est  by Fest. Provided  Fes t is nonsingular ,  estimates test may  be calcu- 
lated by 

--1 
Ces t = Fes t bes t . (4) 

A similar a rgument  shows that  there is an analogous  relat ionship between the ex- 
act values c and the exact values b = (f(Y~)y~) and F = ( f (y~ ) f (y~ )T) :  

c = F - l b  . (5) 

W e  a s s u m e  t h a t  t h e  n u m b e r  N o f  o b s e r v a t i o n s  yn is l a r g e ,  so  t h a t  fib = bes t - b 

a n d  fiF = Fes t - F a re  smal l .  T h u s ,  we m a y  a p p r o x i m a t e  F~s~ b y  F -1 - F -1 fiFF -1 . W e  

n o w  c a l c u l a t e  fie = test - c, t h e  d i f f e r e n c e  b e t w e e n  t h e  e s t i m a t e d  v a l u e  a n d  t h e  exac t  

v a l u e  o f  t h e  a u t o r e g r e s s i o n  c o e f f i c i e n t s .  W e  r e t a i n  o n l y  t e r m s  u p  to  f i r s t  o r d e r :  

6e = FLI best - -  F -1 b 

= ( F  -1  - F -1 fiFF -1 ) -  (b + 6b) - F -1 b 

= F -1 ~b - e -1 6FF -1 b 

-- F - l ( f ib  - fife) 

= V -l(bes t - Feste ) , 

(6) 

where we have used Eqs. 4 and 5 in the final two steps. 
The N L A R  model  Eq. 2 provides an alternative expression for  bes t in terms of  the 

innovat ions xn: 

best = (f(Yn)Yn)est 

= ( f ( Y n )  [f(Yn) Tc + Xn])est (7) 

= FestC + (f(Yn)Xn)est �9 

Combining Eqs. 6 and 7 yields a simple expression for fic in terms o f  the innovat ions 
xn and exact model  parameters:  

fic = F-l(f(Yn)xn)est  . (8) 

We now proceed to calculate the covar iance matrix C = (ficficT): 

C = F -  1 N f(Yn)Xn . F _  1 1 T 
n=l N m=l f(Ym)Xm 

1 /  ~ / 
= F-1 N-2 f(Yn)f(Ym)TXnXm F - l  

~tn,m=l l 

_ 1 F _ l ( N U ) ( f ( y ~ ) f ( y m ) r ) F _  ~ 
N 2 

(9) 

U F - 1  
N 
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In this calculation, the crucial step is recognizing that x~ is independent of  f(Y,) ,  
and if n > m, x ,  is also independent of  Xm and f(Ym). Thus terms with n > m (as 
well as terms with m > n) drop out. The terms with n = m do not drop out, and we 
use the fact that ( x ,  xn) = U. The matrix C represents the variances and covariances 
of  the estimates Cest about  their mean value c, and thus Eq. 9 provides an index of 
reliability for these values. 

We wish to use this f ramework to test the incremental significance of  adding one 
t e r m f j ( Y , )  to the AR model Eq. 2. At this stage, it is convenient to assume that the 
additional AR term fj(Yn) is orthogonal to the rest (11). This assumption of  orthog- 
onality is not a restrictive one. I f  the original choice f j  is not orthogonal to the pre- 
vious f j  ( j  = 1 . . . . .  J - 1), then it may  be replaced by an appropr ia te  linear 
combinat ion f )  = f j  - Ea j f i ,  which is or thogonal  to the previous f j .  This orthogo- 
nalization amounts  to a reorganization of  the A R  model in which the coefficients 
Cj,est of  the first J - 1 terms fs have been changed by aj, but the coefficient of  Cj, est 
o f f j  remains unchanged. 

