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Abstract

We examined how vernier thresholds for flickering bars depend on the temporal frequency and relative temporal phase of the
bars. The largest effect of relative phase (up to a fivefold increase in displacement thresholds) was seen at 2 Hz, and for most
subjects. relative phase had little effect at 16 Hz and above. The effect of relative phase was essentially independent of contrast
and trial duration. Thresholds were elevated by the greatest amount when bars were presented in antiphase, but at 1 and 4 Hz,
quadrature phase offsets also led to substantial elevations in displacement thresholds. An experiment designed to examine the
interaction of the vernier judgment with apparent motion failed to identify a role for mechanisms sensitive to apparent motion
in threshold elevation. Another experiment in which the bars were modulated with sawtooth waveforms indicated that temporal
correlation between the bars, rather than the ON versus OFF distinction, underlies the phase sensitivity. A simple dynamical
model that posits partial rectification prior to a cross-correlation-like interaction accounts for the observed results. © 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Vernier alignment thresholds demonstrate the visual
system’s ability to make positional judgments substan-
tially finer than the grain of the photoreceptor lattice
(Westheimer, 1981; Klein & Levi, 1985), and is thus a
classical example of ‘hyperacuity’. In broad terms,
much of the extensive body of hyperacuity literature
considers two classes of models: local models, in which
differences signaled by individual receptive fields or
spatial filters (Klein & Levi, 1985; Wilson, 1986) sup-
port hyperacuity performance; and models whose per-
formance is limited by noise at a second stage of
processing, at which the position of the local filters is
encoded (Burbeck, 1987; Morgan, Ward & Hole, 1990;
Kooi, DeValois & Switkes, 1991; Levi & Waugh, 1996).
These models are not mutually exclusive: for the same
stimulus paradigm, a local model may hold for small
spatial scales; while the two-stage model holds at larger

spatial scales (Toet, van Eekhout, Simons, & Koen-
derink, 1987; Toet & Koenderink, 1988; Levi, Jiang, &
Klein, 1990). Local models can indeed account for
dependence of psychophysical thresholds on spatial as-
pects of the stimulus under conditions in which stimu-
lus components are abutting or within a few minutes
(Wilson, 1986). The presumptive association of model
elements with cortical receptive fields is strengthened by
the observations that the addition of flanking contours
(Westheimer & Hauske, 1975; Levi, Klein, & Aitse-
baomo, 1985) significantly raises vernier thresholds, but
only within a few minutes’ range. At short range, as
predicted by local models, thresholds improve signifi-
cantly as stimulus contrast increases (Morgan & Regan,
1987; Waugh & Levi, 1993a) and are dramatically
affected by stimulus polarity (Mather & Morgan, 1986;
Levi & Westheimer, 1987; O’Shea & Mitchell, 1990).
With wider separations, vernier performance is rela-
tively insensitive to stimulus contrast (Waugh & Levi,
1993c), polarity (Levi et al., 1990; O’Shea & Mitchell,
1990; Waugh & Levi, 1993c), asynchrony (Beard &
Levi, 1997) or (for Gabor patches) spatial phase (Toet
& Koenderink, 1988), orientation (Kooi et al., 1991),
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and spatial frequency (Kooi et al., 1991). This is to be
expected from a two-stage model provided that posi-
tional uncertainty at the second stage is limiting.

In contrast to the wealth of information available
concerning the dependence of hyperacuity performance
on spatial factors, relatively little information is avail-
able concerning the role of temporal factors in hyper-
acuity tasks (Westheimer & Hauske, 1975; Westheimer
& McKee, 1977; O’Shea & Mitchell, 1990; Waugh &
Levi, 1993a,b,c; Wehrhahn & Westheimer, 1993; Fen-
dick & Swindale, 1994). Under short-range conditions,
presentation time has a substantial influence on
thresholds, as expected from a single-layer local model,
in which reduced presentation times would result in a
proportional decrease in responses from local filters
(Waugh & Levi, 1993a). With larger separations, pre-
sentation time is less important, as would be expected if
performance is limited by noise in a positional encoding
process (Waugh & Levi, 1993c). In a study of alignment
of transiently-presented points, Wehrhahn and West-
heimer (1993) found that temporal asynchronies of as
little as 30 ms lead to elevation in threshold, but this
work was restricted to the short-range regime. An
analogous decrease in sensitivity to asynchrony was
observed by Fendick and Swindale (1994), who studied
the alignment of flicker-defined edges across a range of
gap sizes.

Thus, in the local regime, temporal factors play a
significant role in vernier acuity. The aim of this study
is to examine the temporal factors underlying vernier
acuity in sufficient detail so that inferences can be made
concerning computational mechanisms. In contrast to
previous studies (Westheimer & Hauske, 1975;
Wehrhahn & Westheimer, 1993), we will use a fre-
quency-domain approach, in which the components of
a vernier target are modulated sinusoidally. One moti-
vation for this approach is that linear processing of
these signals preserves their sinusoidal nature, and the
cross-correlation between two sinusoidal signals (of the
same temporal frequency) depends sinusoidally on their
relative phase.

Static presentation of two-bar vernier targets of like
and opposite polarity can be thought of as the low-fre-
quency limit of a frequency-domain analysis, in which
the bars are presented in phase and in antiphase. Since
vernier performance deteriorates for targets at opposite
polarities, we expect a substantial phase-dependence of
performance at low frequency (Mather & Morgan,
1986; Levi & Westheimer, 1987; O’Shea & Mitchell,
1990). However, experiments with static presentations
do not lead to a clear prediction as to whether phase-
dependence will persist to higher frequencies. Further-
more, the frequency-domain approach makes it natural
to examine vernier performance in conditions interme-
diate between ‘in phase’ and antiphase, such as quadra-
ture phase (0.25-cycle shifted) stimuli. These conditions

are natural for analysis in the frequency domain, but
have no immediate parallel for transient presentations.
As will be seen below, performance under intermediate
phase conditions is critically important for the qualita-
tive understanding of the dynamics of vernier acuity.

2. Methods

2.1. Visual stimuli

Fig. 1 diagrams the typical vernier stimuli used in
these experiments. The spatial layout consists of two
horizontal bars, each 32 min long and 4 min wide. The
ends of the bars were coincident with pixel boundaries,
and contrast switched abruptly from 0 (background) to
the full contrast of the bar along this axis. Along the
width of the bars, we used a Gaussian profile (full
width at half maximum set to 4 min), so that displace-
ments of less than one pixel (1 min) could be realized
(Krauskopf & Farell, 1991). Bar contrast was modu-
lated sinusoidally in time. In all experiments, the modu-
lation frequency of the two bars was the same, but (as
illustrated in Fig. 1), they were not necessarily modu-
lated in phase. Stimulus duration was 0.947 s unless
otherwise noted, and masking was not used. Temporal
profiles were ramped on and off over a period of 30 ms
at the beginning and end of stimulus presentation. The
choice of ramp duration was a compromise between the
goal of avoiding sudden changes in stimulus contrast,

Fig. 1. A spatiotemporal diagram of the basic visual stimuli. Each
frame represents a snapshot of the stimulus at quarter-cycle intervals.
Bars were modulated sinusoidally in time, either in phase (upper
sequence) or with a nonzero relative phase (middle and lower se-
quences).
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and of maintaining the undistorted stimulus waveform
for the duration of the nominal presentation. Since the
stimulus transient amounts to an introduction of high
temporal frequencies, the likely effect of an overly
abrupt ramp would be to reduce observed temporal
frequency-dependence, rather than to introduce a de-
pendence artifactually.

These visual stimuli were produced on a Tektronix
608 display that subtended 4.4×4.4° at a viewing
distance of 114 cm and had a mean luminance of 150
cd/m2. Control signals for the stimulator were produced
by electronics modified from the design of Milkman,
Schick, Rossetto, Ratliff, Shapley and Victor (1980)
and interfaced to a DEC 11/73 computer. The electron-
ics generated horizontal and vertical scan signals for a
256×256 pixel display at a frame rate of 270.3 Hz, and
an intensity signal that was corrected (via a digital
look-up table) for the nonlinear intensity/voltage rela-
tionship of the display oscilloscope.

