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Steady-state evoked potentials are often characterized by the amplitude and phase of the Fourier component at one or more

Summan
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frequencies of interest. We introduce a new statistic for the evaluation of these Fourier components. This statistic, denoted
same physiologic assumptions concerning the sources of variability of a Fourier component that are made in the use of the Rayleigh
phase-coherence statistic as well as the standard T2 statistic (Hotelling 1931) for multivariate data. However. the T.2, statistic also exploits the
relationship between the real and imaginary components of Fourier estimates, which is not exploited by T3, and utilizes amplitude information,
which is ignored by the Rayleigh criterion. For these reasons, the T statistic is more efficient than previously used criteria for detection and

quantiration of steady-state responses, both in principle and in practice.
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Steady-state sinusoidal analysis is of widespread and
established use in neurophysiology, both for single-unit
studies (Pringle and Wilson 1952: Hughes and Maffei
1966) and for visual evoked potentials (VEPs) (Van der
Tweel and Verduyn Lunel 1965: Regan 1966). In princi-
ple (Regan 1989). a steady-state evoked potential is a
repetitive evoked potential ‘whose constituent discrete
frequency components remain constant in amplitude
and phase over an infinitely long time period.” Despite
the obvious need to have efficient yet rigorous means to
assess the variability of Fourier components estimated
from experimental data. many previous investigators
have simply adapted standard statistics from other con-
texts (Norcia and Tyler 1985; Picton et al. 1987; Stapells
et al. 1987: Sirasburger 1987).

These previous approaches ignore one or more im-
portant features of estimates of Fourier components.
Methods based on the Rayleigh phase criterion (RPC)
{(Norcia and Tyler 1985: Picton et al. 1987) ignore
amplitude information entirely. Methods (Picton et al.
1987) based on the T? statistic of Hotelling (1931) for
multivariate data ignore relationships between the real
and imaginary parts of Fourier components. Full utlh-
zation of amplitude information and the relationship
between real and imaginary parts of Fourier compo-
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nents leads to a new statistic. T,.. which is specifically
designed for the analysis of variability of Fourier com-
ponents.

We present a theoretical analysis which leads to the
T2, statistic and how it may be used to determine
confidence limits and significance of differences be-
tween groups. We compare signal detection provided by
the new statistic 7. with that obtained with other
statistical methods (7° and the RPC) in numerical
simulations. Then. we compare application of T3, T2,
and the RPC 1o steady-state VEP data.

Methods

The evoked potential data used for practical assess-
ment of the 7,;, statistic consisted of the data of Mast
and Victor (1991) collected from 8 adult normal sub-
jects aged 25-35. We summarize the stimulation and
recording methods here. The visual stimulus was a
checkerboard which underwent sinusoidal counterphase
modulation at fundamental frequencies (f) of 5.0 Hz,
7.5 Hz, and 10.0 Hz. Checks subtended 16 min, had a
contrast [(I ., — I i)/ (Inax + Linin )] of 0.4, and a mean
luminance of 128 ¢d/m? The stimulation frequencies
were chosen so that in all cases, an integral number (2,
3, or 4) of reversals were completed within an 0.2 sec
period. One episode of data collection consisted of 150
such contiguous periods. Each subject sat for a total of
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32 episodes (8 at gach of the > emporal frequencies and
& episodes of a siatic checkerboard). Digitized data were
saved for later analvsis wirkowr averaging. so that Four-

iar componenis couid be cziculzied o

tions of 2ach episods.

The T, statistic

Here we derive a new statistic. 705_, o characterize
the vanability of a steady-state evoked potential (EP).
as measurad by its Fourier component. Our strategy is
10 begin with reasonable hypotheses concerning the
sources of variability in the estimate of the Fourer
component, and to deduce a statistic that is useful in
measuring this variability.