With the assumption that the final term f j  is orthogonal to the previous ones, the 
symmetric matrix F assumes a block form, with F~,j = 0 and F j j  = 0 f o r j  :~ J, and 
F j ,  j -= ( [ f j ( Y n ) ] 2 ) .  Its inverse F - l  must similarly be in block form, with F j _  j = 

I /F j ,  j .  Consequently, it follows from Eq. 9 that the variance Cj, j = (6c 2) of  the de- 
viation 6cj = C Jest -- Cj is given by 

<~c~> = u NFj,  j (10) 

In the limit of  large N, F may be approximated by Fest, and the variance U of  the 
driving terms may be replaced by V = (X2)est. Both of  these approximations incur 
errors which are on the order of  1/N. This error in the reliability estimate is also the 
extent to which the empirical orthogonalization may differ f rom orthogonalization 
with respect to the entire ensemble. Within this uncertainty, an estimate of  the reli- 
ability of  cj  f rom empirical quantities is 

V 
(6c 2 ) - (11) 

N F  j, J, est 

Note that in deriving Eq. 11, we did not need to assume that the innovations xn 
were Gaussian-distributed; we only needed to use the fact that they were independent 
and of  variance V. I f  the xn are indeed Gaussian-distributed and the autoregression 
rule is linear, then the least-squares estimates provided by the Yule-Walker Eqs. 4 be- 
come maximum-likelihood estimates. This may be converted to a confidence inter- 
val if the xn are assumed to be distributed in a Gaussian fashion: For large values of  
N, CJ, es t -I- tcri t [V/(NFj ,  j, est)] 1/2 represents confidence limits for c j ,  where tcrit is the 
critical value of  the t-statistic corresponding to the desired level of  confidence. 

On this basis, we propose a criterion that a measured value of  Cj, est reflects an ex- 
act value cj ,  which is different f rom zero: 

(12) 
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As the above discussion implies, this criterion rigorously corresponds to the statement 
that  the confidence interval for cj  does not include zero, provided that  the innova- 
tions are Gaussian-distributed and the AR model is linear. However,  it also provides 
a rigorous test for the significance of  the coefficient cj  of  a lone nonlinear term f j  in 
an otherwise linear AR model. This is because under the null hypothesis that this co- 
efficient is zero, the model is indeed linear. Once the model is known (or assumed) 
to include one nonlinear term, then application of  the criterion Eq. 12 to determine 
the significance of  a second nonlinear term is only an approximation,  since an NLAR 
model typically requires non-Gaussian distributions of  the innovations xn (e.g., (5)). 

The A k a i k e  Criterion 

Akaike's  minimum information theoretic criterion (1) is commonly  used to deter- 
mine the appropriate number of  terms in an LAR model. According to this criterion, 
the number  of  terms to be included in the model is the value that minimizes 

A I C ( J )  = N l o g  V +  2 J ,  (13) 

where V is the residual variance of  the J- term AR model.  
The coefficient cj  of  the final term is thus considered to be significant if  

A A I C ( J )  = A I C ( J )  - A I C ( J -  1) < 0. That  is, 

V 
N l o g  :-;- + 2 < 0 , (14) 

va 

where Va is the residual variance for the best-fitting model with the J th  term f j  omit- 
ted. We make the approximation that the incremental decrease in variance due to the 
J t h  term, AV = Va - V, is small in comparison with V. Then, log V / ( V  + A V )  is 
well-approximated by - -AV/V ,  and Eq. 14 may be rewritten 

V 
A V >  2 - -  . (15) 

N 

The relationship between the criterion Eqs. 15 and 12 follows f rom an expression 
for  the residual variance V in the least-squares best-fit AR model of  J components:  

V = <X~>e~ 

= ((y~ - f(yn)TC)2)est 

2 T T = (Y.)est - 2bestC~st + CestFCest , 

( y 2 ) e s t  T : - -  C e s t F e s t C e s  t , 

(16) 

where the last step made use of  Eq. 4 in the fo rm bes t = FestCes t .  