2.2. Subjects and psychophysical methods

We used a two-alternative forced choice staircase
procedure to determine contrast thresholds and dis-
placement thresholds (71% correct). Trials were self-
paced. For the determination of contrast thresholds,
the stimuli shown in Fig. 1 were presented with the
contrast of one of the bars randomly set to zero. The
subject’s task was to identify the location (left or right)
of the bar at nonzero contrast. For the determination
of displacement thresholds, the contrast of both bars
was set to a predetermined multiple (e.g. 8× ) of the
subject’s detection threshold. The task was to identify
which bar (randomly set to be the left or right bar) was
displaced upward. For both detection and displacement
measurements, the location of the stimuli was jittered
up and down by 2 min from trial to trial, so that
position of the individual bars was not available as a
cue.

Staircases consisted of two preliminary reversals in
which the parameter of interest was changed by 0.3 log
units, followed by ten reversals with a step size of 0.1
log units. Completion of these staircases required ap-
proximately 55 responses. For each staircase a
threshold estimate was obtained from the geometric
mean of eight reversals: the final ten reversals with one
high and one low outlier excluded. At each temporal
frequency, estimates from four staircases were com-
bined (geometric mean) to obtain each subject’s con-
trast threshold. Staircases for each temporal frequency
were presented in an interleaved manner, and the order
of the staircases (e.g. high frequency first versus low
frequency first) was counterbalanced within and across
subjects. All subjects were given at least two practice
staircases for each condition, with additional practice
trials provided if performance did not appear to be

stable. A similar protocol of practice trials, interleaving,
and counterbalancing was used to obtain displacement
thresholds from four to fourteen staircases for each
condition. During the collection of displacement
threshold data, occasional detection staircases were in-
serted to check for stability of detection thresholds.
Additionally, there was some overlap of conditions
across experiments, which served to check for repro-
ducibility of displacement thresholds. Trials were orga-
nized into sessions of 16–24 staircases, lasting 1–2 h.

Studies were conducted in two male and eight female
normal subjects (nine ranging in age from 18–44, one
female aged 65). Two subjects (MC, RR) were experi-
enced psychophysical observers and participated in all
experiments. Additionally, at least three naive observers
participated in each experiment. All had visual acuities
(with correction if necessary) of 20/20 or better.

3. Results

3.1. Experiment 1: contrast and polarity

The first experiment investigates how displacement
threshold depends on the relative phase of bars to be
aligned. Each subject’s displacement thresholds were
determined for unmodulated bars (‘0 Hz’ in the figures)
and bars modulated at 1, 4, and 16 Hz, at contrasts set
equal to 2, 4, 8, and 16× the subject’s detection
threshold for each temporal frequency. Across subjects,
these detection thresholds ranged from 0.015–0.064 for
unmodulated bars, 0.021–0.104 at 1 Hz, 0.016–0.061 at
4 Hz and 0.031–0.175 at 16 Hz. Displacement
thresholds from one subject (detection thresholds of
0.031 for unmodulated bars, 0.039 at 1 Hz, 0.029 at 4
Hz, and 0.060 at 16 Hz) are shown in Fig. 2. Across
this range of frequencies, displacement thresholds were
lower when the bars were in phase than when they were
in antiphase. For unmodulated bars (Panel A), there
was approximately a threefold difference between bars
of the same luminance polarity and bars of opposite
polarity. The thresholds differed by approximately a
factor of 5 for bars modulated at 1 and 4 Hz, and by a
factor of approximately 3 at 16 Hz. In all cases, dis-
placement thresholds decreased somewhat with increas-
ing contrast. Additionally, measurement of displace-
ment threshold was most variable at the lowest contrast
used (2× detection threshold). However, there was
little change in the displacement threshold ratio across
an eightfold range of contrasts. Averages across sub-
jects are shown in Fig. 3, and demonstrate essentially
the same behavior. The largest antiphase to in phase
threshold ratios were seen at 1 and 4 Hz. There was
little if any dependence of the threshold ratio on con-
trast, even though there was a severalfold reduction in
thresholds with increasing contrast, as reported by
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Fig. 2. Vernier thresholds for bars (4×32 min) as a function of temporal frequency (panel), relative phase (open symbols: in phase. filled symbols:
antiphase), and contrast (abscissae). Contrasts are given as a multiple (2, 4, 8, 16× ) of the detection threshold, which was determined separately
for each temporal frequency. At 0 Hz ‘in phase’ indicates bars with above-background luminance. ‘antiphase’ indicates bars with below-back-
ground luminance. At other temporal frequencies, bars were modulated sinusoidally. Stimulus duration: 0.947 s. Error bars represent 92 S.E.M.
as calculated from the replicate staircase runs for each condition. Subject RR.

other workers for in phase static stimuli (Wehrhahn &
Westheimer, 1990; Krauskopf & Farell, 1991).

A more extensive look at the frequency-dependence
of phase sensitivity is shown in Fig. 4. All thresholds
were measured at 8× the detection threshold, since
Figs. 2 and 3 show that there is little dependence of this
ratio on contrast. The largest difference between in
phase and antiphase displacement thresholds occurred
at 2 Hz, both in individual subjects (seven of eight) and
the group average. Phase sensitivity was still present at
16 Hz in some subjects (Panel A of Fig. 4, and Panel D
of Fig. 2), but not in others (Panel B of Fig. 4). Across
subjects, the antiphase versus in phase threshold ratio
was minimally greater than 1 at 16 Hz, and not signifi-
cantly greater than 1 at 20 or 24 Hz.

Flickering bars might be thought of as a rapid alter-
nation between above-background bars and below-
background bars. Conceivably, displacement thresholds
for stimuli that involve below-background bars are
substantially higher and as a consequence, thresholds
for antiphase bars are elevated because two above-
background bars are never simultaneously present. To
rule out this possibility, we compared displacement
thresholds for unmodulated bars above and below
background. Across subjects, detection thresholds for
the above-background bars (0.015–0.064, geometric
mean 0.035) were somewhat higher than for below-

background bars (0.017–0.032, geometric mean 0.025).
Fig. 5 shows the comparison of above-background and
below-background displacement thresholds for static
bars in subject RR, using the detection threshold of the
above-background bar as the base contrast. The above-
background condition is the same as Panel A of Fig. 2,
but the data were obtained from staircases run on
separate days, and thus serve as a check on stability
and reproducibility. The small increase in displacement
thresholds for the below-background condition com-
pared to the above-background condition was not
statistically significant, and was not seen across subjects
(N=6). Thus, the notion that thresholds to antiphase
bars are elevated because of markedly poor perfor-
mance for one or the other polarity per se is ruled out.

3.2. Experiment 2: stimulus duration

In Experiment 1, trial duration was fixed at 0.947 s,
so the number of oscillations of the stimulus and flicker
frequency necessarily covaried. In Experiment 2, we
decoupled these variables by varying trial duration. As
shown in Fig. 6 (subject YLF) and Fig. 7 (the average
across subjects), the phenomena we observed in Experi-
ment 1 indeed represent a dependence on temporal
frequency, rather than the number of temporal cycles in
each trial. Trial duration was varied from one-quarter
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of the standard duration (0.236 s) to twice the standard
duration (1.894 s), so that the number of cycles of the
4 Hz stimulus varied from 1 to 8, and the number of
cycles of the 16 Hz stimulus varied from 4 to 32. If the
lack of a phase-dependence at high frequencies ob-
served above reflected a ceiling phenomenon related to
multiple stimulus presentations, then: (i) at any flicker
frequency, the threshold ratio should become closer to
1 as stimulus duration increases; and (ii) across fre-
quencies, threshold ratios should be similar if trials are
equated for the number of cycles. How ever, as shown
in Figs. 6 and 7, the ratio between antiphase and in
phase thresholds increases, rather than decreases, as
trial duration increases, contrary to (i). Furthermore,
the ratio at 4 Hz is greater than the ratio at 16 Hz at all
trial durations (statistically significant across subjects at
PB0.05 for durations of 0.47 and 1.89 s by paired
t-test), contrary to (ii). Additionally, in the same five
subjects (data not shown), there was no difference
in performance at 1 Hz for trial durations of 0.95
versus 1.89 s. These observations rule out the possibility
that trial duration, rather than temporal frequency, is
responsible for the phenomena observed in Experiment
1.