A graphical representation. A steady-state EP ex-
periment records many repeats of the response to a
periodic stimulus. Since the steady-state EP is a periodic
signal, it may be described by its Fourier components.
We consider here only the situation in which a single
Fourier component of the response is to be estimated.
At any particular frequency of interest. the Fourier
component is a complex number z. Written as z =r ¢,
the amplitude r represents the size of the response and
the phase @ represents the timing of the peak of the
response relative to the stimulus cycle. Written equiv-
alently as z = x + vy. the real quantities x and y repre-
sent the cosine and sine components of the response.
The polar representation z=r ¢ is more convenient
for interpretation of responses, since it separates re-
sponse size r and phase 8. However, the cartesian
representation z = X + ¢y is more suited for the present
analytical purposes. since it makes explicit the notion
that Fourier components may be considered as vectors
in the (x,y)-plane.

An estimate of a Fourier component of an evoked
potential may be obtained from one or more repeats of
the stimulus. Individual estimates of the Fourier compo-
nent, considered as vectors, form a cluster in the com-
plex plane. The center of the cluster is a pooled estimate
of the response. and the scatter of the cluster describes
the reliability of that estimate.

This is illustrated in Fig. 1. In each part. the heavy
vector along the x-axis represents a "true’ response (1.e..
the response that would be recorded in the absence of
variability). Individual response estimates are repre-
sented as thin-line vectors and were constructed by
adding random vectors to the “true’ response. The mean
of the 4 response estimates is indicated by a vector of
intermediate thickness. In general, as is illustrated mn
this figure, the mean of the response estimates is not
equal to the “true’ response. However, the scatter of the
individual estimates provides an estimate for the reha-
bility of the sample mean. As is shown in this figure, the
‘true’ response tvpically lies within the cluster of re-
sponse esumates. Thus., estimaudon of the amount of
scatter within the cluster should provide an index of
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“trug’ response may deviate from the
erved rasponscs. This is the basis of the
Sorothe Jemvanea of the T
ss on the real part X ind che
imaginury part v of the Fourler component z = x — ¥
are indeperdeni gquantties distributed according to
2aussian disiributions of egqual variances. We will de-
note this common variance by V.

This is the key point of departure between the 7o,
statistic and the T- statistic as used by Picton et al
(1987). The T’ statistic assumes no information abou:
the variances and covariances of these quantities, while
the 7. statistic assumes that the variances are equal
and the covariance is zero. Graphically, the T? statistic
considers the cluster of estimates of Founer compo-
nents to form an ellipse. whose axes and orientation are
unknown. The hypothesis of equal variances and zero’
covariance corresponds 10 the notion that the cluster of
estimates of Fourier components is circularly symmet-
ric. As we shall see. this increases the number of degrees
of freedom and produces a more efficient statistical test.

In a previous analysis (Mast and Victor 1991), we
showed that sufficient conditions for this hypothesis 10
be true are: (i) the "noise’ (i.e.. the background electro-
encephalogram (EEG)) is a gaussian process indepen-.
dent of the evoked potential (EP). and (u) that EEG
‘noise’ and the EP signal combine additively. We also
showed that although measurable departures from these
assumptions occurred, the real and imaginary parts of
Fourier estimates nevertheless were quantities with equal
variances and zero covariance.

Derivation of the T3, statistic. In a typical physio-
logical application, we have a set of M estimates of a
Founier component from independent data sets and
wish 10 know whether these estimates are consistent
with an a priori value. Let us denote the M estimates of
this Fourier component by z,, z,,....Zy. their empirical
mean value by (z)., = (X z;)/M. and an a priori hypo-
thetical value by {. We assume no information concern-
ing the variability of the estimates z; other than the
general considerations above. and their experimental
scatter. The quantities z;. (z),,. and { are complex
numbers. whose decompositions into real and imaginary
parts are given by z;=X; + t¥j. {Z)et = {XDest T {¥est>
and {=¢ + .

If indeed the set of experimental estimates are drawn
from a population whose mean is equal to {. then there
are two independent estimates of the population vari-
ance V of real and imaginary parts. The first estimate,
Vs, 15 denived from the scatter of the individually
determined components z; about their mean. Each of
the deviations x, — (x),; and ¥ — (¥)., Pprovide onc
such estimate. There are 2(M — 1) degrees of freedom,
rather than 2 M degrees of freedom, since the means of
the x;s are constrained to be (X)., and the means of
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the w5 are constrained 0 be v . Thus, one esumaie
for the population variance V is

=.——,\,"|z -z

M -1y S
Notz that this estmate is ndependen: of the assumed
population mean §.