The orthogonality assumption for f j  and the assumption that Fest may be replaced 
by F provide a simple expression for A V = Va - V: 

A V  = c},estFs, j,e~t . (17) 
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With this relationship, the Akaike criterion Eq. 15 becomes 

V 1 ~/2 
[CJ'est[ > %/2 NF~- 

k J, J, est d 
(18) 

This equation displays a fundamental similarity between the Akaike criterion 
Eq. 15 and the criterion Eq. 12 derived above from reliability estimates. The corre- 
spondence becomes exact for a value of  tcrit = x/2, which (in the limit of  large N) is 
the critical value for a confidence interval of  p = 0.84. 

The Eqs. 12 and 15 may be rearranged (via Eq. 17) into the common form 

NA V 
- -  > k , (19) 

V 

where k = 2 for the Akaike criterion Eq. 18 and (tcrit) 2 for the reliability estimate cri- 
terion Eq. 12. It is worthwhile noting that the factor 2 in the Akaike criterion Eq. 15 
is a matter of some debate; Leontaritis and Billings (16) argue for the factor of 4, 
which would (via Eq. 19) correspond to the more traditional confidence interval of 
p = 0.95. 

The rationale for the Akaike criterion depends heavily on the assumption of a 
Gaussian distribution of  the innovations, so that a least-squares estimate will coin- 
cide with a maximum-likelihood estimate. The error estimation procedure described 
above properly estimates the covariance of errors in the parameters cj even when the 
AR model is nonlinear, without the need to assume that the innovations are distrib- 
uted in a Gaussian fashion. The correspondence between these criteria thus provides 
a rationale for extension of  the Akaike criterion to NLAR models, since the error- 
estimate criterion to which it corresponds depends only weakly on the assumptions 
of  linearity and Gaussian distributions. 

A n  Example 

Here, we describe an application of  the reliability estimate criterion to an NLAR 
characterization of an ictal EEG discharge. EEG signals acquired with standard clin- 
ical techniques (gold cup electrodes filled with electrolyte paste and placed on the scalp 
according to the 10-20 system) were amplified, filtered (0.3 Hz to 70 Hz), and 
recorded by a pulse-width modulation technique at 250 Hz with Telefactor (West 
Conshohocken, PA) telemetry apparatus. This arrangement permitted simultaneous 
recording of  a video image of the patient, so that we could be sure that movement 
artifact was not present. 

The data we analyze (Fig. 1) is a sample of  4.1 s of  EEG during a typical run of 
3/s spike and wave in an adult with absence ("petit real") epilepsy (20). As seen in 
Fig. 1, similar waveforms are present throughout the record, and there is no pattern 
of  temporal evolution. This stationarity of the EEG signal (which is typical of petit 
mal discharges, but not necessarily of  other seizures) is one formal requirement for 
the autoregressive framework we have discussed above. 

Autoregressive analysis was applied to the tracing of  channel 7 (Fpl-F7),  resam- 
pled at 125 Hz. Each data point used for the analysis was the arithmetic mean of  two 
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FIGURE 1. EEG recorded in a standard parasagittal montage during a typical 3/s spike and wave sei- 
zure discharge. 

points obtained from the 250 Hz  digitization. This channel was chosen because the 
spike discharge was large and the record was free o f  artifact. We used the Yule-  
Walker Eqs. 4 to estimate coefficients c for a model  with an offset term fo(Yn) = 1 
augmented by increasing numbers of  single-lag terms fj  (Yn) = y,_j .  (We included an 
offset  term so that at the next stage of  the analysis, the dynamic effect o f  quadratic 
terms could be dissociated from their nonzero  mean.)  The Akaike criterion applied 
to these modified LAR models yielded a local min imum with J = 5 lags which ac- 
counted for 81.51~ of  the variance (Figs. 2a and 2b). After a transient rise in the 
Akaike criterion value, additional lags (beyond 11) continued to result in further small 
decreases in the criterion. As seen in Fig. 2c, the minimum o f  the Akaike criterion is 
the value of  J at which NA V / V  (a) exceeds 2 and (b) the subsequent value o f  ?CA V / V  
is less than 2. Beyond 1 ! lags, most  additional terms were associated with values o f  
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FIGURE 2. (a) Analysis of significance of autoregressive terms. Residual variance V. 

n A V / V  in the range of 2-4, and were, thus, of  minimal significance by the Akaike 
criterion. 

