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Abstract

Visual textures are a class of stimuli with properties that make them well
suited for addressing general questions about visual function at the levels of
behavior and neural mechanism. They have structure across multiple spatial
scales, they put the focus on the inferential nature of visual processing, and
they help bridge the gap between stimuli that are analytically convenient and
the complex, naturalistic stimuli that have the greatest biological relevance.
Key questions that are well suited for analysis via visual textures include
the nature and structure of perceptual spaces, modulation of early visual
processing by task, and the transformation of sensory stimuli into patterns
of population activity that are relevant to perception.
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Isotripole (isotrigon)
textures: a pair of
textures for which all
first-, second-, and
third-order statistics
are identical

INTRODUCTION

Visual texture is a pervasive aspect of what we see: It is the visual consequence of the fact that
objects and surfaces are made out of distinctive materials. Indeed, images of the real world can be
thought of as having two complementary components: objects and “stuff ”—wood, skin, fabric, etc.
(Adelson 2001). Just as information about objects is primarily conveyed by their shape, information
about “stuff ” is primarily conveyed by visual texture (Adelson 2001, Motoyoshi et al. 2007). This
partition, though, is far from absolute: Visual texture also conveys information about shape; for
example, discontinuities indicate object boundaries (Schmid & Victor 2014), and distortions of
textures indicate three-dimensional (3D) slant (Li & Zaidi 2000, 2004) and curvature (Todd et al.
1997, 2004).

Independent of these varied and critical roles of visual texture in scene analysis, the domain
of visual textures is an important system for the experimental study of visual processing and
sensory coding in general. This is especially the case when the term visual texture is expanded,
as it commonly is, to include artificial images that have texture-like qualities. Figure 1 serves to
provide a glimpse of the variety of images that are included in this broadened meaning: artificial
textures in Figure 1a–p,r,t and natural textures in Figure 1q,s. We discuss these examples in
more detail below.

We take the viewpoint of textures as probes of vision not only for historical and conceptual
reasons but also in the hope that it will entice vision scientists to make greater use of this domain.
We focus on the questions one can ask and the kinds of answers one can expect to obtain. In
particular, we examine how textures may be used to gain insight into the general computations
carried out in early vision and how they are modulated by top-down influences. We first consider
psychophysical approaches and then turn to neurophysiological investigations. In broad strokes,
the former address the algorithmic level and the latter the implementation level (Marr 1982)—and
both highlight the many ways that textures are valuable tools for the study of vision.

There are several related reasons why visual textures are effective probes for analyzing the
psychophysics and neurophysiology of visual processing. Perhaps the most fundamental reason
is that the ability to test models depends on the diversity of stimuli used to probe them. By
combining elements of structure and randomness, textures fill an analytical gap in the stimulus
sets we have to study visual processing. On the one hand, elementary stimuli, such as gratings,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
The diversity of visual textures. (a) Micropattern texture constructed according to the algorithm of Julesz
(1962), figure 9. (b) Micropattern texture of Julesz et al. (1973). (c,d ) First- and second-order Markov
textures, constructed according to the algorithms of Julesz (1962), figures 3 and 5. (e,f ) Isotripole textures,
constructed according to the fourth-order Markov algorithm of Julesz et al. (1978), figures 3 and 4.
( g,h) Isodipole micropattern textures constructed according to the algorithms of Caelli & Julesz (1978),
figure 5, and Caelli et al. (1978), figure 7. (i–k) Independent, identically distributed (IID) textures with
polynomial modulators of degrees 1, 2, and 3, constructed according to the method of Chubb et al. (2007),
figure 2. (l ) Line-token micropattern texture, similar to that of Nothdurft & Li (1985) and Wolfson &
Landy (1995). (m) Gabor micropattern texture, constructed by the method of Graham et al. (1993), figure 8.
(n,o) Compound grating textures with a single orientation (n) and eight directions (octotropic plaid),
constructed according to the method of Li & Zaidi (2000), figures 8 and 6. ( p) Isotropic Gaussian noise with
three frequency bands, constructed according to the method of Gurnsey & Fleet (2001), figure 1.
(q–t) Photographic textures (q and s) and matching synthetic textures (r and t) from Portilla & Simoncelli
(2000), figures 4 and 6, reproduced with permission from the publisher. Panels a, b, g, h, and l show a
background texture with a contrasting texture in a square target region on the lower right. Panels c–f, i–k,
and m show contrasting textures in bipartite fields. The remaining panels (n–t) show a single texture
throughout the field.
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and random stimuli, such as white noise, provide mathematically principled ways to analyze early
visual processing. However, both approaches fail beyond the initial cortical stages, because these
stimuli rarely contain the features to which extrastriate neurons are tuned. Natural scenes, on the
other hand, contain such features, but the complex structure of natural stimuli—for example, that
some kinds of features tend to occur together—makes it difficult to identify the computations
that produce neuronal responses. Visual textures provide a path forward: By manipulating the
structured components of a visual texture, one can create stimuli that are enriched to emphasize
a specific set of features.

A second aspect of the utility of textures is that gathering information from textures necessarily
requires rapid integration across space, a key aspect of early visual processing in general. Texture-
based paradigms can be used to probe the extent and specificity of mechanisms that underlie this
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Micropattern:
a small element that is
replicated in random
positions and/or
orientations to create a
visual texture

Order (of an
image statistic): the
number of locations in
an image that must be
simultaneously samp-
led to compute the
value of the image
statistic. For example,
the mean is a first-
order statistic, because
it can be computed
by averaging the lumi-
nance value at single
locations, sampled
independently. Local
contrast is a second-
order statistic, because
it is computed from the
luminance difference
between a pair of near-
by locations. Note that
the meaning of order
in relation to an image
statistic is distinct from
its meaning in descri-
bing motion (and
sometimes form) me-
chanisms. The distinc-
tion is as follows: First-
order motion is based
on second-order statis-
tics, because it is com-
puted from a cross-
correlation between
two points in space-
time (Reichardt 1961).
Second-order motion
(Cavanagh & Mather
1989; Chubb &
Sperling 1988, 1989) is
based on fourth-order
statistics, because it is
computed from corre-
lations between two
contrasts, each of
which is in turn a
second-order
statistic—and there-
fore requires know-
ledge of four points in
an image

integration (Victor & Conte 1989), with the expectation that the characteristics that are identified
apply to spatial vision in general.

Finally, judgments based on textures require statistical inference. This too is an essential part
of visual processing: Determining the scene that generated an image is necessarily an ill-posed
problem, and useful judgments can be made only by combining the incoming visual information
with a set of priors. Because the visual texture paradigm explicitly requires judgments that are
made on the basis of statistics, this crucial aspect of vision remains in the forefront.