The second esumate depends on the assumed popu-
lation mean {. Since (z),,. the sample mean, is the
mean of M independent estimates. both its real and
imaginary parts have variancz V/M about the popula-
ton mean §. Real and imaginary parts of (z),, are
independently distributed. and each is unconstrained by
the estimate of V, .. because the estimate Vg, is
independent of this mean. Thus, we have a second
estimate of the variance V:

Vgroup [(<X>Sl c) + (<\>est n) ]

%I I<Z>251 - § I : (:)

Under the hypothesis that the experimental data z;
are samples of a population whose mean is {, each of
the quantities Vg, and V. are estimates of the
variance V derived from independent quantities. There-
fore. the ratio Vi o,/ Vi 1s distributed according to
the F distribution (Sokal and Rohlf 1969), with 2(M — 1)
degrees of freedom for the denominator, and 2 degrees
of freedom for the numerator.

To maintain a close analogy with the T2 statistic
(Anderson 1938), we define a statistic 7. which is
equal to the variance ratio Vyo.5/ Vingiw normalized by
the number of observations M: e

12 -1 Voo
zire I\'I Vindl
z _ 2

- <Z>csz l ?

The above argument shows that for M independent
estimates of Fourier components z; drawn from a sam-
ple of assumed mean of ¢ \[ T2, is distributed
according 10 5 s\

When is a signal present? The basic application of
the TZ, statistic is the determination of whether an
observed set of Fourier components z; is consistent with
random fluctuations alone. or. conversely, whether this
set of observations implies (to within a given confidence
level) that a signal component is present. The null
hvpothesis that no signal is present is that {=0 in
equation (3). The null hvpothesis should be rejected (at
a pre- specified confidence level) if the calculated value
of T.2. corresponds to a value of F sufficiently far into
its distribution’s tail. Thus. a criterion that a set of
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Fourier 2stimates is :nconsisconr aith random scatter

about z2ro at coxmdence level 1 —pis:

Ny

N -1 |

Culcuianon of confidence regions.  For this applica-
tion. we consider the aull hypothesis that the observed
data z. of sample mean {z),, and unknown variance
are drawn from a populauon of mean . Since this null
hypothesis implies that M - TCuc is distributed according
10 Fipang—gpy @ value of M- T;. which lies on the tail
(by some predefined criterion) of this F distribution
allows rejection of the null hvpothesis that the popula-
tion mean is ¢§.

Since according o (3). 7., depends on the hypothet-
ical population mean ¢ through the difference

| <Z>=sz -

we may calculate a confidence region for the population
mean as follows: given a confidence level 1 — p. first
calculate (from the Foav-y distribution) the critical
value Tm:(l p- All values of {-that lead 10 a larger
calculated value for T would be less likely to result in
the observed sample mean. Thus. the confidence region
for the population mean { is a circle centered at the
sample mean (z),,. whose radius is determined by

2 _ .
Tcirc(l ) TI 51 —-p)2.2M -2}

copan—2) 212 (D |?
(1 A2.2M-2) 5
|<z>cst ={|°= = pf\f ’ (Jl\’l - 1) (D)

Difference berwveen two means. The T2, statistic may
be used to determine whether two experimental mea-
surements of Fourier components are significantly dif-
ferent. We assume that we have made M, measurements
2, ; under one set of conditions. and M “measurements
z,; under another set of conditions. We assume that all
measurements are -independent, and that the popula-
tions from which the z,; and the z,; are drawn have
real and imaginary parts of equal. but unknown, vari-
ance V. The null hypothesis is that the two means of the
two populations. {; and {,. are equal. As before, under
the null hypothesis. there are two independent estimates
of the common population variance V. The first esti-
mate is based on the scatter of the individual estimates

z, ; about their sample means (Zj ey

1
V. .. =
indiv = (XL, + M, — 2)

X [Elzl.j - <zl)5: | 2+ lez.j - <Z’l>cstl2] . (6)