The next step in our analysis was to introduce a single quadratic term fig (Y,) = 
Y , - j Y n - k  into an otherwise linear AR model Eq. 2. We were interested in nonlinear 
terms Y , - j Y ~ - k  for values o f j  and k up to 20 (time-lags 8 to 160 ms). As the above 
analysis shows, the size of  the reduction in unexplained variance, due to a specific 
nonlinear AR term, depends, in part, on how close it is to linear combinations of  
previously included terms. Thus, if one added nonlinear terms to a 5-lag AR model, 
one might anticipate that the term Y , - s Y , - 8  might contribute more than the term 
Y , - 3 Y , - 3  merely because 8-lag terms were not present in the linear model. To avoid 
this possible confounding effect, we included linear terms up to lag 20, so that the 
relative contributions of  nonlinear terms over a similar range of  lags could be com- 
pared. The LAR model truncated at J = 20 lags accounted for 82.74% of  the vari- 
ance, which represented only a minimal improvement over the 5-lag model (81.51%). 

The Yule-Walker Eqs. 4 for an NLAR model consisting of  an offset, 20 linear 
terms, and a single quadratic term was used to calculate the value of  the coefficient 
cjk for fjk and the resulting reduction in the variance A Vj~. This analysis was applied 
separately for all values o f j  and k in the range from 1-20. The pattern of  values of 
the residual Vj~ of  the model with a single nonlinear term and the corresponding 
NLAR coefficients cjk are shown in Fig. 3. (The symmetry of the contour map is ne- 
cessitated by the fact that fik = f k j ) .  These maps are generally similar in structure, 
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FIGURE 2. (b) Relative Akaike criterion, obtained by subtracting the values provided by Eq. 13 for 
the number of lags under consideration from the value provided by Eq. 13 with no AR terms except 
a constant term. 

because the matrix F in the Yule-Walker Eqs. 4 may always be considered to be in 
block form, once fjk is orthogonalized. The most prominent features of  these con- 
tour maps are ridges parallel to the main diagonal, running from time-lags of  (4,7) 
to (8,11), which corresponds to lags of  (32 ms, 56 ms) to (64 ms, 88 ms). In addition, 
there are secondary extrema at (1,8) (corresponding to (8 ms, 64 ms)), at (8,17) (cor- 
responding to (64 ms, 136 ms)), and at (15,15) (corresponding to (120 ms, 120 ms)). 

The Akaike criterion indicated a significant improvement of the model f rom the 
addition of  any single quadratic term. The reduction in the value of  the Akaike 
criterion varied f rom minimal [0.8 for  ( j , k )  = (9,9)] to substantial [100. for  
(j,  k) = (5,8)] (Fig. 2b). This corresponded to values of  NA II/V ranging from 2.8 for 
( j , k )  = (9,9) to 113. for ( j , k )  = (5,8) (Fig. 2c). As seen in Fig. 3, nearly all o f  the 
terms were significant by the stricter choice of  NA 1I/V > 4 (16). For the NLAR model 
with the single term ( j , k ) =  (5,8)included,  85.96~ of  the variance was accounted 
for. This amounted to 18.66~ of the variance, which remained after 20 linear terms. 
The variance reduction due to this single term was as much as the reduction in vari- 
ance due to linear terms of lag 3 through 20. 