HISTORICAL BACKGROUND: PROBING VISUAL MECHANISMS
WITH TEXTURE

The recognition that studies of texture perception can provide insight into general computational
mechanisms underlying vision has its origins in Bela Julesz’s (1962) work from more than 50 years
ago. Julesz not only established this overall context but also produced many insights and techniques
that have stood the test of time. This body of work is well known for two ideas—the notion of
preattentive processing ( Julesz 1981a,b) and the Julesz conjecture ( Julesz 1962, 1973). Each of
these ideas opened up fertile domains of research, which we selectively describe in later sections.
Subsequent studies, including those by Julesz himself, led to substantial revision and refinement
of both ideas, which nevertheless remain preeminent in shaping the field.

Many of Julesz’s studies were based on textures built from micropatterns—in other words,
arrays consisting of repeated placement of a small token, possibly with some jitter or variation in
orientation (Figure 1a,b,g,h). He observed that, often, a texture patch built from one micropat-
tern could be readily segmented from a background texture built from a different micropattern
but only if these micropatterns differed along specific dimensions, as in Figure 1a,g,h but not in
Figure 1b ( Julesz 1962, 1981a,b; Julesz & Bergen 1983; Julesz et al. 1973). Similarly, subjects
could quickly identify the location of a single unique element within a large array of contrasting
elements but only if this element differed from its neighbors along specific dimensions—such as
its orientation ( Julesz 1981a,b). He reasoned that because these tasks—texture segmentation and
“pop-out” (Bergen & Julesz 1983, Julesz & Bergen 1983)—appeared to be performed automatically
and without effort [in contrast to conjunctive feature search (Treisman & Gelade 1980)], they did
not require attention, and he therefore designated them preattentive processing. However, later
studies—using dual tasks—showed that at least some attentional resources are required ( Joseph
et al. 1997). As we describe below, this observation that attention is involved in texture process-
ing opened the door to the use of textures to study how top-down influences can affect earlier
processing.

An intriguing aspect of these early studies was that, in most cases, the feature dimensions that
supported these tasks could be described in simple mathematical terms—first-order or second-
order statistics ( Julesz 1962, 1981a,b; Julesz et al. 1973). The functional relevance of this ob-
servation is that simple linear spatial filtering, as performed by either idealized center-surround
retinal ganglion cells or oriented filters in primary visual cortex, could extract these statistics, pro-
vided that the population responses were pooled in a quadratic fashion. The strong form of this
observation—that texture segmentation and pop-out could only be supported by first- or second-
order statistics—became known as the Julesz conjecture (Victor 1994, Yellott 1993). However,
Julesz himself recognized early on (Caelli & Julesz 1978, Caelli et al. 1978, Julesz 1962, Julesz
et al. 1973) that the Julesz conjecture was false (e.g., Figure 1e–h).

Importantly, the exceptions to the conjecture appeared to relate to visual features that were
(and are) believed to be extracted in visual cortex, beyond extraction of orientation: features such
as connectivity and clumping ( Julesz 1962), collinearity (Figure 1g), and closure (Caelli & Julesz
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Image statistic:
a summary quantity
computed from a
single image or a
collection of images.
Simple (first-order)
image statistics (for
example, the mean
luminance, or the
fraction of pixels
whose luminances
have a particular
grayscale value) are
computed from the
distribution of
luminance values;
more complex image
statistics (such as a
covariance or a
correlation) are
computed from the
joint distribution of
luminance values at
two or more locations
in the image. The
meaning extends to
color images and
spatiotemporal images
(movies)

Markov random
field: an extension of
Markov processes to
image ensembles, in
which the probabilistic
choice of the
luminance value
assigned to each pixel
depends only on the
luminance values
assigned to its
neighbors

Ensemble (of
images): a collection
of images along with a
probabilistic rule for
drawing samples from
this collection

1978, Caelli et al. 1978) (Figure 1h). Julesz and colleagues ( Julesz 1962, 1981a; Julesz et al.
1973) pointed out that some of these features could be extracted by mechanisms that extracted
first- or second-order statistics, provided that they acted on a preprocessed version of the image
rather than on the raw image itself. Thus, although the Julesz conjecture does not hold, the texture
paradigm supported the broader notion that specific image statistics are extracted by local, parallel
processing, with different kinds of image statistics extracted as processing unfolds.

Later work using texture synthesis strategies based on Markov random fields (Gilbert 1980)
and other means ( Julesz et al. 1978, Victor & Brodie 1978) identified many further examples of
specific types of higher-order statistics that support texture segregation (Figure 1e,f ), as well as
large classes of higher-order statistics that do not (Victor & Conte 1991). Recent physiological
studies have shown that the perceptually relevant high-order statistics are indeed extracted by
visual cortex, primarily in V2 (Yu et al. 2015).

WHAT IS A VISUAL TEXTURE?

At first, it might seem that the term visual texture does not need definition, as its intuitive meaning,
a visual image of a material texture (see, for example, Figure 1q,s), would seem to suffice. However,
this term has come to denote a much larger class of visual images, most of which do not correspond
to images of natural materials (Caelli & Julesz 1978, Caelli et al. 1978, Chubb et al. 1994, Graham
1989, Julesz 1962, Landy & Bergen 1991, Landy & Oruc 2002, Nothdurft 2000, Sutter et al. 1995,
Victor & Brodie 1978, Victor et al. 2015) (see Figure 1a–p for examples). The justification for
the use of the term visual texture for these artificially constructed stimuli is that they capture an
essential feature of natural visual textures: an image in which distinctive local features are arranged
in a spatially extended fashion.

Typically, a texture involves a mixture of order and disorder, but the nature of this mixture
can take many forms. One kind of mixture is shown in Figure 1b,g,h,l: These images consist of
stereotyped elements arranged on a grid, but the elements are in random orientations. Another
kind of mixture is shown in Figure 1c,i–k: Each half of the image is characterized by a specific
distribution of gray values, but individual pixel values are drawn randomly from this distribution.
A third kind of mixture is shown in Figure 1e,f: These images are generated by specifying the
margins in a random fashion and then applying a deterministic rule to fill the interior. Yet another
kind of mixture is shown in Figure 1n–p: Here, the visual structure is determined by the choice
of specific spatial frequencies and their orientations, but their phases are chosen at random.