3.3. Experiment 3: temporal phase in detail

The previous experiments only considered two rela-
tive phases, in phase and antiphase. We now examine
the behavior of displacement thresholds for intermedi-
ate phases, in steps of 0.125 cycle. Data from one
subject (RR) is shown in Fig. 8. At 1 Hz, there is a
gradual increase in displacement threshold as relative
phase increases from 0 (in phase) to 0.5 cycle (an-
tiphase). At 4 Hz there is a stronger dependence on
relative phase, and the data suggest that most of the
effect of phase is seen as relative phase varies from 0 to
0.25 cycle. At 16 Hz, as expected from Experiment 1,
relative phase has less of an effect, and could not be
discerned in all subjects (see Fig. 9). But in this subject,
a pattern of dependence on relative phase similar to
that seen at 4 Hz could be identified: thresholds ob-
tained with intermediate relative phases (0.125, 0.25,
and 0.375 cycle) are closer to thresholds in the an-
tiphase condition than in the in phase condition.

The average behavior across subjects is shown in Fig.
9. We have normalized each displacement threshold by
dividing it by the subject’s threshold obtained in the in
phase condition (at the same temporal frequency) prior

Fig. 3. Cross-subject averages of vernier thresholds for bars as a function of temporal frequency, relative phase. and contrast (abscissae). For
thresholds in the in phase and antiphase conditions, error bars represent 92 S.E.M., calculated from the average threshold for each subject. For
the threshold ratio, error bars represent 92 S.E.M. of the threshold ratios calculated from the two condition-averages within each subject. All
data points represent averages across six subjects, except for those marked with triangular symbols. At 1 Hz, the average includes five subjects
at 2× threshold and four subjects at 16× threshold. At 16 Hz, the average includes four subjects at 2× threshold, five subjects at 8× threshold,
and three subjects at 16× threshold. Other details as in Fig. 2.
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Fig. 4. Vernier thresholds as a function of temporal frequency
(abscissae) and relative phase. Contrast was set to 8× detection
threshold, determined separately for each temporal frequency. Other
details as in Fig. 2. Panel A: Subject MC. Panel B: Subject CM. Panel
C: Average across all subjects. Error bars represent 92 S.E.M. as
calculated across subjects, as in Fig. 3. At 16 Hz and below, the
average included eight subjects; at 20 Hz, six subjects; at 24 Hz, five
subjects.

Panel D of Fig. 3, and Panel C of Fig. 4) to discern the
effect of the intermediate phase shifts.

3.4. Experiment 4: possible role of apparent motion

The unexpectedly large effect of a quarter-cycle phase
shift (Experiment 3, Fig. 9B) suggested the possibility
that mechanisms subserving motion detection, which
are optimally driven by quarter-cycle phase shifts
(Nakayama & Silverman, 1985), might be involved in
the threshold elevations we observed. This possibility
was investigated directly by the experiment dia-
grammed in Fig. 10. The spatial configuration was
modified to consist of three bars, with the two flanking
bars fixed in alignment and the central bar at a variable
vertical displacement. The three bars were modulated
sinusoidally, with the phases of the flanking bars shifted
with respect to that of the central bar. In one configura-
tion, here called ‘no apparent motion’, the flanking bars
were modulated in synchrony, both at the same phase
lag with respect to the central bar. In the ‘apparent
motion’ configuration, the flanking bars were modu-
lated asynchronously, one with a phase lead with re-
spect to the central bar, and one with a phase lag with
respect to the center. In this configuration, the phases
of the three bars were staggered, and provided a strong
percept of apparent motion, from the flanking bar in
phase lead to the flanking bar in phase lag. No such
percept of apparent motion was present in the first
configuration, even though the absolute phase shift
between the center bar and each of the flanking bars
was identical. Note that for phase shifts of 0 and 0.5,
the two stimuli are identical to each other.

Fig. 5. Vernier thresholds for unmodulated bars as a function of
polarity and contrast (abscissa). Contrast values are given as a
multiple of the detection threshold for above-background bars. Other
details as in Fig. 2. Subject RR.

to averaging. At 1 Hz, there is a gradual increase in
displacement threshold with increasing relative phase.
At 4 Hz, thresholds for relative phases of 0.25, 0.375,
and 0.5 cycle are not significantly different from each
other (PB0.05 by paired t-test), but are significantly
elevated in comparison to thresholds for relative phases
of 0 and 0.125 cycle (PB0.05 by paired t-test). Note
that the error bars in Fig. 9 reflect the range of varia-
tion across subjects. Within each subject, the pattern of
threshold elevation was sufficiently consistent so that
the above paired comparisons reached statistical signifi-
cance. At 16 Hz, there is not enough of a systematic
phase-dependence across all subjects (consistent with
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Fig. 6. Vernier thresholds as a function of temporal frequency (panel), relative phase (open symbols: in phase, filled symbols: antiphase), and trial
duration (abscissae). Contrast was set to 8× detection threshold, determined separately for each frequency and a presentation time of 0.947 s.
Other details as in Fig. 2. Subject YLF.

The behavior of displacement thresholds as a function
of temporal frequency and the spatial configuration of
the phase shifts is shown in Fig. 11. As in the two-bar
experiments, the largest effect of temporal phase shift is
seen at 2 Hz (mean threshold of 0.19 min in phase, 0.68
min out of phase), and there was comparatively little
effect of temporal phase shift at 16 Hz (mean threshold
of 0.18 min in phase, 0.34 min out of phase). At all
temporal frequencies, there was no difference between
the thresholds obtained when the phases of the three
bars were configured to minimize the percept of appar-
ent motion, compared to a configuration with a strong
percept of apparent motion.

3.5. Experiment 5: sawtooth wa6eforms

Krauskopf (1980) examined detection of luminance
changes driven by periodic temporal waveforms consist-
ing of a rapid transient in one direction, followed by a
gradual return (sawtooth waveforms). He found that
thresholds for detection of up-transient fluctuations
were elevated by adaptation to an up-transient wave-
form, that thresholds for detection of down-transient
fluctuations were elevated by adaptation to a down-
transient waveform, and that there was little cross-adap-
tation. We used this approach to examine the role of the
ON–OFF dichotomy in the phase-dependence of dis-
placement thresholds.

We used the spatial configuration of Fig. 1. The
sinusoidal temporal modulation signals were replaced
by sawtooth waveforms centered about the mean lumi-
nance at frequencies of 1 Hz (Krauskopf, 1980), 2 and

4 Hz. At 8 Hz and above, the up-transient sawtooth and
the down-transient sawtooth waveforms appeared indis-
tinguishable. At each temporal frequency, there are
three ways of assigning sawtooth waveforms: both bars
driven by an up-transient sawtooth, denoted ‘UU’, both
bars driven by a down-transient sawtooth, denoted
‘DD’, and one bar driven by an up-transient sawtooth,
while the other bar is driven by a down-transient
sawtooth, denoted ‘UD’. In one subject, we verified that
reversing or randomizing the assignments did not affect
displacement thresholds. For each of these assignments,
the waveforms were presented either with their tran-
sients synchronous (‘in phase’), or their transients sepa-
rated by half a modulation cycle (‘antiphase’). These six
possibilities are diagrammed in Fig. 12. In the UU and
DD configurations, in phase presentation maximizes the
cross-correlation between the temporal signals driving
the two bars, while the antiphase presentation results in
a negative cross-correlation. In the UD configuration, in
phase presentation results in anticorrelated signals, but
the antiphase condition results in positively correlated
signals. That is, if temporal correlation governed dis-
placement threshold, there would be a reversal of the
effect of phase in the UD configuration. On the other
hand, if low thresholds required simultaneous presence
of signals from both bars within either the ON or the
OFF pathway, thresholds should be low for the UU and
DD conditions and high for the UD condition, indepen-
dent of the phase of the transient. In short, the UD
configuration allows us to distinguish between the role
of stimulus polarity (i.e. ON versus OFF) and degree of
cross-correlation.
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Displacement thresholds were measured at 16× each
subject’s mean detection threshold for up-transient and
down-transient stimuli. There was no significant differ-
ence between these thresholds. Results for one subject
(CM) are shown in Fig. 13. As expected, in the configu-
rations in which both bars were driven by the same
sawtooth waveform (UU and DD), thresholds were
significantly higher in the antiphase condition than in the
in phase condition. However, in the UD condition, the
antiphase displacement threshold was lower than the in
phase displacement threshold at all frequencies, with a
statistically significant difference at 1 Hz.