There are 2(M, + M, — 2) degrees of freedom associ-
ated with this estimate. The second estimate is based on
the difference between the sample means themszlves:

MM, -
Sfoup ‘)(\I + M, ) ]<Zl>=sx <Z7>est| ( )

V.
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There arc two degress of fresdom associated with ¢
asumate.

As before. under the nu
Voo Vi 18 distttbuted ac
ton, but now with 2 degrees o . oz
wor. and 2(M, = M, = 2) degrees of freedom for the
denominator. The corresponding 7.5, statistic is

s M+ ML Vo
L= XIAL OV

indi-

(M, + M. - 2)

|<Zi>est - <22>cst | 2 (8)

Slzl,j - <Zl)=sz | i SIZZ‘J - <22>:sx ,:

where (M;M,/M; + M,)- T, is distributed according
10 Figong +2n, -4 Thus, if the calculated value (8) of
T.2. corresponds to the tail of the F distribution, the
null hypothesis that the population means {; and ¢, are
equal may be rgjected.

Neighboring data segments. The above derivations
assumed that the estimates of individual Fourier com-
ponents are from independent data segments. In princi-
ple, this would require that data segments are suffi-
ciently well separated so that fluctuations in the
frequency content of one data segment are independent
of those in another segment. For data segments that are
taken from experimental runs well separated in time,
this is a reasonable assumption. However. it is often
desirable to estimate Fourier coefficients from neigh-
boring data segments within a run. Provided that the
data segments are sufficiently long. the approximation
of independence remains valid. The criterion of ‘suffi-
ciently long’ is that the power spectrum of the underly-
ing noise is approximately flat in a frequency interval of
size 2% /L surrounding the frequency of the Fourier
component of nterest. where L is the length of the data
segment (Mast and Victor 1991. Appendix).

One way to determine whether the power spectrum is
flat at a resolution of 2=/L is to compare spectral
estimates obtained from data segments of length L (and
frequency resolution 2« /L) with spectral estimates ob-
tained from longer data segments of length L' > L (and
finer frequency resolution 27/L"). Net curvature of the
power spectrum would result in a failure of the esti-
mates obtained from the shorter segments to agree with
estimates obtained from the longer segments. Con-

Fig. 1. Graphical representation of the relationship between individ-
ual estimates of a Fourier component, their sample mean, and a ‘ true’
value that would be obtained if no variability were present. The heavy
vector represents a response that would be recorded if no vanability
were present. Individual response estimates are represented as thin-line
vectors. The mean of the 4 response estimates is indicated by a vector
of intermediate thickness. In part A, the signal-to-noise ratio (SNR) o
is0.25:1. In part B,the SNR o is1:1. Inpart C, the SNR o is 4: 1.
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versely, 1f the speciral estimates obtained at different
resolutions are mutually consistent, then it is reasonable
to conclude that the condition of approximate indeper
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This problem concerning failure of contiguous data
segments 10 be independent is not specific 1o the T,
statistic, but also applies when the 77 statistic or the
RPC is used for contiguous data segments. If the above
frequency-domain criterion is not met. the 72, statistic
is still useful in a pracucal sense. but the number of
degrees of freedom for comparison with tabulated F
values should be adjusted by the effective number of
independent data segments.

Results

Numerical simulations

In this section. we compare the efficiency of 3 ap-
proaches to signal detection: the 7.2_ statistic. the T~
statistic (Anderson 1938), and the RPC (Mardia 1972).
We assume that the signal 10 be detected has an ampli-
tude (in the absence of noise) of o. For convenience. we
may take the phase of this response to be zero (as
represented by the heavy vectors in Fig. 1). To simulate
estimation of this response from N data segments with
additive noise. we added random vectors to this re-
sponse (as represented by the light vectors in Fig. 1).
The random vectors were drawn from a symmetric
2-dimensional gaussian distribution of unity variance,
so that the signal-to-noise ratio (SNR) of each estimate
was equal to o. For each statistical test. the criterion for
signal detection was that the set of N noisy estimates
was inconsistent with scarter about zero. The criterion
was set so that false positives would occur 5% of the
time. For the T2 statistic. we used the criterion (4); for
T2 we used the method of Anderson (1958); and for
the RPC. we used the method of Mardia (1972). This
procedure was repeated for 10.000 independent simu-
lated sets of N estimates. for a selection of SNR ¢ and a
range of the number N of estimates.