DISCUSSION 

It has often been suggested that the AR formalism might be usefully extended to 
include nonlinear terms (5,10,12,14,15,24). We find this idea particularly attractive 
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FIGURE 2. (c) N&V/V. For linear models, the value of each parameter is plotted as linear AR terms 
are incrementally added. At  the right side of each graph, the range of values obtained for all of the 
possible quadratic terms is indicated. 

in the context of the EEG. The general features of equations thought to underlie EEG 
dynamics (25) are highly nonlinear. Under normal circumstances, the EEG is the 
summed result of many relatively independent generators, and thus the resulting sig- 
nal has very nearly Gaussian behavior (6,17,18,22,23). Thus, the microscopic dynam- 
ics bear little relationship to the normal surface EEG. As a consequence, despite the 
likely nonlinear nature of  the underlying dynamics (8,17,25,26), LAR models form 
an excellent compact description of the normal EEG (1,7). However, during seizure 
activity, the EEG is dominated by abnormally large populations of synchronized neu- 
rons. Such paroxysmal activity characteristically displays a polarity (i.e., sharp tran- 
sients that are unidirectional), and thus cannot be well-represented by a linear AR 
model. Indeed, a preliminary report indicates that EEG discharges during frank sei- 
zures display features of nonlinear recursion (21). For these reasons, we thought it 
likely that an NLAR formalism might provide a useful characterization of  EEG dy- 
namics during a seizure discharge. We recognize that a detailed correspondence be- 
tween an NLAR model and a microscopic description of EEG dynamics is not likely 
within reach. Rather, our goal is to use NLAR models to exclude some models for 
EEG generation, and perhaps suggest others. 

To deduce an NLAR model from data, some means of deciding on the statistical 
significance of nonlinear terms is necessary. As pointed out above, the Akaike cri- 
terion, as originally proposed, cannot be rigorously applied in the nonlinear case. One 
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approach is to determine an estimate of  the reliability of  the coefficient of  a poten- 
tial nonlinear term. If  this coefficient is not reliably different from zero, then there 
is no statistical justification for retaining the term. If this coefficient is reliably dif- 
ferent f rom zero, then the null hypothesis (that the term under consideration is not 
present) may be rejected. 

Our analysis is similar to the log-determinant ratio method for identification of  
structure of  NLAR models with moving-average components and accessible inputs, 
as advanced by Billings and coworkers (3,14-16). In the present setting (a) the model 
has no moving-average components, (b) the input is inaccessible and, therefore, not 
an explicit component of any of the AR terms ~ ,  and (c) we consider the significance 
of  a single nonlinear AR term in an otherwise linear AR model. Because of the struc- 
ture of  the NLAR model and the least-squares fitting procedure, these specializations 
lead to reliability estimates for the coefficients of  orthogonalized AR terms are sim- 
ply related to the reduction in variance provided by these terms. A criterion essentially 
identical to Eq. 12 has already been proposed (13); our point here is to emphasize that 
this criterion is philosophically equivalent to that of Akaike (1), rather than an alter- 
native (cf. (13)). 

One problem inherent in autoregressive modelling a signal such as that shown in 
Fig. 1 is that since the signal is nearly periodic, the set of  recent lagged values explores 
a state-space of  low dimension (2). For this reason, one may wonder that the appear- 
ance of  nonlinear terms in the autoregressive model may be a consequence of  the fact 
that for the trajectory of  state-space traversed, nonlinear and linear autoregressive 
terms may not be distinguishable. Were this the case, however, then the nonlinear 
components in f would be linearly dependent (or nearly so) on the linear terms, and 
they would not lead to a significant reduction in the variance V. 

As we have shown, application of this procedure to the EEG recorded during a sei- 
zure discharge indicates that an LAR model is improved by the addition of  nonlin- 
ear terms. This by itself is not surprising, and might well be suggested by visual 
inspection of the raw data. What is not evident from visual inspection of  the EEG 
tracing is the pattern of  significance of  the nonlinear interactions, as revealed by the 
contour map of Fig. 3. 