A Definition of Visual Texture

Despite this variety, it is possible to frame a definition that encompasses these (and other) hybrids
of structure and randomness while excluding others—for example, an image of a specific face—
that, intuitively, we would not want to consider to be a texture. The basic idea that we would like
to capture is that, much as a small sample swatch of material conveys the characteristics of the
entire unseen bolt, a single image of a visual texture conveys the characteristics of a much larger
collection of images. Put another way, one can recognize a sample of material without having seen
that particular example. So a visual texture is not just a single image but, rather, an ensemble of
images, along with a way to sample this ensemble to obtain other individual images that typify
it. This criterion—that individual samples typify the larger collection—is the key component of
many authors’ definitions of texture (Portilla & Simoncelli 2000, Victor 1994, Zhu et al. 1998). In
many other studies of texture, including the seminal work of Julesz, this idea is not made explicit,
but the methods of texture construction guarantee that it holds.
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Correlation: the
pairwise correlation
between two variables,
X and Y , is their
covariance normalized
by their variances,
CXY /
√

CXX CYY (see
Covariance).
Higher-order
correlations are
similarly computed
from products of three
or more variables

Ergodicity:
an ensemble property,
indicating (when
applied to image
ensembles) that
averages determined
by sequential sampling
across the ensemble
are equivalent to
averages that are
computed by spatial
sampling of a typical
image

Formalizing this notion rests on the concept of an image statistic. In essence, an image statistic is
a mathematically defined feature of an image, or an ensemble (collection) of images. For example,
the mean luminance value is an image statistic; another simple image statistic is the fraction of
pixels in an image that have a specific gray-level value. These image statistics can be computed by
examining the luminance of one point at a time and are therefore called first order. Other image
statistics require examining the luminance at two or more points of an image simultaneously. For
example, spatial correlations can be captured by the average value of the product of the luminance
at two image points separated by a given displacement—this is an example of a second-order
statistic because it requires examining two points in the image simultaneously.

As these examples show, determining the value of the image statistic entails an averaging
process, such as computing a mean or computing a probability. This averaging process can be
carried out in two contrasting ways. One can draw a sample image from the ensemble and compute
the average over that sample. Alternatively, one can choose a single location in space and compute
the average over all samples in the ensemble, focusing at that particular location. The core property
of a visual texture is that these two kinds of averages—a spatial average within an image and an
average across the ensemble—yield identical results. With some additional formalism that we
suppress here, this mathematical property is called ergodicity.

We emphasize that, although a single image is often used to illustrate a visual texture, doing
so requires knowledge (often implicit) about how this image is representative of an ensemble.
For example, a sine grating could be taken as a representative of an ensemble consisting of sine
gratings at random spatial phases. Similarly, an array of line segments whose orientations are
either horizontal or vertical is an example drawn from an ensemble of images, each of which is
independently created in this fashion.

At first glance, it might appear that our definition would exclude textures generated by placing
tokens on a regular grid, because ensemble averages computed at the grid points will not match
ensemble averages computed at points in the gaps. However, we can include this important class of
stimuli within the definition by requiring that the ensemble randomize over all starting positions
of the grid. With this understanding, the present formalization of visual texture, along with the
extensions mentioned below, includes most of the stimuli that are typically called textures while
avoiding the paradoxes that arise if a texture were taken to mean an individual image (Victor 1994,
Yellott 1993). Additionally, there is direct experimental evidence that in carrying out texture-based
tasks, humans in fact form internal representations of ensembles, rather than individual examples
(Victor & Conte 2004, 2006).

Our definition implies that visual textures are spatially homogeneous in a statistical sense:
Ensemble averages at each location must all match the average across space and, therefore, must
match each other. As a consequence, visual textures must be infinite in spatial extent—or at least the
algorithm for generating examples of images must be extensible to arbitrarily large regions. The
requirement for spatial homogeneity eliminates from the definition the kinds of collections that
we would not want to consider textures—such as collections of natural scenes or of faces. These
collections do not conform to the definition of texture because their statistical properties differ
across space; for example, statistics determined by averaging over the upper halves of all images
will not be the same as statistics determined from the lower halves. Haphazard collections—for
example, an ensemble consisting of a face, a teapot, a house, and a Gabor patch—are also not
visual textures, for the same reason.

Finally, the concept of a visual texture has implications for experimental design. Because visual
textures are ensembles, studies of responses to a visual texture require some kind of sampling of
this ensemble. That is, experiments necessarily consist of a sequence of trials, in which different
examples of a texture are presented on each trial. Because of the defining property of textures—that
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spatial and ensemble averages are equivalent—we can think of this sampling as either choosing
different finite regions within an infinite image or choosing the same region within a randomly
chosen image.

Extensions of the Definition

The above definition of visual texture can be extended in several ways. First, although we focus here
on grayscale images, the notion of image statistics and therefore visual texture extends immediately
to chromatic and even hyperspectral images. The variety of image statistics is now much greater,
as each pixel is represented by a list of scalars (one for each chromatic or spectral channel) rather
than by a single grayscale value (Hansen et al. 2008, Li & Lennie 1997, te Pas & Koenderink
2004). Similarly, the notion of a static visual texture extends to that of a texture movie: The image
is an array with two dimensions for space and one for time (Hu & Victor 2010).

It is also often useful to modify the requirement that image statistics computed across the
ensemble are homogeneous globally to the more relaxed requirement that they are homogeneous
over suitably specified local regions. The motivation for this is the following. Consider a smooth
3D object that is “painted” with an example of a visual texture. Because of the object’s 3D shape,
each portion of the surface will have a different tilt with respect to the viewer, and these tilts will
each distort the projection of the surface texture onto the image plane. Observers are able to use
this gradually changing texture to draw inferences about 3D shape (Li & Zaidi 2004; Todd et al.
1997, 2004), demonstrating that they can estimate image statistics locally.

The Domain of Textures

Textures form a diverse domain. Not only do they vary along all the traditional parameters used
to define visual stimuli—such as luminance, contrast, spatial frequency, and orientation—but even
within one of these parameters, there are a wealth of possibilities. For example, textures can differ
not only in their mean luminance or contrast but in any aspect of the distribution of luminance
values, such as its skewness or the prevalence of a specific gray level. Similarly, textures can differ
not only in their dominant orientation but also in the extent to which orientations vary; they may
even have multiple dominant orientations, as in the octotropic plaids (Figure 1o) of Li & Zaidi
(2000).

Moreover, the examples in Figure 1 show that textures may also vary in ways that are not
captured by these traditional parameters—such as naturalness or artificiality, and regularity versus
randomness. For textures that are derived from (or appear to be derived from) images of natural
material, verbal descriptions (Bhushan et al. 1997) corresponding to material properties (e.g.,
glossy versus matte, soft versus hard, rough versus smooth) appear appropriate, but the verbal
repertoire is somewhat limited (Bhushan et al. 1997) and verbal descriptions may not be fully
satisfactory.