Results are displayed in Fig. 2. For the low SNR of
o =0.25 (Fig. 2A). the T2, and T? statistics perform
simitarly: approximately N =40 data segments are
needed to detect a response half of the time. The RPC is
inferior. requiring approximately N = 60 data segments

Fig. 2. The frequency with which a steadv-state evoked response

signal is detected. as & function of the number of segments N and the

SNRo.In A, the SNR o is0.25:1.In B, the SNR o is 1:1. In C, the

SNR ¢ is 4:1. Open circles, T2, statistic; open squares, T2 statistic;

open triangles, RPC. These data are obtained from numerical simula-
tions, as described in the text.
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10 detcct a response half of the time. For an inter-
3 regimes of

mediate SNR of o =1 (Fig. 2B\, there are
saraerast, With 2 smali aumber o

of dara segmenis (N = 24 or more). all 3 methods detsct

a response essenuallv all of the ume. In the inter-
mediate range. the 7 statistic is superior 10 the other
two siatistics: with § data segments, signal is detected
90% of the time by 7. 83% of the time by the RPC,
and 79% of the time by T°. For the high SNR of ¢ =4
(Fig. 2C), T.}. and RPC detect a response essentially all

irc

of the time with N =3 or more data segments. How-
ever, comparable performance requires N = 4 data seg-
ments if the RPC is used. and N =5 or 6 data segments

if the T? statistic is used.

In Fig. 2, we examined the performance of these 3
statistics as more and more data scgments of a fixed
SNR are added. Next. we consider the performance of
these 3 statistics as a single data segment is subdivided
into more and more subsegments. This is meant to
mimic the process of determining whether a Fourier
component is present in a partcular segment of data by
comparing estimates of Fourier components in N equal
subsegments of the original segment. In the limit that
these subsegments are independent. the SNR ¢ from
each subsegment is related 1o the SNR in the entire data

segment (6) by ¢ =a/VYN.

Performance of the 3 statistics as a function of ¢ and
N is shown in Fig. 3. In all cases. performance improves
as the number of subsegments is increased. and (as
expected) reaches an asymptotic value as the number of
subsegments N becomes large. In all cases. a similar

2

asymptotic value is achieved for the T3

and the T?

statistics: approximately 9% detection with a SNR of
o =023 22% detection with a SNR of ¢ =1, and 72%
detection with a SNR of ¢ = 4. The asymptotic perfor-
mance achieved by the RPC is inferior in all cases:
approximately 8% detection with a SNR of o= 0.25,
18% detection with a SNR of ¢ = 1. and 60% detection
with a SNR of o0 =4. For a small number of subseg-
ments. the 7?2 statistic becomes inefficient. and the

RPC is similar in efficiency to 7.

Thus. we see that for some conditions (low o, high
N), T? is more efficient than the RPC. and for others
(high o. low N), the RPC is more efficient than T2, But
in all conditions. the new statistic 7., is at least as

Fig. 3. The frequency with which a steady-state evoked response
signal is detected, as a function of the number N of partitions of a
da:a segment into subsegments. and the SNR o of the entire segment.
The SNR o’ from each subsegment is taken to be o’ = a/yN. In A,
the SNR5i160.25:1. In B, the SNRo is1:1. In C, the SNR g is 4:1.

Open circles, T, statistic; open squares, T2 statistic;

RPC.
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efficient zs ewther of the two other approzches. and is
often betrar than both. In the Discussion, we will inter-

- findings in terms of number of degress of

iod optimzl use of 21 of the informuauen imie
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Compurison of signal detection in VEP data

Nexi. we compare how these 3 statistcs perform
when applied 10 acwal visual VEP data. We first con-
sider how many data segments must be averaged to-
gether to detect a response, and later we consider the
sizes of the confidence regions provided by the 7.2, and
T+ statistics.