To a first approximation, the contour map of  Fig. 3b may be considered to be a 
second-order Volterra kernel (19) of  the nonlinear filter in a hypothetical feedback 
loop, which determines the current signal value Yn from its previous values. Qualita- 
tive features of a second-order Volterra kernel K2 ( r l ,  r2) provide clues to the nature 
of  the transduction they describe. For example, a system consisting of  a linear filter 
with impulse response G(r)  followed by a static nonlinearity has a second-order ker- 
nel of the form 

KE('rl,r2) = aG( r l )G( ' r2 )  . (20) 

More generally (9), a system consisting of a linear filter with impulse response G(r)  
followed by a static nonlinearity, followed by a second linear filter of  impulse re- 
sponse H ( r ) ,  has a second-order kernel of  the form 

fO ~ K2(r l ,  7"z) = a G(TI -- 7)G(r2 - r ) H ( r )  dr . (21) 



Nonlinear A utoregression and EEG 179 

The con tou r  m a p  o f  Fig.  3b does  no t  r ead i ly  fi t  in to  the  fo rm Eq,  20 o r  Eq.  21, 
either o f  which would typical ly be domina ted  by  contours  running paral lel  to the axes. 
Ra ther ,  the  mos t  s t r ik ing fea ture  o f  this m a p  is the  val ley  para l le l  to  the  m a i n  d iag-  
onal ,  running f rom time-lags o f  (32 ms,  56 ms) to (64 ms, 88 ms).  This suggests a feed- 
back  process  dr iven by  a non l inea r  in t e rac t ion  o f  E E G  values  at  t imes  s epa ra t ed  by  
24 ms. It is in teres t ing to note  tha t  this  t ime in terval  is c o m p a r a b l e  to  the  t ime  scale 
o f  the spike componen t  o f  the 3 /s  discharge.  Our  statistical analysis demonst ra tes  tha t  
this feature  is not a consequence o f  the frequencies present  in the seizure d i s c h a r g e -  
were this the  case, the  reduc t ion  in var iance ,  due  to  these non l inea r  te rms,  wou ld  be  
no  greater  t han  tha t  expected for  a signal gene ra t ed  by  the bes t - f i t t ing  L A R  mode l .  

Because our  goal  is to charac te r ize  the  d y n a m i c s  o f  the  E E G  (ra ther  t han  to p ro -  
vide  as concise  a r ep resen ta t ion  as poss ible) ,  we elected to re ta in  all l inear  t e rms  up  
to  20 lags in the L A R  charac te r iza t ion ,  even t h o u g h  some o f  them were no t  signifi-  
can t ly  d i f fe ren t  f rom zero.  H a d  we chosen  to  omi t  some o f  these te rms,  we might  
have  i n t roduced  spur ious  e lements  in to  the  c o n t o u r  maps  o f  Fig.  3 for  lags corre-  
spond ing  to  those  omi t t ed  f rom the L A R  mode l .  

We emphas ize  that  a l though  the N L A R  p r o c e d u r e  indica tes  the  presence o f  non-  
l inear dynamics ,  an N L A R  model  with one or  more  quadra t ic  terms is unl ikely to rep- 
resent  an  adequa t e  phys io log ica l  m o d e l  for  the  E E G .  In  pr inc ip le ,  an  N L A R  m o d e l  
wi th  quad ra t i c  terms is l ikely to  be uns tab le  unless  the  innova t ions  are  ca re fu l ly  re- 
s t r icted.  The  true na ture  o f  the non l inea r  f e e d b a c k  is un l ike ly  to be p o l y n o m i a l ;  
thresholds  and  rect i f icat ions  (24) are  l ikely m o r e  a p p r o p r i a t e .  The  analysis  shown in 
Fig.  3 provides  a f ingerpr in t  o f  the non l inea r  dynamics ,  which can serve bo th  as a 
charac ter iza t ion  o f  this E E G  discharge and a means  to test physiological  models ,  but  
does  not  cons t i tu te  a phys io logic  mode l  as it s tands .  
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