Informally, each of the parameters needed to specify a texture can be considered to be a di-
mension of the domain. However, the correspondence is inexact, because although the parameters
represent degrees of freedom, they are not necessarily independent. The origin of these depen-
dencies is that the probabilities in a distribution must add up to 1, and, more subtly, that lower
moments of a distribution constrain higher ones. The former leads to linear interdependencies
among the parameters; the latter, more problematically, leads to nonlinear interdependencies. A
useful geometric view of this situation is that the texture parameters may be thought of as coor-
dinates, but the axes for these coordinates are curved: Changing the value of one parameter may
necessitate changing the value of another.
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Scramble texture:
a texture in which pixel
colors are drawn to
match a specific
distribution, and then
the pixels are spatially
scrambled. When the
number of pixels is
large, the result is
essentially the same as
an IID texture (see IID
texture)

Covariance:
a second-order statistic
describing the joint
distribution of two
quantities, such as the
luminances at a pixel
and its neighbor.
Formally, the
covariance of X and
Y is given by CX Y =
〈(X − 〈X 〉)(Y − 〈Y 〉)〉,
where 〈〉 denotes an
average over the image
or image ensemble.
The variance of a
quantity is its
covariance with itself

Power spectrum:
a second-order statistic
that quantifies
frequency content. For
an image or image
ensemble, the power
spectrum is a function
of spatial frequency.
Formally, the power
spectrum is defined
only for an infinite
ensemble; in practice,
it is estimated from
Fourier components of
a limited number of
finite samples

Multipoint
correlation: an image
statistic equal to the
normalized product of
contrast values at three
or more points

SPECIFYING AND CONSTRUCTING TEXTURES

The variety of texture parameters, along with their interdependencies, leads to two related techni-
cal problems. How should a texture be specified? And how are those specifications translated into
construction of texture samples? We consider two overall classes of approaches here: strategies
that are applicable when the interdependencies among texture parameters are simple to control
and strategies that attempt to deal with more complex interdependencies. In addition to strategies
developed for the purpose of probing the visual system, we also mention strategies that have been
developed in the computer graphics community (Bar-Joseph et al. 2001, De Bonet & Viola 1998,
Efros & Leung 1999, Xu et al. 2000). Although the primary motivation for these techniques is to
fill in or reproduce a texture sample in a way that is visually acceptable, these methods also provide
valuable tools to probe the visual system, especially when naturalistic textures are of interest.

Perhaps the simplest way to control the interdependencies of the texture parameters is to restrict
the range of spatial correlations. The extreme case is that there are no correlations between pixels.
That is, the luminance assigned to each pixel is independently drawn from a specified distribution;
this mathematical description both defines the texture and is an explicit algorithm for texture
generation. An alternate but essentially equivalent construction is the scramble texture: Pixels are
colored to match a distribution exactly and then spatially scrambled (Chubb & Nam 2000, Chubb
et al. 2004). Examples are shown in Figure 1c,i–k.

A somewhat less-restrictive strategy allows for spatial correlations but only over a limited
range. At each point in a grid, a micropattern is randomly chosen from a library. The library
might consist of, for example, line segments (Figure 1l ) (Wolfson & Landy 1999), tokens with
pairs of line segments at a fixed relative orientation, such as X’s, L’s, and T’s (Bergen & Julesz
1983), Gabor patches of specified spatial frequency and orientation (Figure 1m) (Graham et al.
1993), or other sets of tokens (Figure 1a,b,g,h) (Caelli & Julesz 1978, Caelli et al. 1978, Julesz
1962). Generally, the tokens are smaller than the spacing between the grid points so that overlaps
are not of concern.

The computer-graphics approaches of Efros & Leung (1999) and Xu et al. (2000) are concep-
tually related to the micropattern strategy and can generate an impressive variety of naturalistic
textures. These approaches start with a sample texture—typically a photographic image—then cut
out patches, and then rearrange them to create new texture examples. In Efros & Leung (1999),
discontinuities at the borders of the rearranged patches are minimized by “growing” the synthe-
sized texture outward from a starting patch; in Xu et al. (2000), texture patches are relocated in
a chaotic fashion and then discontinuities at their edges are reduced by a bridging process. As
a consequence, there is a sharp demarcation between local statistics, which are preserved, and
longer-range ones, which are not.

One can also control the interaction of texture parameters by working in the frequency do-
main. This enables construction of textures with long-range spatial correlations, provided that
the luminance distribution is Gaussian (Figure 1o,p). Here, the covariances (the pairwise spatial
correlations) are not specified directly but rather via their Fourier transform (the power spectrum),
because the power at each spatial frequency can be specified independently. To synthesize such
textures, one first creates a sample of uncorrelated Gaussian noise and then applies a spatial filter
whose modulation transfer function has an amplitude equal to the square root of the desired power
spectrum. Closely related is the strategy of superimposing a finite number of sinusoids in random
phase (Figure 1n). Note that because both methods necessarily create images with random phases,
multipoint correlations—at any spatial scale—cannot be specified.

The limitations of the above approaches have led to the development of a second class of strate-
gies to control image statistics of multiple orders and/or spatial scales. Several of these methods
deal with the interdependence of such statistics by drawing inspiration from statistical mechanics.
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Entropy:
a quantification of the
degree of randomness
in a distribution or
ensemble. A
maximum-entropy
distribution or
ensemble is one in
which the entropy is
maximized, subject to
specified constraints.
For example, a
Gaussian distribution
is a maximum-entropy
distribution, given a
constraint on mean
and variance

Independent,
identically
distributed (IID)
texture: a texture in
which each pixel is
independently colored,
by drawing randomly
from the same
distribution

Markov process:
a random sequence in
which the probabilistic
choice of an element at
each step depends only
on the preceding
element

Here, a small number of image statistics are explicitly specified, and these are used to construct
textures that are as random as possible, given the specified statistics. These maximum-entropy
textures crisply demonstrate the way in which a texture is a mixture of structure (the specified
statistics) and randomness (all other statistics). Maximum-entropy textures can be viewed as gen-
eralizations of some of the approaches mentioned above. Specifically, independent, identically
distributed (IID) textures (Chubb et al. 1994) are maximum-entropy textures in which the first-
order statistics are specified (Figure 1c,i–k). Correlated Gaussian noises, constructed by filtering
Gaussian white noise, are maximum-entropy textures in which the covariances (or, equivalently,
the power spectra) are specified (Figure 1o,p).

The properties of entropy give the maximum-entropy approach mathematical appeal. A
maximum-entropy ensemble is guaranteed to be uniquely determined by its defining statistics.
Moreover, any visual texture can be viewed as the limit of a sequence of maximum-entropy tex-
tures, each of which is specified by a finite number of image statistics (Zhu et al. 1998). The
coordinate system generated by these statistics has an intrinsic geometry based on information
theory (Amari 2001), in which distance corresponds to statistical discriminability.