The VEP data we examined was elicited by contrast-
reversing checkerboards in 8 normal subjects. Each sub-
ject viewed 8 presentations of the checkerboards, at
fundamential frequencies of f = 5.006, 7.509, and 10.012
Hz. Each data segment was 29.96 sec long; however, for
this analysis we used only the first third of each data
segment to decrease the SNR. With the false-positive
rate set at 3%. the average number of trials needed 10
achieve significance was 2.7 for T2, 4.3 for T? and 3.3
for the RPC. Clearly. the T2, statistic is preferable in
this situation. Because significance is achieved in a
small number of trials, the fewer number of degrees of
freedom in T hinders its performance: it cannot even
be applied unless there are 3 data segments to compare.

Division of a segment into subsegments

As seen from Fig. 3. division of a data segment into
manyv subsegments improves the efficiency of any of the
statistical procedures. However, all 3 statistics can only
be applied if the estimates within individual subseg-
ments are independent.

In Mast and Victor (1991). we presented a theoretical
criterion for the minimum length L of independent data
subsegments: in the neighborhood of the frequency of
interest, the power spectrum of the noise process must
be approximately flat over a frequency band width of
1/L. We showed in the Appendix that this minimum
subsegment length is the same as the length L required
for power spectral estimates to converge to their limit-
ing value.

To apply this criterion to determine the minimum
subsegment length required for approximate indepen-
dence. we obtained spectral estimates from each subject
from 8 segments of EEG recorded during fixation of an
unmodulated checkerboard. according to equation (3)
of Mast and Victor (1991). These spectral estimates will
be denoted S(w,L ., ), where L _,, is equal 1o the seg-
ment length, 29.96 sec. We also obtained spectral esti-
mates S(w.L) from the first L seconds of data from each
of these 8 segments. If L is sufficiently long so that
spectral estimates have approached their limiting value,
then the ratio R(w,L) = S(w,L)/$(w,L,,,,) will be dis-
tributed according 10 Fi;. 14
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Fig. 4. The frequency with which values of the ratio R(«,L)=
S(w,L)/S(w.L ., ) lie in the two 5% 1ails of the corresponding F
distribution. As L approaches the range 3-6 sec, the expected number
of outliers (10%) is found.

The number of degrees of freedom is 2(N — 1). where
N 1s the number of segments. In using the F statistic.
we make the approximation that the numerator and
denominator are independent. Since the data used for
the spectral estimate S(e«,L) is contained in the dara
used for the spectral estimate S(w,L,, ). this approxi-
mation holds only if L << L_,..

The ratio R(w,L)=§(w.L)/§(w.Lmax) was calcu-
lated for 16 frequencies « in the range 2.5-40 Hz, for
each of the 8 subjects. This provided 128 values of
R(w.L) for each subsegment length L. In Fig. 4, we
have plotted the frequency that the ratio R(w,L) lies in
the two 5% tails of the corresponding F distribution.
For very short values of L. there are between 2 and 3
times as many values in the tails as would be expected.
However, when L exceeds 3 sec, then (as expected) only
approximately 10% of values lie in the two 3% tails.
Since this means that spectral estimates have ap-
proached their limiting values. it follows that adjacent
subsegments of length 3-6 sec may be regarded as
independent.

The above estimate rests on the assumption that the
power spectrum of the EEG is independent of whether
or not a periodic stimulus is present. This is only
approximately true (Mast and Victor 1991). Further-
more, even if this estimate is accepted for this particular
paradigm, it is possible that the minimum subsegment
length will be different in another EP paradigm. For
these reasons, we consider a more practical, though less
rigorous. approach.
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RPC

Fig. 5. A Venn diagram summarizing signal detection by T.._, T?,

and the RPC. Numbers within each circle indicate the number of

episodes in which the corresponding statistic detected a signal first.
Numbers in overlaps correspond 1o ties.