Across all subjects (Fig. 14), the same pattern was seen.
In particular, all subjects showed an increased displace-
ment threshold in the antiphase UU and DD conditions
compared to the in phase UU and DD conditions
(PB0.0001 at 1, 2, and 4 Hz by one-tailed paired t-test),
but a reversal of this phase-dependence in the UD
configuration (PB0.01 at 1 Hz, PB0.05 at 2 and 4 Hz).
That is, with transients of opposite (ON versus OFF)
polarity, the ‘advantage’ of in phase stimulation over
antiphase stimulation is reversed. The displacement
threshold is lower in the antiphase condition, which
maximizes the temporal cross-correlation. Furthermore,
thresholds in the antiphase UD condition were lower than
thresholds in the antiphase UU or DD conditions
(PB0.01 at 1, 2, and 4 Hz). That is, the elevation in
threshold seen with antiphase transients of the same (ON
or OFF) polarity can be reversed by a configuration in
which the polarities are opposite. Together, these obser-
vations show that separate stimulation of the ON and the
OFF pathways by the sawtooth-modulated bars is not
the main factor that determines displacement threshold:

bar polarity and the relative phase of the transients
interact in a manner consistent with the notion that
thresholds are lowest when cross-correlation is maxi-
mized.

4. Discussion

4.1. Summary of results

Our analysis of the effects of temporal frequency and
relative temporal phase on vernier displacement
thresholds extend the well-known findings that for static
or low-temporal-frequency stimuli, targets with opposite-
polarity components are associated with higher
thresholds (e.g. Mather & Morgan, 1986; O’Shea &
Mitchell, 1990; Wehrhahn & Westheimer, 1993; Levi &
Waugh, 1996; Beard & Levi, 1997). Experiment 1 (Figs.
2–4) showed that displacement thresholds are increased
when the stimulus components are in antiphase, by a
factor of 3 or more. The frequency range in which the
threshold elevation is maximal is 1–4 Hz. The largest
threshold elevation occurs at 2 Hz, and at sufficiently high
frequencies (16 Hz in some subjects, 24 Hz in all), relative
phase has no effect. The effects of phase and frequency
are essentially independent of contrast, for contrasts from
2 to 16×detection threshold. The results of Fig. 5 rule
out the possibility that the ‘relative phase’ effect was really
due to different displacement thresholds for above-back-
ground and below-background bars. The results of
Experiment 2 (Figs. 6 and 7) rule out the possibility that
the observed dependence on temporal frequency really
reflect a dependence on the number of cycles presented.

Fig. 7. Cross-subject averages of vernier thresholds as a function of temporal frequency, relative phase. and trial duration. Each data point
represents an average of five subjects. Error bars represent 92 S.E.M. as calculated across subjects, as in Fig. 3. Other details as in Fig. 6.



J.D. Victor, M.M. Conte / Vision Research 39 (1999) 3351–3371J.D. Victor, M.M. Conte / Vision Research 39 (1999) 3351–3371 3359

Fig. 8. Vernier thresholds as a function of temporal frequency (panel) and relative phase (in cycles, abscissae). Contrast was set to 16× detection
threshold, determined separately for each frequency. Other details as in Fig. 2. Subject RR.

The other experiments were designed to constrain
possible models for these findings. Experiment 3 (Figs.
8 and 9) shows that at 1 and 4 Hz, it is not necessary
for the stimuli to be in antiphase in order to have
significant threshold elevations. The quadrature condi-
tion is expected to make the apparent motion percept
the strongest (Nakayama & Silverman, 1985), but Ex-
periment 4 (Fig. 11) shows that this is not related to the
extent of threshold elevation. Finally, Experiment 5
(Figs. 13 and 14) indicates that the effects of relative
phase are not a consequence of the ON versus OFF
dichotomy, as elaborated below.

4.2. A model framework

To understand the kinds of computations that could
account for our findings, we consider a general model
framework (Fig. 15) in which signals from each of the
two bars, denoted SA(t) and SB(t), are processed inde-
pendently, and these signals are then combined. The
separate processing stage may contain both linear and
nonlinear components, and the combination stage may
also contain both linear and nonlinear components. As
a minimal model for the separate-processing stage, we
postulate an initial linear filter LS followed by a nonlin-
earity NS. Following this local nonlinear process, sig-
nals XA(t) and XB(t) may then be further filtered prior
to their combination. This filtering might occur both at
the local processing stage, diagrammed as L1, and at
the combination stage prior to combination of signals,
diagrammed as L2. We denote the output of L2 by the
signals YA(t) and YB(t). Finally, there is a combination
process NC at which signals YA(t) and YB(t) are com-
bined, and produce an output Z(t) that represents some
measure of the similarity of YA(t) and YB(t). NC may
be thought of as cross-correlation, but its precise func-
tional form is not assumed to be multiplication. For

example, we could also assume that Z(t) can only be
nonzero if both inputs are simultaneously positive.
Psychophysical sensitivity (i.e. the reciprocal of the
displacement threshold) is assumed to be monotonically
related to Zmean=�Z(t)�, the average of Z(t) over
time.

Our model is intended to be an abstraction of the
computations underlying hyperacuity, rather than a
model whose components correspond in a detailed fash-
ion to specific neurons. At a minimum, each ‘linear’
stage of the model likely corresponds to a concatena-
tion of transformations by several physiologic processes
(e.g. LS could include phototransduction and filtering at
outer and inner plexiform layers). The framework of
Fig. 15 is also a caricature in the sense that a full
account of the computations underlying hyperacuity
judgments might well require several pathways of this
sort, to process stimuli of a range of sizes or eccentric-
ities (Levi & Klein, 1990; Whitaker, Mäkelä, Rovamo,
& Latham, 1992; Whitaker, Rovamo, Macveigh &
Mäkelä, 1992). The purpose of the model is to indicate
what functional processing stages are relevant to phase-
and frequency sensitivity, and to constrain their quali-
tative features, rather than to provide an exact fit to
our data.

To begin to analyze how the components of the
model shape its predictions, we assume that the combi-
nation process NC is strictly multiplicative. (Below we
will see that other choices for NC do not substantially
influence the model’s key predictions). In all of our
experiments, the input signals SA(t) and SB(t) share a
common period, so therefore the two signals YA(t) and
YB(t) that arrive at NC are also periodic with this
period. We denote the common period by P, and their
common fundamental frequency by f0=1/P. We can
compute the cross-correlation of YA(t) and YB(t) (i.e.
the average value of their product) in the frequency
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Fig. 9. Cross-subject averages of vernier thresholds as a function of temporal frequency and relative phase. Prior to averaging, thresholds for each
subject are normalized by the threshold measured at a relative phase of 0. Each data point represents an average of seven subjects. Error bars
represent 92 S.E.M. as calculated across subjects. Other details as in Fig. 8.

domain as well as in the time domain. Because sinu-
soids at distinct harmonics of the inputs are orthogo-
nal, the only nonzero contributions result from the
products of the Fourier coefficients of YA(t) and YB(t)
at corresponding frequencies. That is,

�Z(t)�= %
�

n= −�
Y0 A(nf0) Y0 B(−nf0), (1)

where Y0 A(nf0) and Y0 B(nf0) are the Fourier coefficients
of YA(t) and YB(t) at the nth harmonic of the funda-
mental frequency f0:

Y0 A( f)=
1
P
& P

0

YA(t)exp(−2ipft)dt, (2)

and similarly for Y0 B( f ).
Since distinct harmonics of YA(t) and YB(t) do not

interact, it is helpful to focus on the special case in
which each of these signals is a sinusoid at the kth
harmonic of the stimulus (i.e. at the frequency kf0, for
k"0). We require equal amplitudes but allow for sepa-
rate phase shifts, so that YA(t)=Y cos[2pkf0t+
fA(kf0)], and YB(t)=Y cos[2pkf0t+fB(kf0)]. For this
choice of YA(t), Y0 A(nf0) is nonzero only for n=9k ; at
these values, Eq. (2) shows that Y0 A(kf0)=
1
2Y exp[ifA(kf0)], Y0 A(−kf0)=

1
2Y exp[−ifA(kf0)]. Simi-

lar equations hold for Y0 B(nf0). It follows from Eq. (1)
that

�Z(t)�=
1
2

Y2 cos[fA(kf0)−fB(kf0)]. (3)

This quantity is maximal when the phase shifts fA(kf0)
and fB(kf0) are equal and minimal when they differ by
half a cycle.

The decomposition of Eq. (1) is particularly useful in
analyzing model behavior under conditions in which
the signals SA(t) and SB(t) that modulate the bars are

sinusoidal (of frequency f0=1/P), of equal amplitude
S, and with phases given by fA and fB—as in Experi-
ments 1, 2, and 3. Since each LS is a linear filter, the
outputs of LS, WA(t) and WB(t), must be sinusoidal,
and their phase difference Df must equal the phase
difference of SA(t) and SB(t), namely fA−fB.

