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ABSTRACT

We present a new derivation of the asymptotic correction for bias in the estimate of information from a finite sample [3, 4, 8].  The new derivation reveals a relationship between information estimates and a sequence of polynomials with combinatorial significance, the exponential (Bell) polynomials [2], and helps to understand the form and behavior of the asymptotic correction for bias.

INTRODUCTION


In its most basic form, application of the tools of information theory to laboratory data relies on the estimation of the information in a process consisting of independent occurrences of K kinds of mutually exclusive events, each of which occurs with a probability qj (j=1, …, K) [6].  The quantity
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is the information (in bits) associated with a single observation. Typically, the probabilities qj are not known and must be estimated from a finite set of observations.  It is well known that the naïve estimate for H, based on replacement of the exact probabilities qj by their empirical probabilities observed from N observations, downwardly biases the estimate of eq. 1. Essentially, this is because eq. 1 is a concave-downward function, so an average estimate for H derived from a range of estimates of the true probabilities qj is less than the value of H given by eq. 1 at the center of this range.

Several authors [3, 4] have derived asymptotic estimates for this bias in the limit of large N.  The leading term in the asymptotic estimate of the bias depends on K, the number of kinds of events, and N, the number of observations, but remarkably, is independent of the probabilities qj of the events. These calculations are readily extended to estimates of mutual information [4,8], since mutual information in a table is the sum of the informations in the distributions of the marginal probabilities, minus the information in the distribution of table entries.  Because the number of rows (say, KR) and columns (say, KC) of a nontrivial table is less than the number of entries in the table (KRKC), the downward bias in simple estimates of information (eq. 1) translates into an upward bias in estimates of mutual information.

This note presents a new and concise derivation of the bias estimate.  The new derivation clarifies the basis for the lack of dependence of the bias on the probabilities qj, and reveals a relationship (eq. 13) between information estimates and the exponential (Bell) polynomials [2], a sequence of integer polynomials with a well-known combinatorial interpretation.

RESULTS


We consider an estimate of information from a set of N events, each of which can independently have one of K possible mutually exclusive outcomes.  The probability of the jth outcome is denoted qj, and 
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The quantities pj are estimates of the probabilities qj, which are considered to be definite but unknown. That is, pj=nj/N is the empirical probability of outcome j, as estimated from a set of N observations in which this outcome occurred nj times. 
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denotes an average over all sets of N observations drawn from this universe.  The expected value 
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for the estimate of the information from N observations is thus
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We form the generating function
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To evaluate the expectation implicit in eqs. 2 and 4, we assign to each possible set of observations (say nj occurrences of each outcome j, with N=
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.  In this expression, the factorial terms count the number of ways of ordering nj occurrences of each outcome j into a sequence of N observations, and the terms involving qj specify the probability of any one such sequence of observations.  Inclusion of the multinomial probability in eq. 2 converts it to
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and eq. 4 to
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where the outer sum is over all sets of non-negative integers nj satisfying 
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in eq. 5, but unrestricted in eq. 6. Term-by-term consideration of the J-sum in eq. 6 and rearrangement leads to
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where we have defined
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and made use of 
[image: image15.wmf]å

=

=

K

J

J

q

1

.

1



For non-negative integer values of s, b(z, s) are polynomials and have the generating function
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Thus, b(z, s) are a simple example of the exponential (Bell) polynomials in z (the quantities  ( in [2]), and b(1,s) are the exponential (Bell) numbers [1] (history reviewed in [7]) . For all (not necessarily integral) s(0, b(z, s) satisfies the recurrence relation
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as can be verified from eq. (8) or eq. (9).  Also from eq. (8), b(z,0)=1, and for integer s> 0, the leading terms of b(z,s) are
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The Bell polynomials have a combinatorial interpretation [1, 2, 7]: the coefficient of zt in b(z,s) is the number of ways of placing s distinguishable objects into t indistinguishable containers.  In particular, the coefficient of zs-1 is s(s-1)/2, the number of ways of choosing one pair of the s objects to share a container.


From eq. (4), 
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where we have used U(N,1)=1 (from eq. (2)) and eq. (3) in the first step, and eq. (8) in the second step.  Combining this with eq. (7) yields
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Eq. (13) is exact. To derive an asymptotic estimate, we estimate the partial derivatives in eq. (14) by assuming that formula (11), which is a finite series for integer values of s, is a useful approximation at non-integer values as well. That is, we use the approximation
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The behavior of this approximation is illustrated in Fig. 1.  Note that, as terms beyond the constant term are added, the improvement in the approximation for large values of z is accompanied by a worsening for values of z< 1.


Inserting this approximation into eq. (13) and identification of corresponding coefficients of zN  on its two sides leads directly to
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The first correction term corresponds to the previous results of several authors [3, 4, 8].  The fact that it is independent of the probabilities qJ reflects the constant value (1/2) of the first correction term in eq. (14).


The mth correction term derived from our approach has a denominator 
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 This is different from the asymptotic series derived by Treves and Panzeri [8], which is strictly in inverse powers of N.  Nevertheless, the approaches agree.  For example, the second correction term in eq. (15 ), whose value depends on the probabilities qJ, differs from the results of Treves and Panzeri [8], but the difference is third-order (i.e., 
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), and thus is subsumed in the third correction term.