The main limitation of the maximum-entropy approach is that although the maximum-entropy
ensemble is guaranteed to exist for any set of self-consistent statistics, constructing it (and drawing
samples from it) may be difficult. A general strategy, but a computationally intensive one, has been
developed by Zhu et al. (1998); in essence, this method iteratively alters individual pixels in an
image to increase its entropy, subject to the specified statistical constraints. For several special cases
(in addition to the IID and correlated-Gaussian cases discussed above), computationally efficient
alternatives exist. Chief among these is that when certain kinds of a local statistics are specified,
a Markov process (Gilbert 1980) can be used to generate a maximum-entropy texture. Sampling
this Markov process (i.e., synthesizing an example of a texture that manifests its statistics) can be
accomplished by seeding the image with a small number of random pixels and then applying an
arithmetic recursion rule that sequentially specifies the luminance values of the remaining pixels
(Figure 1c–f ). But when two or more local statistics are specified, the Markov strategy succeeds
only if the recursion rules obey certain algebraic constraints (Champagnat et al. 1998, Gilbert
1980, Pickard 1980). This restricts the basic Markov approach to specific combinations of local
image statistics. For combinations of image statistics that fail to meet these constraints, there are
extensions of this basic idea; these extensions suffice to capture all the statistics of 2× 2 patches of
pixels (Victor & Conte 2012).

Other general strategies approximate a maximum-entropy texture through an iterative ap-
proach and are applicable to a wide range of interdependent image statistics. In the paradigmatic
example of this approach (Portilla & Simoncelli 2000), statistics are organized into a pyramid,
whose levels correspond to different spatial scales. At each scale, statistics include values derived
from the individual pixels (variance, skewness, and kurtosis) and the outputs of linear filters placed
on the texture (including autocorrelations, cross-correlations, and cross-scale correlations). This
approach allows parameterization and synthesis of an impressively wide variety of textures (e.g.,
Figure 1r,t), including both natural and artificial ones. The approach also shows that, although
these parameter classes are interdependent, none can be omitted without a substantial loss of the
ability to specify and synthesize naturalistic textures (Portilla & Simoncelli 2000). However, the
mapping from individual parameters to textures is quite complex. Although any texture corre-
sponds to a specific set of parameters, the converse is not true: Generic parameter sets not derived
from texture examples may not correspond to realizable textures.

Two related approaches also use a multiscale model, but their synthesis procedure is based on
wavelets (Bar-Joseph et al. 2001, De Bonet & Viola 1998). Of note, the Bar-Joseph method is
applicable to mixtures of textures and texture movies.
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Back-pocket model:
a class of models for
texture discrimination
and segmentation in
which several
heterogeneous image
statistics are computed
and a decision is made
on the basis of the
overall difference
between them (Chubb
& Landy 1991, Landy
& Oruc 2002). The
overall difference is
typically computed as
the sum of the squares
of the differences
between the individual
statistics. See
Figure 2a

Binary texture:
a texture composed of
pixels that have only
two luminance values,
typically black and
white

A FRAMEWORK FOR TEXTURES AND TASKS

To begin, it is helpful to be explicit about a shared assumption of models aimed at accounting for
texture perception:

1. All spontaneous visual distinctions are produced by a limited set of basic mechanisms (the
columns of circles labeled 1 to M in Figure 2a,b), each of which transforms the pattern of
light seen by the observer into a neural image (Robson 1980) reflecting the spatial distribution
of a specific image statistic.

The primary motivation for using textures as stimuli is to determine the image statistics sensed
by these mechanisms. To appreciate the importance of this goal, consider that if all visible differ-
ences result from differential activation of these basic mechanisms, then the statistics they compute
are nothing less than the elementary substances of human vision.

Early models of texture processing focused on explaining preattentive texture segmentation—
visual effects that occur with no effort of attention. Consequently, attention played no role in
these models (illustrated in Figure 2a), all of which shared the same general form (e.g., Caelli
1985, Graham & Sutter 1998, Julesz & Bergen 1983, Malik & Perona 1990). Under these back-
pocket models [called so because researchers routinely pulled such models from a back pocket
to account for new instances of preattentive texture segmentation (Chubb & Landy 1991)], two
other assumptions are made:

2. The effect of any texture on human vision can be summarized by its activation vector (i.e.,
the set activation levels the texture produces in the basic mechanisms).

3. Performance in any texture discrimination task is determined by some omnibus decision
statistic (shown in Figure 2a as a quadratic combination of component differences) that
quantifies the disparity between the activation vectors of the textures.

Although attention plays no role in the back-pocket model, it is clear that top-down attention
can influence texture judgments. Consider, for example, the visual task confronted by a prospec-
tor. When a uranium prospector examines a sample of ore whose image presents an expanse of
randomly variegated, interpenetrating lobes of different minerals, she is performing a subtly cali-
brated visual computation. If the prospector is skilled in her trade, the summary statistic produced
by this computation provides at least a rough estimate of the concentration of uranium in the ore.
The key neural tools required for judgments of this sort are the basic mechanisms. It should be
noted, however, that the same prospector would need to use a different visual statistic if she were
looking for copper instead of uranium.

The inferences afforded by an experiment depend crucially on how the experiment manipu-
lates top-down attention. Unbiased-salience experiments aim to fix the attentional state of the
observer in some neutral fashion while varying the properties of the textures to be discrimi-
nated. Experiments in this class typically assume a back-pocket model of the sort diagrammed in
Figure 2a. Other biased-salience experiments explicitly manipulate the attentional state of the
observer across different conditions. Experiments in this class typically assume a model of the sort
diagrammed in Figure 2b. We discuss, in turn, each type of experiment and the sorts of inferences
it is likely to enable.

Unbiased-Salience Experiments

Many unbiased-salience experiments have attempted to neutralize the potential effects of top-down
attention by mixing different texture discrimination conditions in the same block. For example,
Victor et al. (2015) studied the mechanisms enabling discrimination within a ten-dimensional
space of binary textures (some examples are shown in Figure 1c–e). In these experiments, on each
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Figure 2
Two classes of models
for texture processing.
(a) Unbiased salience:
the back-pocket model
of texture segregation
(Chubb & Landy
1991). Textures to be
discriminated produce
activations in an array
of mechanisms (1,
2, . . . , M), which are
sensitive to specific
aspects of texture. The
levels of activation are
compared across
textures, and the
differences are
combined to produce
an omnibus decision
variable.
(b) Biased salience: the
interaction of task and
mechanism. Individual
mechanisms remain
fixed (as in panel a),
but top-down
processes combine
these mechanisms with
task-specific weights
(w11, . . . , wNM) to
synthesize a
task-specific decision
variable.
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trial, the stimulus comprised a target bar of texture against a square background of some other
texture, and the task was to judge the location (right of, left of, above, or below the center of
the background texture field) of the target bar. Crucially, on any given trial, the observer did not
know what quality would define the target texture relative to the background texture; thus, the
observer had to be ready for any sort of difference. By keeping the observer in the same fixed state
of uncertainty across all trials, unbiased-salience experiments of this sort seek to ensure that the
activation vector produced by any given texture is used in the same way across all trials in which
that texture occurs.