4.3. The shape of the nonlinearity

The qualitative features of the responses to sinu-
soidally modulated bars allow us to constrain the possi-
bilities for the nonlinearity NS, the next component of
the model. We consider three cases: (i) NS is trivial (i.e.

Fig. 10. A spatiotemporal diagram of the visual stimuli used in the
apparent motion experiment (Experiment 4). Each frame represents a
snapshot of the stimulus at quarter-cycle intervals. Bars were modu-
lated sinusoidally in time. In the ‘no apparent motion’ condition, the
flanking bars were modulated synchronously, with a temporal phase
that lagged the central bar (in this example, by 0.25 cycle). In the
‘apparent motion’ condition, the temporal phase shift between the
flanking bars and the central bars was identical, except that one of
the flanking bars (the one on the right) led the central bar in phase,
while the other flanking bar lagged the central bar in phase.
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Fig. 11. Cross-subject averages of vernier thresholds as a function of temporal frequency (panel), relative phase, and the presence or absence of
apparent motion (open circles: phase shifts not consistent with apparent motion; filled symbols: staggered phases, consistent with apparent
motion). Contrast was set to 8× detection threshold at each temporal frequency. Each data point represents an average of five subjects. Error
bars represent 92 S.E.M. as calculated across subjects, as in Fig. 3.

it can be removed from the model); (ii) NS has the
‘scaling property’ (i.e. multiplying its input by a con-
stant positive factor results in multiplying its output by
the same factor); and (iii) NS is a nonlinearity that
robustly violates the scaling property. We will show
that the results of Experiment 1 are inconsistent with
alternatives (i) and (iii), but not (ii).

If the nonlinearity NS is removed from the model,
then the signals XA(t) and XB(t) at its output must also
be equal-amplitude sinusoids at the input frequency f0,
and have a phase difference Df( f0)=fA( f0)−fB( f0).
Since L1 and L2 are also linear filters, the signals YA(t)
and YB(t) presented to the cross-correlator NC also
must have these characteristics. The amplitudes Y of
these sinusoids are determined by the amplitude S of
the input, and the characteristics of the filters LS, L1,
and L2:

Y=S �L0 S( f0)��L0 1( f0)��L0 2( f0)�, (4)

where L0 S( f0), L0 1( f0), and L0 2( f0) are the transfer func-
tions of these filters at the input frequency f0. This
equation for the amplitudes of the inputs to the cross-
correlator, along with Eq. (3), determines the average
output of the model �Z(t)�, assumed to govern the
sensitivity to vernier displacement:

�Z(t)�=
1
2

S2�L0 S( f0)�2�L0 1( f0)�2�L0 2( f0)�2 cos [Df( f0)].

(5)

Eq. (5) makes a straightforward prediction: phase-
dependence of �Z(t)� is determined by the product of
frequency-dependent components of the model and the
stimulus amplitude S. That is, as the input temporal
frequency f0 is varied, it should be possible to neutralize
any change in phase-dependence (due to effects of the
linear filters) by a change in stimulus amplitude S that
keeps the product S �L0 S( f0)L0 1( f0)L0 2( f0)� constant. But
this is precisely the opposite of what we find: at low
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temporal frequencies, there is a marked phase-
sensitivity (Figs. 4 and 5), while at high temporal
frequencies there is none, and this holds over a wide
range of stimulus amplitudes (Figs. 2 and 3).

Eq. (5) states that for a fixed phase offset, �Z(t)�
increases quadratically with stimulus amplitude S, but
there is no comparable change in displacement
threshold experimentally (Figs. 2 and 3). There are at
least two reasonable explanations for this discrepancy.
(i) Sensitivity may be a highly saturating function of
�Z(t)�. (ii) Contrast normalization (Heeger, 1992) may
intervene at one or more points in the proposed model.
However, neither of these possibilities can account for
the shift from phase-sensitivity at low frequencies to
phase-insensitivity at high frequencies. Thus, we are
forced to consider more elaborate models, in which
there is a nonlinearity NS preceding the cross-correla-
tion stage (cases (ii) and (iii) above).

In case (ii), the nonlinearity NS is assumed to have
the ‘scaling’ property: multiplying its input by a con-
stant positive factor results in multiplication of the
output by the same constant factor. Such nonlinearities
are described by X(t)=NS(W(t)), where W(t) indicates

Fig. 13. Vernier thresholds as a function of temporal frequency
(panel). sawtooth profile configuration (abscissae), and relative phase
of the transient (open symbols: in phase; filled symbols: antiphase).
The temporal waveforms are diagrammed in Fig. 12. Contrast was set
to 16× detection threshold, determined separately for each fre-
quency and averaged across sawtooth polarity. Other details as in
Fig. 2. Subject CM.

Fig. 12. The temporal modulation signals used in Experiment 5. All
waveforms have a mean equal to zero (the background luminance).
‘UU’ denotes a stimulus configuration in which the waveforms for the
two bars both had up-transients. ‘DD’ denotes a stimulus configura-
tion in which the waveforms for the two bars both had down-tran-
sients. ‘UD’ denotes a stimulus configuration in which one waveform
had an up-transient and the other had a down-transient. For each of
these three possibilities, waveforms were presented either with syn-
chronous transients (‘in phase’) or transients separated by, half a
cycle (‘antiphase’).

the nonlinearity’s input at time t, X(t) indicates its
output and NS(w) has the form

NS(w)=gposw, w]0; NS(w)=gnegw, w50. (6)

We can assume that gpos=1, by absorbing any overall
multiplicative factor into the preceding linear filter.
Examples of such nonlinearities include the half-wave
rectifier (gpos=1, gneg=0) and the full-wave rectifier
(gpos=1, gneg= −1). This class does not include non-
linearities with a threshold set above zero, since they
produce no output for small inputs, but a nonzero
output for large inputs. Nonlinearities that satisfy the
scaling property can distort a sinusoidal input into a
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non-sinusoidal output but the shape of the distorted
waveform will be independent of the amplitude of the
input. This distortion can be summarized by the
Fourier decomposition of its response to a sinusoid
(Bedrosian & Rice, 1971). For an input signal W(t)=
W cos[2pf0t+f( f0)], the nonlinearity’s output is given
by

X(t)=W %
�

n=0

cn cos [2pnf0t+nf( f0)], (7)

where the coefficients cn depend only on gneg.
Eq. (7) indicates that the signals XA(t) and XB(t) at

the nonlinearity’s output contain sinusoidal compo-
nents not just at the input frequency (corresponding to
n=91 in Eq. (7)), but also a DC component (corre-

Fig. 15. A model framework for the analysis of the dynamics of
vernier acuity, consisting of a stage of independent processing (LS,
NS, and L1) followed by a stage of joint processing (L2 and NC). SA(t)
and SB(t) are the contrasts of the two bars. They are processed
separately by identical linear filters LS, and the resulting signals
[WA(t) and WB(t)] are the inputs to a static nonlinearity NS. The
outputs XA(t) and XB(t) of the separate nonlinear stages NS are
linearly filtered by L1 (within the stage of independent processing)
and then L2 (within the stage of joint processing), to form signals
YA(t) and YB(t). These signals are merged by a final nonlinearity NC,
akin to a cross-correlator. Sensitivity to displacement is assumed to
be monotonically related to the time-average output of NC, denoted
�Z(t)�.

Fig. 14. Cross-subject averages of vernier thresholds as a function of
temporal frequency, sawtooth profile configuration, and relative
phase of the transient. Each data point represents an average of seven
subjects. Error bars represent 92 S.E.M. as calculated across sub-
jects. as in Fig. 3. Other details as in Fig. 13.

sponding to n=0 in Eq. (7)) as well as components at
higher harmonics (corresponding to n=92, 93, …).
The sizes of these components are determined by the
coefficients cn. Since the nonlinearity acts pointwise in
time (Eq. (6)), the sizes of these components are inde-
pendent of the fundamental frequency f0. The other
important feature of the coefficients cn for our analysis
is that they decline rapidly as a function of n. For the
nonlinearity of Eq. (6) the values of cn (obtained by
Fourier transformation of Ns(cos(2pf0t)) with respect to
the period P=1/f0 are:

c0=
gpos−gneg

p
; c1=

gpos+gneg

2
;

cn=2
gpos−gneg

p

(−1)n/2−1

n2−1
(n\0, even);

cn=0, otherwise. (8)

Note that c2 and c0 are comparable (c2/c0$0.67), but
�c4/c0� $0.13 and �c6/c0� $0.06.