Implementation of this bias correction is not completely straightforward.. In the laboratory, one has access only to estimates of the event probabilities qJ, the quantities we have denoted pJ.  Eq. 15 states that the naïve estimate of information <H>N, obtained by replacing the qJ in eq. (1) by pJ,, is too low.  The first correction term in eq. (15) requires knowing the number of possible kinds of events, K, but not their probabilities. But even K may not be known in advance – one can only be sure that an event is possible if one has observed it, but one does not know that additional kinds of events are impossible, merely that they have not been observed in a sample of size N. Panzeri and Treves [5] suggest a sophisticated approach for modifying the count of the observed number of kinds of events.  Here, we initially consider the simple strategy of setting K equal to the number of kinds of events that were actually observed within N trials.


The left panels of Fig. 2 demonstrate the effects of this strategy for an experiment in which there are two kinds of events.   The initial correction closes most of the gap between the naïve estimate <H>N and the true value H, provided that the number of trials is sufficiently large so that each kind of event has a reasonable chance of occurring (
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).  When the number of trials is so small that one of the events will probably not be observed  (
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), the correction is ineffective – as would be expected, since there is no empirical evidence for more than one kind of event.  The second-order correction is very small in both regimes (nearly superimposed on the initial correction).


One might expect that the estimate of information could be improved if there were a better way to estimate either K or the event probabilities qJ.  For illustrative purposes, the right panels of Fig. 2  consider the extreme situation:  that both are known exactly (but only the empiric values pJ are used to estimate information).  The first correction is not as helpful.  In the regime in which it is significant (
[image: image27.wmf]1
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), it amounts to an over-correction, because the “correct” value K=2 is always used, even though two kinds of events were not typically observed.   Surprisingly, the second-order correction is even worse – resulting in large over-estimates, because of the terms involving reciprocals of small probabilities qJ.  In the first strategy considered, since the qJ are taken from empirical estimates, 1/qJ is limited by N, thus bounding the second-order correction.  But there is no such limit here, since even smaller values of qJ, based on a priori knowledge, may occur. A hybrid strategy (using a priori knowledge of K, but not of the event probabilities qJ) results in performance that is worse than either of the two considered above (not shown).


This pattern of behavior was also seen in numerical experiments involving several kinds of events and a wide range of event probabililties.  In sum, the most straightforward application of eq. (15), making use only of what was observed, appears to be both conservative and effective.  It fails under appropriate circumstances – namely, when observation is so limited that possible modes of behavior have not been observed.  Under these circumstances, higher-order corrections are not helpful.

DISCUSSION


We derived an exact expression (eq. (13)) for the expected information estimate from an N-trial dataset in terms of the partial derivative of the Bell polynomials with respect to their order, 
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.  The asymptotic expansion for this derivative (eq. (14)) corresponds in a term-by-term fashion to an asymptotic expansion (eq. 15) of the expected information estimate.  The leading term in the expansion of  
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, corresponds to the (unbiased) estimate of information from an unlimited sample.  The second term in the expansion of  
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1

, corresponds to the initial correction due to finite sample size (i.e., the estimate of the bias), as derived by previous authors ([3, 4, 8]).  Since this term is a constant, the initial term in the asymptotic form for the bias depends only on number of terms in the sum on the right hand side of eq. (13), namely the number of possible kinds of events K, and not on their probabilities qJ.


This analysis helps to understand why the high-order correction terms of eq. 15 are not useful in practice. The higher-order correction terms reflect the successive approximations to the Taylor expansion of 
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for small z. As is seen in Fig. 1, the asymptotic series (14) converges rapidly for large z, but diverges in the neighborhood of z=0. Thus, in the regime in which the higher-order correction terms might matter (low N, and estimates of q below 1/N), they worsen the estimate of bias (upper two right panels of Fig. 2).  When N is large, the second-order corrections do indeed improve the estimate of bias for some values of q, but the size of the correction is miniscule (lower panels of Fig. 2).
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FIGURE LEGENDS

Figure 1. The behavior of an asymptotic estimate for 
[image: image34.wmf]1

|

)

,

(

=

¶

¶

s

s

z

b

s

 .  Left panel: approximations provided by one and two terms of eq. (14). Right panel: approximations provided by three and four terms of eq. (14).


Figure 2. Comparison of strategies for the adjustment of empirical estimates of information in a simulation with two kinds of events (K) and 4, 16, or 64 trials (N). Exact value (eq. 1), naïve estimate <H>N, and corrections of the naïve estimate for bias.  Abscissa: probability q of the first kind of event (q1=q, q2=1-q). Ordinate: information H. Left panels: number of kinds of events K and their probabilities estimated from data. The two curves for the corrected estimates are virtually indistinguishable.  Right panels: number of kinds of events K and their probabilities known in advance.  On the right, the two-term correction leads to higher estimates of information (as labelled in upper panel).  All functions are symmetric about q=0.5, but are plotted for q in [0.0001, 0.9] on a logarithmic scale to emphasize the behavior for extreme values of q.
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