What can unbiased-salience experiments tell us about mechanisms? In a parameterized space
of textures, every texture corresponds to a particular M-dimensional point (a parameter vector).
In this context, a mechanism can be identified with a function that maps M-dimensional points
onto the activations their textures produce in the mechanism. Assuming that this function varies
in a sufficiently gradual manner across space, we can approximate a mechanism’s behavior near
any reference point in terms of its activation gradient at that point (i.e., the line through the
reference point along which activation changes most rapidly). The slope of this line corresponds
to the sensitivity with which changes in that parameter influence the activation of the mechanism.
For this reason, the function mapping the M parameters onto these slopes is sometimes called the
sensitivity function of the mechanism at the reference point. The difference in activation produced
in the mechanism by any two points in the neighborhood of the reference point is proportional
to the distance that separates them along the activation gradient.

A consequence of the above observations is that if human vision happens to contain only a single
mechanism that is sensitive to variations in a particular M-dimensional texture space, then the locus
of parameter vectors that yield threshold performance in an unbiased-salience experiment relative
to a given reference base point will consist of two hyperplanes on opposite sides of that point,
each orthogonal to the activation gradient of the mechanism. In this case, it is straightforward
to measure the sensitivity function characterizing the mechanism at the reference point. Several
experiments have been lucky enough to discover such texture spaces in which discrimination is
controlled by the activation of a single mechanism (e.g., Chubb et al. 1994, Keeble et al. 1995).

In most experiments, however, the locus of points yielding threshold discrimination from a
reference point turns out to be a convex hypersurface surrounding that point. Such a finding
signals that multiple mechanisms interact to determine the salience of the difference between
textures. It may sometimes still be possible to infer the sensitivity functions of the underlying
mechanisms (Logvinenko 2003); typically, however, the threshold hypersurface is ellipsoidal and
hence consistent with a quadratic combination rule (as illustrated in Figure 2a). In this case, it is
impossible to determine the mechanism sensitivity functions (Poirson et al. 1990). Thus, although
unbiased-salience experiments can determine a lower bound on the number of basic mechanisms,
usually they cannot tell us what those mechanisms sense.

Biased-Salience Experiments

Although unbiased-salience experiments may be relevant to some real-world tasks, many visual
tasks entail prior knowledge of the relevant stimulus features. For example, when one searches,
one often knows what one is searching for (as in the task of the prospector mentioned above),
and such prior knowledge may improve performance. Moreover, manipulating this prior knowl-
edge experimentally provides a way to go beyond estimation of dimensionality to determine the
sensitivity of individual mechanisms.

Figure 2b shows a simple way to formalize how the basic mechanisms might be recruited for
different tasks. In this context, the basic mechanisms constitute the library that can be used by
top-down processes to synthesize a task-specific decision variable (i.e., a tool for performing this
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task) when there is a priori knowledge of what that variable should be. We postulate that this
synthesis consists of linear combination of the available mechanisms, with task-specific weights.

Note that this class of models makes qualitatively different predictions from the back-pocket
models that account for the results of unbiased-salience experiments. As noted above, in unbiased-
salience experiments, threshold surfaces are typically ellipsoidal (Chubb & Landy 1991, Landy
& Oruc 2002, Victor et al. 2015). In contrast, the model of Figure 2b predicts that when the
task is specified, the threshold surface is flat and is a hyperplane normal to the decision variable.
Moreover, as the task is changed, the tool may also change, resulting in a change in the slant of
threshold surface. Experiments confirm these predictions (Chubb & Nam 2000, Nam & Chubb
2000, Silva & Chubb 2014).

This task dependence allows us to distinguish between models of mechanisms, even if these
models produce the same thresholds in an unbiased-salience task. Figure 3 shows how. For sim-
plicity, we consider a two-parameter domain of textures. We consider three sets of hypothetical
mechanisms in this space (columns); these sets of mechanisms are shown as vectors in Figure 3a,
where the vectors’ lengths and directions indicate their sensitivities to the two parameters.
Figure 3b shows the threshold contour that would be obtained in an unbiased-salience task based
on these mechanisms and quadratic summation. By design, each of these very different sets of
mechanisms produces the same threshold contour, underscoring the well-known ambiguity that
prevents inferring mechanisms from perceptual distances (Poirson et al. 1990).

Figure 3c,d shows how this ambiguity can be resolved via paradigms that explicitly change
the task. Here, we use the seed-expansion paradigm (Chubb et al. 2012, Silva & Chubb 2014).
In this paradigm, the subject’s task is to detect the location of a small patch of target texture in a
large background of some other texture. In each experimental condition, the predominant quality
differentiating the target from the background on each trial is a particular direction in param-
eter space. Four such conditions are illustrated here, corresponding to the four colored fans in
Figure 3c,d. A key aspect of the experimental design is that within each condition, the directions
probed on different trials deviate only slightly from a common direction, called the seed direction
(indicated by the central ray of a given fan in Figure 3c,d ).

To carry out the task, the subject must use her mechanisms to synthesize a tool that captures
the deviation of the target from the background. As mentioned above with regard to Figure 2b, we
postulate that this synthesis amounts to selecting a linear combination of the available mechanisms.
But if resources are limited, there is a constraint on the weights used to combine them. This in
turn limits the achievable tools. The ideal tool is the achievable tool that has the largest projection
onto the seed.

Crucially, the tool direction and the seed direction need not match. This mismatch is in-
formative about the underlying mechanisms. Figure 3c,d illustrates this for two kinds of con-
straints: a constraint on the sum of the weights and a constraint on the sum of their squares.
In the former case (Figure 3c), the ideal tool will always be one of the original mechanisms—
namely, the mechanism that projects maximally onto the seed. This is because when the sum
of weights is constrained, exchanging a portion of this mechanism for an equally weighted por-
tion of a less-sensitive mechanism can only reduce the effectiveness of the tool. In the latter case
(Figure 3d ), the ideal tool may have nonzero weights from multiple mechanisms for which there
is a positive correlation with the seed. But even in this case, the ideal tool need not be aligned with
the seed.

PERCEPTUALLY RELEVANT DIMENSIONS

Although only some of the parameters required to specify textures are relevant to perception
(Chubb et al. 2004, 2007; Julesz 1962; Julesz et al. 1973; Tkačik et al. 2010; Victor & Conte
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1991), the number of perceptually relevant dimensions is still very high. To get an idea of this
dimensionality, one can seek to determine a minimal number of mechanisms that are required to
account for thresholds within some predefined subset of textures. Any single study of this kind
necessarily provides a very conservative lower bound, but combining studies that examine different
aspects of texture provides a better idea of the dimensionality—though still a lower bound.