According to the decomposition of Eq. (1), each
harmonic nf0 in YA(t) and YB(t) contributes indepen-
dently to �Z(t)�, where the contribution of each har-
monic is determined by Eq. (3). The signals YA(t) and
YB(t) are derived from XA(t) and XB(t) by the succes-
sive action of the linear filters L1 and L2. Thus, the
amplitudes of their Fourier components at the fre-
quency nf0 are equal to the amplitudes of the corre-
sponding Fourier components of XA(t) and XB(t),
multiplied by �L0 1(nf0)��L0 2(nf0)�. According to Eq. (7), the
Fourier components in XA(t) and XB(t) at the fre-
quency nf0 have an amplitude cnS �L0 S( f0)�. Finally, the
phase shift associated with the nth harmonic is n times
the phase shift associated with the fundamental, i.e.
Df(nf0)=nDf( f0). Thus, for a model that includes a
sealing nonlinearity at NS, �Z(t)� is given by:
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�Z(t)�=S2�L0 s( f0)�2 !c0
2 �L0 1(0)�2�L0 2(0)�2

+
1
2

%
�

n=1

cn
2�L0 1(nf0)�2�L0 2(nf0)�2 cos[nDf( f0)]

"
.

(9)

As in the discussion of Eq. (5), we focus on the
phase-dependence of Eq. (9), rather than its overall
size as a function of stimulus amplitude S or fre-
quency f0. The first term in this expression is indepen-
dent of phase. The second term (the sum over the nth
harmonics) contains all of the phase-dependence, and
shows that this phase-dependence interacts with the
characteristics of L1 and L2. We focus on the in
phase (Df( f0)=0) and antiphase (Df( f0)=p) condi-
tions. Restricted to these two phases, the even-har-
monic summands have identical values. Furthermore
for nonlinearities of the form (6), the only nonzero
odd-harmonic coefficient cn is c1, since the non-
linearity of Eq. (6) is a sum of a linear component
1
2(gpos+gneg)W(t) and an even-symmetric component
1
2(gpos−gneg)�W(t)�. We express the phase-dependence
component of Zmean=�Z(t)� as a kind of Michelson
contrast, with Zmean( f0, 0) denoting its in phase value
and Zmean( f0, p) denoting its antiphase value:

Zmean( f0, 0)−Zmean( f0, p)
Zmean( f0, 0)+Zmean( f0, p)

=

1
2

c1
2�L0 1( f0)�2�L0 2( f0)�2

c0
2�L0 1(0)�2�L0 2(0)�2+1

2
%

n=2, 4, 6,…

cn
2�L0 1(nf0)�2�L0 2(nf0)�2

.

(10)

As Eq. (8) shows, the size of the coefficients cn

declines rapidly for n]4. If only c0 and c1 were
nonzero, then Eq. (10) would indicate that phase sen-
sitivity at the frequency f0 is determined by the trans-
fer functions of L1 and L2 at this frequency. To
account for our findings, this would imply that the
combined behavior of these filters is bandpass, i.e.
that the product �L0 1( f0)��L0 2( f0)� has a maximum near
2 Hz, and sharply declines above 8 Hz. Because of
this decline, even though higher even-order coeffi-
cients c2, c4,… for nonlinearities of the form (6) are
nonzero, they will have little influence on the qualita-
tive behavior of Eq. (10), since the contribution of cn

to the denominator of Eq. (10) is multiplied by terms
like �L0 1(nf0)�2�L0 2(nf0)�2. Thus, we conclude that a band-
pass characteristic for the combined transfer functions
L1 and L2, along with a nonlinearity of the form (6),
can account for a phase sensitivity that has the ob-
served frequency- and contrast-dependence. The fre-
quency-dependence of phase sensitivity is
approximately given by the product �L0 1( f0)��L0 2( f0)�.
The main correction to this approximation is due to

the denominator term c2
2�L0 1(2f0)�2�L0 2(2f0)�2, whose net

effect is to blunt phase sensitivity at sufficiently low
frequencies f0(54 Hz). Note however that the rectifi-
cation at NS must be only partial. If NS were a full-
wave rectifier, the decomposition of the output signal
X(t) in Eq. (7) would contain only even-harmonic
terms. Thus, for a full-wave rectifier, c1=0, and Eq.
(10) would predict that the in phase and antiphase
conditions would not differ in displacement
threshold—contrary to our findings.

This analysis readily extends to case (iii): nonlinear-
ities NS whose input-output relationship does not
have the scaling property. For such nonlinearities, the
relative sizes of the coefficients c0, c1,… in Eq. (7)
depend on the input amplitude W, and hence, are
contrast-dependent. This contrast-dependence would
carry through to Eq. (10), and thus, predict that (at
any given frequency) the phase-sensitivity is contrast-
dependent. No such dependence is observed experi-
mentally (Fig. 3), so we conclude that a functional
model of the dynamics of the vernier signal need not
consider nonlinearities that substantially violate the
scaling property.

4.4. Predictions for quadrature phase

We next extend the analysis of Eq. (9) to the
quadrature phase condition to derive additional as-
pects of the qualitative behavior of the model. The
terms in Eq. (9) for n=2, 6, 10,… contribute to the
difference in responses between the quadrature condi-
tion and the in phase condition, but not to the differ-
ence in responses to the in phase and antiphase
conditions, since cos (Df( f0))= −1 for the quadra-
ture condition (Df( f0)=p/2), but 1 for either the in
phase (Df( f0)=0) or antiphase (Df( f0)=p) condi-
tions. We use Eq. (9) to calculate and compare re-
sponses in these three conditions:

Zmean( f0, 0)−Zmean( f0, p/2)

=S2�L0 S( f0)�2 !1
2

c1
2 �L0 1( f0)�2�L0 2( f0)�2

+ %
n=2, 6, 10, …

cn
2 �L0 1(nf0)�2�L0 2(nf0)�2", (11)

and

Zmean( f0, p/2)−Zmean( f0, p)

=S2�L0 S( f0)�2 !1
2

c1
2 �L0 1( f0)�2�L0 2( f0)�2

− %
n=2, 6, 10, …

cn
2 �L0 1(nf0)�2�L0 2(nf0)�2". (12)
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As shown from the values for cn provided by Eq. (8),
the terms for n=6, 10… in Eqs. (11) and (12) can be
neglected. Thus, were it not for the contribution of
c2

2�L0 1(2f0)�2�L0 2(2f0)�2, the values of �Z(t)� would be
equally-spaced for the in phase, quadrature, and an-
tiphase conditions. At low frequencies (2f0 below the
cutoff frequency of the combined transfer functions of
L1 and L2), this term diminishes the difference between
the quadrature phase and antiphase conditions but
enhances the difference between the quadrature phase
and in phase conditions, consistent with findings in
Experiment 3 (Figs. 8B and 9B). If the c2-term domi-
nates the c1-term in Eqs. (11) and (12), then displace-
ment threshold will be higher for quadrature phase
than for the antiphase condition. This was not observed
experimentally, and, as we will see below, constrains the
shape of the nonlinearity NS.

4.5. Numerical simulations

We now consider a series of numerical simulations of
the model of Fig. 15 for a scaling nonlinearity NS. In
these simulations, we focus on matters that could not
be settled analytically: the effects of different shapes for
the nonlinearity NS; and different kinds of interaction
stages NC. All simulations use the same initial filter LS,
L1, and L2. As argued above, LS is irrelevant since it
can only produce an overall change in amplitude, and
the phase effects are approximately independent of
amplitude. The serial combination L1 and L2 are not
modelled separately, but rather combined into a single
filter LC whose frequency-dependence is a simple func-
tional form chosen to be a good match for the observed
frequency-dependence of phase sensitivity (Figs. 2 and
3), via Eq. (10). Transfer functions of LS and LC share
the functional form of a bandpass filter,

L0 ( f)=
: 1

1+
if

ma

;m :
1−

h

1+
if
b

;
(13)

with the following parameters: mS=8, aS=4 s−1,
hS=0.75, bS=2 s−1; mC=2, aC=1.5 s−1, hC=0.75,
bC=2.5 s−1. These transfer functions are graphed in
Fig. 16.