We illustrate this by considering three such studies. (a) Bergen et al. (1979) showed that four
mechanisms were needed to account for thresholds for a subset of one-dimensional, oriented
textures (sums of pairs of gratings). (b) Chubb et al. (2004, 2007) showed that three mechanisms
were needed to account for thresholds for IID textures; this set of dimensions has no overlap
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with those of Bergen et al. (1979). (c) Victor et al. (2015) showed that nine mechanisms were
needed to account for thresholds for binary textures with local correlations; this set of textures
has a one-dimensional overlap with the space studied by Chubb et al.—namely, the binary IID
textures. Taken together, this yields a lower bound of fifteen dimensions [four from Bergen et al.
(1979), three from Chubb et al. (2004), and nine from Victor et al. (2015) minus the one overlap
of the last two studies] and does not even take into consideration dimensions that are associated
with orientation, color, and scale.

Threshold discriminations are but one of the texture-related tasks that the visual system needs
to perform. When other tasks are used as assays—suprathreshold similarity judgments and esti-
mation of material properties—estimates of dimensionality are much lower. Specifically, Gurnsey
& Fleet (2001) found a dimensionality of three by applying multidimensional scaling to similarity
judgments of isotropic Gaussian noises, and Rao & Lohse (1996) found a dimensionality of three
by applying principal components analysis and related techniques to verbal ratings of the Brodatz
(1965) natural texture collection. These too are necessarily lower limits, but there is no straight-
forward way to combine the estimates across studies to find an improved lower bound: The barrier
is uncertainty as to the correspondence between the dimensions identified across different studies.
One potential solution to this problem would be the identification of correspondences between
the low-level statistical features of texture and the factors that determine higher-level attributes,
but this is not possible at present. We know that high-order correlations are needed for natural-
ness (Freeman et al. 2013) and that some kinds of fourth-order correlations are related to porosity
(Barbosa et al. 2013). However, with the exception of gloss (Motoyoshi et al. 2007, Wijntjes &
Pont 2010), a correspondence between perceived surface properties and image statistics is not yet
delineated.

Finally, although it is tempting to attribute the differences between these two approaches (i.e.,
estimates based on thresholds versus estimates based on suprathreshold judgments) to method-
ological differences or sample-size limitations, we believe that a more fundamental issue is im-
portant: that task modulates texture processing. Additionally, task may alter the way that texture
representations are read out (Victor et al. 2017).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Task dependence is informative about underlying mechanisms. (a) Three candidate sets of mechanisms;
mechanisms are shown as vectors whose directions and lengths indicate their sensitivities to two parameters
of texture. (b) In an unbiased-salience task, each of these sets of mechanisms leads to the same threshold
ellipse. (c,d) These models lead to disparate results in a seed-expansion experiment. In each experimental
condition (each colored fan), the predominant quality that distinguishes the target texture from the
background has a specific direction in the parameter space. This direction is given by the seed, which is
shown as the heavier line in the middle of each fan; other stimuli used in the experiment have similar but not
identical directions (the four flanking lines). To account for task performance, we posit that in each seed
condition, the subject synthesizes the best available tool for the task from a linear combination of the
available mechanisms (as in Figure 2). Because resources are limited, there is a limitation on the weights
used to combine these mechanisms and hence a limitation on the tools that can be synthesized. The best
available tool (vector with arrowhead ) is the one with the largest projection onto the seed. Panel c simulates
the results when the sum of the weights is constrained; panel d simulates when the sum of the squares of the
weights is constrained. Thresholds are indicated by the open circles; as the data show (Silva & Chubb 2014),
these thresholds lie along a line. When the sum of the weights is constrained (c), the ideal tool is always one
of the original mechanisms (matching a mechanism of panel a); when the sum of squared weights is
constrained (d ), tools may combine two or more mechanisms. Note also that when no mechanism has a
positive projection onto the seed ( green fan in first column of panels c and d ), thresholds are infinite.
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BASIC MECHANISMS AND PERIPHERAL VISION

Recent work suggests that sensitivity throughout the peripheral visual field may be conferred
entirely by the same basic mechanisms used in texture processing. The starting point for this
suggestion is the remarkable effectiveness of the algorithm of Portilla & Simoncelli (2000) (see
above) in synthesizing new patches of texture that appear visually equivalent to the original.
But clearly, this equivalence must have its limits: If a page of this article were fed as input into
the algorithm, the output image would appear “texty” but would not be readable. (It would be
surprising if it were otherwise—then the algorithm could be used to reliably fill in missing sections
of documents!) Such an image has been called a mongrel of the original text (Balas et al. 2009).

Interestingly, when mongrels are viewed in the periphery (beyond the limits where the original
text would be readable), they often look remarkably similar to the original images. More generally,
if one replaces each peripheral region of a picture of a scene by a mongrel of the region, the resulting
image looks very similar to the original scene, provided one maintains fixation in the center. These
observations suggest that visual sensitivity in the periphery is limited to the statistics provided by
basic mechanisms. This conjecture is supported by experiments showing that many results in visual
search and crowding can be understood simply by scrutinizing mongrels of the stimuli (Balas et al.
2009, Rosenholtz et al. 2012): Tasks are easy if foveal inspection of stimulus mongrels tends to
yield the right answer and difficult if not.

PHYSIOLOGICAL STUDIES

As in many other domains of systems neuroscience, physiological studies of visual texture process-
ing serve to anchor studies at the behavioral level by identifying the cellular and circuit mechanisms
that implement the necessary computations. In doing so, physiological studies of visual texture
also address a broader issue: delineation of the aspects of population activity that are relevant to
perception.

Identifying the neural loci of texture processing is a more subtle matter than merely seeking
the earliest stage of visual processing in which a neural population carries the information needed
to determine texture identity or texture boundary. This formulation is overly simplistic and would
lead to the vacuous conclusion that the photoreceptors are the locus of texture processing, as
further processing cannot create information that the photoreceptors have not already captured.

We therefore need to focus not on whether texture information is present in a given neural
population but, rather, on whether this information is overt. This in turn is intimately related to
the general problem of understanding neural population codes—which is one of the reasons that
the study of visual textures holds enduring interest. Visual textures are, in essence, pictorial repre-
sentations of spatial correlations, which are in turn transformed across layers of neural processing.
Our inferences as to where texture analysis takes place therefore depend on the statistical features
of neural activity that we consider to be manifest carriers of information, in contrast to covert
carriers of information that are not available to perception until they are further transformed.

A standard way forward is to assert that information in a population becomes manifest when
the overall population activity measured over some time window has changed. Although this
criterion leaves open the precise definition of a population (e.g., ON versus OFF cells, cells of
specific receptive field sizes, or specific orientation tunings) and how population activity should be
measured (e.g., mean firing rate, root-mean-square firing rate, etc.), it has a number of advantages.
By specifying a link between individual neural properties and a population signal, it makes a direct
connection between computational models of neurons and models such as the back-pocket models
(Chubb & Landy 1991, Landy & Oruc 2002). It makes explicit the rationale for mass measures of
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population activity, such as the visual evoked potential and functional magnetic resonance imaging
(fMRI). Finally, for typical (ergodic) textures, it provides a rigorous justification for measuring
population activity by sampling the responses of a limited number of neurons, across a large
number of texture examples.

What does this viewpoint imply about texture discrimination? It is helpful to approach this
question in steps, considering the ways that physiologically motivated neural models interact with
different kinds of image statistics. As a simple example, a typical population of linear neurons will
have an average population firing rate that covaries with the mean luminance of the stimulus;
thus, such populations provide an average firing rate that could support discriminations between
textures that differ in mean luminance.

Our main interest is in discriminating between textures that differ in their spatial structure.
For textures with identical mean luminances, strict linearity means that such textures will all elicit
the same average response across a population. But the range of firing rates driven by a specific
texture will depend on how the texture elements relate to the neural receptive fields: If the match
is a good one, there will be occasional neurons that are driven well; if not, firing rates will tend
to be more uniform across the population. Thus, a population measure that is sensitive to the
variance of firing rates will typically provide a signal that distinguishes between textures with
different spatial frequency contents (i.e., with different second-order statistics). The details of this
measure are unimportant—whether it is a strict measure of variance (i.e., average squared firing
rate) or merely summation of firing rates following the rectifying nonlinearity consequent to a
firing threshold. The key requirement is that the population measure goes beyond capturing a
strict average of the signal that emerges from a linear filter. For example, a stylized population
of center-surround neurons with a low maintained discharge will distinguish between textures
consisting of gratings of different frequencies or dots of different sizes. Thus, population signals
that discriminate second-order statistics are present beginning at the level of the retinal ganglion
cell and the lateral geniculate nucleus.

It is worthwhile noting that, at this level, there are systematic differences between ON- and
OFF-center neurons, with an overall bias toward smaller receptive fields and greater sensitivity
in the OFF pathway (Balasubramanian & Sterling 2009, Chichilnisky & Kalmar 2002, Kremkow
et al. 2014, Nichols et al. 2013, Zemon et al. 1988). This asymmetry is further accentuated in
primary visual cortex (Kremkow et al. 2014, Xing et al. 2010), ultimately leading to a greater
perceptual salience of darks than lights (Chubb et al. 2004, Komban et al. 2011).

Although these simple computational mechanisms will generically distinguish between tex-
tures that differ in their second-order statistics, an important caveat is that in order to provide a
differential signal between two textures, receptive field shapes need to match one texture better
than another. That is, circularly symmetric receptive fields can distinguish between textures with
dots of different sizes or gratings of different spatial frequencies, even if they are not specifically
matched to the texture tokens (Nothdurft 1990)—but not between textures with tokens that differ
only in orientation, such as textures built from Gabor patches or line-segment tokens. For such
discriminations, oriented receptive fields—which emerge in V1—are critical (Lamme et al. 1992,
Nothdurft & Li 1985, Song & Baker 2007).

Understanding discriminations that involve higher-order statistics requires moving beyond a
qualitative consideration of stylized neuronal models. This step is an important one, as high-order
image statistics are the carriers of form information, such as contours, edges, and corners (Morrone
& Burr 1988, Oppenheim & Lim 1981). The key issue is that simple kinds of nonlinearities, such as
firing rate thresholds and saturations, suffice to generate differential responses to spatial statistics of
arbitrarily high order, merely because they are not polynomials. So it does not suffice to identify
such signals or demonstrate whether models will produce them; it is necessary to determine
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whether they are of sufficient magnitude and specificity to account for perceptual phenomena.
This requires physiological experiments using the texture stimuli themselves, as computational
models of neurons that are constructed with other stimuli cannot be guaranteed to have sufficiently
accurate predictive value.

Two recent studies have shown that nonlinear processing with the appropriate specificity to ac-
count for human sensitivity to high-order statistical features originates primarily in visual area V2.
Freeman et al. (2013) examined neural responses to naturalistic textures and to phase-scrambled
versions of the same textures. These textures shared the same first- and second-order statistics, but
only the naturalistic textures contained third- and higher-order correlations. In both the macaque
(as measured by single-unit activity) and the human (as measured by fMRI), V2 showed more
vigorous responses to the naturalistic textures than to the phase-scrambled ones. Only very minor
differences were seen in V1. Yu et al. (2015) used a complementary strategy, examining neuronal
responses in macaque V1 and V2 to presentations of synthetic textures constructed to contain
specific third- and fourth-order correlations. Neurons that responded differentially to these stim-
uli were rare in V1 [such neurons had been previously noted in the macaque (Purpura et al.
1994) and functional imaging suggests their presence in human (Beason-Held et al. 1998, 2000)]
but were seen in approximately a third of the units in the supragranular layers of V2. Critically,
neuronal responses were selective for the kinds of third- and fourth-order correlations that were
perceptually salient. The complementary use of naturalistic textures (Freeman et al. 2013) and
synthetic ones (Yu et al. 2015) is important, in that it shows not only that sensitivity to high-order
statistics is relevant for real-world stimuli but also that these statistics per se (and not naturalness)
suffice to drive neural responses. More broadly, these studies suggest an overarching theme for the
computations carried out by area V2—extraction of the local primitives (edges, corners, illusory
contours) needed to delineate objects.

Finally, we note that texture segmentation and texture discrimination are likely distinct pro-
cesses (Nothdurft 1994). Figure 4 shows two examples that illustrate this: In both cases, there
is a salient border formed between two regions that have identical complements of texture

a bb

Figure 4
Examples of salient boundaries due to local discontinuities between regions containing the same texture.
(a) Segregation due to a spatial phase discontinuity. (b) Segregation due to an orientation discontinuity
[Nothdurft (1994) example reproduced with permission from Inverso et al. (2016)].
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elements, because of discontinuities that occur at the borders—bars shifted by half a spatial cycle
(Figure 4a) and an orientation discontinuity (Figure 4b). The neural substrate of the responses
to these contours likely resides in V2 (Schmid et al. 2014) and may be linked to iso-orientation
suppression. For a review of this topic, and its relationship to pop-out, see Schmid & Victor (2014).

CONCLUSION

We have surveyed selected lines of study concerning visual texture, emphasizing the nature of the
domain and the kinds of computational models that perceptual experiments can probe. Although
there is value in understanding how visual texture participates in specific tasks (e.g., determining
object boundaries and determining 3D shape), we suggest that the most important experimental
uses of visual texture are for analyzing the kinds of statistical information that neural populations
can carry and the ways in which top-down and bottom-up signals interact.
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