The model’s output Zmean( f0, Df)=�Z(t)� postu-
lated to be monotonically related to psychophysical
sensitivity, can be zero or negative for particular
choices of frequency f0, relative input phase Df, NS,
and NC. However, psychophysical thresholds exist for
all relative phases, and remain reasonably small. In
other words, even though there may be no temporal
correlation between the modulation profiles of the stim-
ulus components, it is still possible to judge displace-
ment. Thus, there must be some contribution to vernier
sensitivity due to mechanisms entirely different in orga-
nization from the model of Fig. 15—e.g. positional
encoding of extracted features (Burbeck, 1987; Levi &
Waugh, 1996). The contribution of this mechanism is
denoted Zext, which is independent both of flicker fre-
quency f0 and relative phase Df. For simplicity, we
assume that these mechanisms are independent, and
their contributions add. Thus, to convert Zmean( f0, Df)
into a psychophysical threshold P( f0, Df), we trans-
form it by

P( f0, Df)=
1

Zext+
Zmean( f0, Df)
Zmean( f0, 0)

(14)

The normalization by Zmean( f0, 0), which is the maxi-
mum value attainable by Zmean( f0, Df), can be consid-
ered as a kind of contrast normalization (Heeger, 1992),
since it is the size of a signal generated by a pathway

Fig. 16. Panel A: Model transfer function L0 S( f ) for the linear filter LS of the separate-processing stage. Panel B: Model transfer function
L0 C( f )=L0 1( f )L0 2( f ) for the combined effects of linear filters L1 of the separate-processing stage and L2 of the combination stage. These transfer
functions share the functional form of Eq. (13), with parameters as given in the text.
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Fig. 17. The dependence of the antiphase/in-phase displacement threshold ratio P( f0, p)/P( f0, 0) (solid symbols) and the quadrature phase/in-
phase sensitivity threshold ratio P( f0, p/2)/P( f0, 0) (open symbols) for models based on the framework of Fig. 15. Transfer functions L0 S( f ) and
L0 C( f )=L0 1( f )L0 2( f ) are shown in Fig. 16. Columns (from left) correspond to choices for the nonlinearity NS: gneg=0.5, gneg=0, and gneg= −0.5
in Eq. (6). Rows (from top) correspond to choices for the combination stage NC: multiplication, multiplication followed by threshold. same-sign
multiplication, and addition followed by threshold. Values for Zext in Eq. (14): row 1: 2, 1, 0.3; row 2: 0.5, 0.5, 0.3; row 3: 0.5, 0.5, 0.1; row 4:
0.5, 0.5, 0.05. For further details, see text.

such as Fig. 15 that receives both inputs from the same
bar. In the simulations below, as we varied choices of NS

and NC, we chose values of Zext so that the overall range
of variation of P( f0, Df) was about threefold, similar to
what we observed. Note that changing the normaliza-
tion of Zmean( f0, Df). the value of Zext, or the manner
in which the contribution of Zext and Zmean( f0, Df)
combine (e.g. including probability summation), would
not change the overall dependence of P( f0, Df) on its
arguments.

The three columns of Fig. 17 correspond to three
choices for the nonlinearity NS. The middle column is a
half-wave rectifier (gneg=0 in Eq. (6)); the left and right
columns correspond to partial rectification (gneg=0.5)
and asymmetric full-wave rectification (gneg= −0.5).
These choices sample the range between the extremes

that we had excluded above: linearity (gneg=1), which
predicted no phase-dependence; and full-wave rectifica-
tion (gneg= −1), which predicted that the antiphase
and in phase conditions have identical thresholds.

The four rows of Fig. 17 correspond to four choices
for the combination stage NC. The first row is straight-
forward multiplication: Z(t)=YA(t)YB(t). This corre-
sponds to the combination stage we have considered in
the above analytical treatment. Model responses with
half-wave rectification (gneg=0, middle graph, first
row) are a reasonable match to experimental results for
the comparison of antiphase and in phase thresholds
(Figs. 3 and 4), and the quadrature phase thresholds are
about midway between the antiphase and in phase
thresholds. For partial rectification (gneg=0.5, left
graph, first row), the predicted frequency-dependence
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of the antiphase response is much more gentle than we
found experimentally. The blunting of the frequency-
dependence for a less severe nonlinearity at NS is antic-
ipated from our analysis of case (i) above, in which we
showed that when the nonlinearity at NS is removed,
frequency-dependence is eliminated. Partial rectification
is not ruled out altogether, because the resulting blunt-
ing of frequency-dependence can be overcome by
sharpening the filter LC (e.g. by taking mC=8 in Eq.
(13)). For a nonlinearity NS that approaches full-wave
rectification (gneg= −0.5, right graph, first row), sharp
frequency-dependence is recovered. However, full-wave
rectification is inconsistent with the data of Experiment
3 (Figs. 8 and 9), because it predicts that at sufficiently
low temporal frequencies, thresholds in the quadrature
phase condition are higher than in the antiphase condi-
tion. In order for sensitivity to be a monotonic function
of phase, as we observed in Experiment 3, gneg must be
non-negative. This is because model simulations with
negative values of gneg as close to zero as −0.1 (not
shown) would lead to a noticeable decline in phase-
dependence between Df=3p/4 (0.375 cycles) and
Df=p (antiphase).

The other rows of Fig. 17 correspond to other kinds
of interaction. These interaction forms are arguably
more physiologically reasonable in that they recognize
the existence of thresholds, but are more difficult to treat
analytically. The second row postulates a combination
stage in which the inputs are multiplied but then sub-
jected to a threshold at 0, to ensure that the combination
signal is not negative: Z(t)=max{0, YA(t)YB(t)}. The
third row is a modified multiplication stage, in which
the inputs only interact when tines are of like sign:
Z(t)=max{0, YA(t)} max{0, YB(t)}+max{0, −YA(t)}
max{0, −YA(t)}. The fourth row is summation fol-
lowed by a threshold, Z(t)=max{0, −YA(t)+YB(t)−
h}, where the threshold h is chosen to be a fixed multiple
(0.2) of the root-mean-squared value of the inputs to NC.
While there are some differences in the details of the
predictions (e.g. quadrature phase and antiphase re-
sponses at low frequencies are more similar when a
threshold is added to the combination stage, as in row
2), the overall features seen with a strict product interac-
tion (row 1) are preserved. There are only very minor
differences between crosscorrelation via multiplication
(row 1) and crosscorrelation via addition and threshold
(row 4), and these can readily be overshadowed by
changes in LC. Thus, we conclude that the results of the
studies with sinusoidal stimulation are consistent with
the model of Fig. 15, provided that the combined effects
of L1 and L2 are bandpass (as in Fig. 16), and the
nonlinearity NC is partial or half-wave rectification. The
predictions for responses to sinusoidal inputs are inde-
pendent of LS, and largely independent of NC.

4.6. Implications of the sawtooth experiments

The motivation for the experiment based on saw-
tooth waveforms (Experiment 5) was a qualitative one:
since waveforms with rising and falling transients pref-
erentially stimulate ON- and OFF-pathways respec-
tively (Krauskopf, 1980), they provided a means to
determine whether the loss of sensitivity to antiphase
stimuli was due to processing of the light and dark
phases along non-interacting pathways. Additionally,
Bowen, Pokorny, and Smith (1989) showed differential
sensitivity to detection of a flickering spot modulated
by these waveforms (lower thresholds for off-tran-
sients), and differential effects of mean illuminance
(Bowen, Pokorny, Smith, & Fowler, 1992), providing
additional evidence that these stimuli drive ON- and
OFF-pathways selectively to at least some extent. Since
we found (Figs. 13 and 14) that thresholds for opposite-
polarity sawtooth stimuli were lower than thresholds
for same-polarity sawtooth stimuli when transients
were out of phase, we concluded that stimulus dynam-
ics, not the ON–OFF distinction, played the major
role.

Fig. 18 shows model predictions for this experiment,
with the same choices for the rectification NS and the
interaction stage NC that were used in Fig. 17. A
frequency of 1 Hz was used for these simulations, but
similar results were obtained at 2 and 4 Hz. At 8 Hz
and above, the effect of phase and sawtooth polarity
was markedly blunted, consistent with the findings of
Fig. 17. The reversal of the phase effect for opposite-
polarity stimuli is seen for partial rectification (gneg=
0.5, left column of Fig. 18) and for halfwave
rectification (gneg=0, middle column of Fig. 18), but
not for a nonlinearity that approaches full-wave rectifi-
cation (gneg= −0.5, right column of Fig. 18). This (and
further simulations with intermediate values of gneg)
provides additional evidence against nonlinearities that
are non-monotonic, independent of the nature of the
combination stage NC.

Models with partial- and half-wave rectification are
also consistent with the experimental finding (Figs. 13
and 14) that polarity effects are less marked in the
antiphase condition than in the in phase condition.
Another qualitative feature of the experimental results
is that the antiphase thresholds for like-polarity saw-
tooth stimuli are slightly higher than the in phase
thresholds for any sawtooth polarity. This is inconsis-
tent with partial rectification and most kinds of interac-
tion stages (left column of Fig. 18), and thus argues
somewhat in favor of half-wave rectification at NS.

Note that for some of the combinations of NS and
NC in Fig. 18 (particularly addition followed by
threshold, bottom row), there is a difference in the
predicted thresholds for stimuli in which both compo-
nents are modulated by antiphase UU and DD saw-



J.D. Victor, M.M. Conte / Vision Research 39 (1999) 3351–3371J.D. Victor, M.M. Conte / Vision Research 39 (1999) 3351–33713368

tooth conditions. This difference is a consequence of
the asymmetry of the rectification at NS. Although this
difference was not observed experimentally, it is not
necessarily a reason to discard these candidate models
entirely. Even with these choices of NS and NC, our
data could be explained by a pair of the computational
units shown in Fig. 15, one of which contains a nonlin-
earity NS with an input-output relationship as described
by Eq. (6), and one of which contains a nonlinearity
that is reversed in polarity:

NS(w)= −gposw, w50; NS(w)= −gnegw, w]0.
(15)

Inclusion of a second pathway of this sort would
symmetrize the simulated antiphase responses shown in
Fig. 18 and have no effect on the simulated responses
shown in Fig. 17.

The sawtooth experiments help to refine the model in
another way. The Fourier decomposition of the up- and
down-transient sawtooth waveforms have identical am-
plitudes, but differ in the relative phase of their odd
and even harmonics. Thus, in order for the responses to
sawtooth waveforms to differ substantially from the
responses to sinusoids, components at both the funda-
mental frequency f0 and the second-harmonic frequency
2f0 must pass through the initial filter LS. Otherwise,
inversion of the polarity of a sawtooth waveform would
have the same effect as a phase shift of half a cycle. As
seen in Figs. 13 and 14, these manipulations have
different effects, at frequencies up to 4 Hz. Pilot exper-
iments showed that there is no difference at 8 Hz. Thus,
we conclude that the linear filter LS must pass frequen-
cies at least as high as 8 Hz, but attenuate at 16 Hz or
beyond, as illustrated in Fig. 16.

Fig. 18. Predictions of displacement thresholds for sawtooth experiments at 1 Hz, for models based on the framework of Fig. 15. Open symbols:
in phase condition. Filled symbols: antiphase condition. Choices for the nonlinearity NS (columns), the interaction stage NC (rows), transfer
functions L0 S( f ) and L0 C( f )=L0 1( f )L0 2( f ), and Zext as in Fig. 17.
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4.7. Relation to pre6ious psychophysical studies

Our analysis has allowed us to distinguish between
whether the effects of contrast polarity simply repre-
sents the low-frequency limit of asynchronous inputs,
or rather reflects separate processing along ON and
OFF (Zemon, Gordon, & Welch, 1988; Schiller, 1992)
pathways. Transient-stimulus analysis (Wehrhahn &
Westheimer, 1993; Beard & Levi, 1997) showed that
impairment in performance for asynchronous stimuli
was not due to ON versus OFF antagonism, but these
studies did not address the possible role of separate ON
and OFF signals in the degradation in performance
seen when stimuli are presented synchronously, but
with opposite polarity. Our work indicates that the
degradation in performance under those conditions is
not due to separate ON and OFF pathways per se, but
to differences in dynamics—the opposite-polarity effect
can be reversed by manipulation of stimulus wave-
forms, as shown in Experiment 5.

Our data are in accord with the view that stimulus
components of opposite polarity are jointly processed
(Cavanagh, Brussell, & Stober, 1981). However, for
stimuli which are spatially complex or changing in time,
‘light’ and ‘dark’ are not synonymous with signals
along the ON and OFF pathways, respectively. Our
approach, based on sawtooth waveforms to distinguish
between the ON versus OFF dichotomy and temporal
asynchrony, clearly shows that stimuli with prominent
ON and OFF transients can be combined in a precise
hyperacuity judgment, provided that their phases are
adjusted so that their temporal correlation is high.

Our proposed model (Fig. 15) of the dynamics in-
volved in the interaction between stimulus components
is fundamentally a local filter model, in which we are
able to define the nature of nonlinear elements, and
their relationship to temporal filtering processes. This
model can be thought of as a grafting of specific
dynamics and nonlinearities onto the spatial structure
of a ‘collector mechanism’ (Klein & Levi, 1985;
Burbeck, 1987; Morgan et al., 1990; Levi & Waugh,
1996).

This model can also be viewed as an extension of our
model for local form processing developed from studies
of discrimination of isodipole textures (Victor & Conte,
1989, 1991) We showed that a two-stage model, consist-
ing of local subunits followed by a second cooperative
nonlinearity was critical to provide selectivity for ex-
tended edges. The local subunit nonlinearity of the
form-processing model corresponds to LS, NS and L1 of
Fig. 15, while the second nonlinearity (cooperative
pooling) corresponds to L2 and NC In the analysis of
form processing, we modeled the cooperative nonlinear-
ity as summation followed by a threshold with a set-
point higher than any single input would typically
provide. As shown in the last row of Fig. 18, this kind
of process could serve equally well as a cross-correlator.

4.8. Relationship to physiological studies

Although cortical mechanisms are doubtless involved
in the extraction of displacement (Levi, Manny, Klein,
& Steinman, 1983), the spatial information needed for
these calculations is already present in the retinal out-
put (Shapley & Victor, 1986; Lee, Wehrhahn, West-
heimer, & Kremers, 1993). Spatial sampling and
contrast sensitivity are equally important in signaling
small displacements. Thus, even though the parvocellu-
lar neurons provide a denser sampling of space, the
magnocellular neurons’ higher contrast sensitivity
(Shapley & Perry, 1986) makes this population the
likely candidate to carry the spatial signals required for
vernier acuity (Wachtler, Wehrhahn, & Lee, 1996), at
least at low contrast. We have shown that early rectifi-
cation is required to account for the frequency- and
phase-dependence of vernier judgment. This observa-
tion, along with the fact that a significant number of
magnocellular ganglion cells (Kaplan & Shapley, 1982)
share the Y cell’s physiologic signature of rectifying
subunits (Enroth-Cugell & Robson, 1966; Hochstein, &
Shapley, 1976), leads us to speculate that rectification
within the ganglion cell’s receptive field contributes to
NS of our proposed model.

Since detection of vernier displacements can be
viewed as an orientation task (Wilson, 1986; Carney,
Silverstein, & Klein, 1995), it is natural to attempt to
account for psychophysical thresholds for matched-po-
larity and opposite-polarity vernier stimuli on the basis
of orientation tuning curves of cortical neurons for
uniform bars and ‘compound’ bars (Swindale, 1995),
composed of two segments of opposite polarity. For
simple cells (Swindale, 1995), these stimuli led to
equally sharp tuning curves, but the orientation prefer-
ence peaks for compound bars differed substantially
from the orientation preference for uniform bars. The
observation of equally sharp orientation tuning curves
for compound bars would appear to be at odds with the
notion that simple cells could account for the psycho-
physical finding of reduced sensitivity in the opposite-
polarity condition. However, Swindale argued that
simple cells might still be responsible for vernier align-
ment, and that the increased threshold in the opposite-
polarity configurations might be due to difficulty in
interpreting off-axis signals, rather than in their intrin-
sic size or reliability.

An alternative view is that complex cells, which
(Swindale, 1995) did show a blunted orientation tuning
curve for compound bars, play a key role in judgments
of alignment. This is more in keeping with our model-
ing results, which require two stages of nonlinearity.
Quantitative study of complex cell receptive fields
(Movshon, Thompson, & Tolhurst, 1978; Spitzer &
Hochstein, 1985) clearly indicate the presence of nonlin-
ear subunits, which may contribute to both NS and NC.
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Moreover, our analysis of texture responses in cortical
neurons (Purpura, Victor, & Katz, 1994) indicates the
computational equivalent of two nonlinear stages, par-
ticularly in complex cells. The presence of these two
stages would allow complex cells to have the same
orientation preference for compound bars as for uni-
form bars, but would also lead to a reduced sensitivity
to compound bars as compared with their sensitivity to
uniform bars.
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