If estimates from correlated subsegments are incor-
rectly assumed to be independent. then Fourier esti-
mates whose deviation from zero is due to chance alone
may be erroneously considered significant. It is there-
fore reasonable to correct empirically for this error by
choosing a more stringent criterion for signal detection.

With this in mind, we compare the performance of
the 3 statistics in detecting a signal in a single episode
(29.96 sec) of experimental data. The episode is parti-
tioned into 150 subsegments 0.20 sec long. A signal is
considered to be detected by the Nth subsegment if the
chosen statistic achieves significance for the first N
subsegments, and does not lose significance when 1 and
2 additional subsegments are added. With this criterion.
no false positives were encountered in analysis of 32
min of EEG recorded in response to an unmodulated
pattern. Performance of T.2_, T2 and the RPC are
summarized in Fig. 5. In 23 of the 192 episodes, a signal
was not detected by anv of the 3 statistics. Of the
remaining 167 episodes, the signal was detected initiallv
(including ties) bv 7.2_ in 136. by T2 in 76. and by the
RPC in 97. The superior performance of 7., was found
at all 3 temporal frequencies tested. In those episodes in
which a signal was detected by all 3 statistics, the
average length of data required to detecied a signal was

274 sec for To.. 428 sec for T°. and 4.22 sec for the

Inm o
not merely wihether a signal is present. but also what
the confidence limits on its amplitude and phase. With
steadyv-state responses represented as vectors in the
complex plane. confidence regions are represented by
regions surrounding the vector. The T? statistic pro-
vides elliptical confidence regions: the axes of the el-
lipse are related 10 the estimated variances of the real
and imaginary parts of the responses and their covari-
ance (Anderson 1958). The T2, statistic provides for
circular confidence regions. The RPC does not provide
for confidence regions, since it ignores response ampli-
tude.

We now compare the area of confidence regions
provided by T2. and T> For this comparison, we
considered each data collection period to be a single
segment (30 sec). without subdivision. Thus, these confi-
dence regions are derived in a manner which respects
the need for truly independent estimates. A comparison
was made for 8 subjects at 3 temporal frequencies. In 22
of the 24 (= 3 x 8) comparisons. the T3, statistic pro-
vided a smaller confidence region than that provided by
T? On the average, the confidence region provided by
T, was 22% smaller (geometric mean).

A comparison with practical importance was made
from ‘sweep VEP' (Regan 1973: Norcia and Tyler 1983)
data collected from human infants. The data shown
here (Fig. 6) are from a normal 14 week infant. In this
implementation (Mast and Victor 1989) of the sweep
technique, a grating is modulated at a reversal rate of
13.5 Hz as spatnal frequency is incremenitally stepped
every 0.89 sec during the course of a 15 sec ‘sweep’
from 0.7 c/deg to 10.6 c/deg. For the present analysis,
each 0.89 sec period of constant spatial frequency was
regarded as a data segment, and corresponding seg-
ments were compared across 2, 3, or 4 successive sweep
trials.

Strictly speaking. we cannot regard responses within
a single data segment as a steady-state’ VEP, since
there is no reason to expect that response phase is
constant in time. But we can use the T2, statistic to
assay consistency of Fourier coefficients measured from
corresponding segments in different sweep tnials, and to
estimate confidence limits. Since these corresponding
segments arc well separated in time, the hypothesis of
independent estimates is met. Responses and confi-
dence regions as determined by T, and T? are shown
in Fig. 6. For comparisons across two trials (Fig. 6A).
only the T2 statistic may be applied. Responses were
found to be significant by the T2, statistic for the first
9 sweep segments and bordersd on significance in the
tenth segment (approximately 5.3 ¢/deg). For compari-
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Fig. 6. Analysis of *sweep-VEP' daia by T3, and T2 statistics, A: 2
sweep trials. B: 3 sweep trials. C: 4 sweep trials. In the top 2 graphs of
each part, the amplitude and phase (in = radians) of the second
harmonic of the VEP are plottad as a function of spatial frequency. In
the third graph of each part, this Fourier component is plotted as a
vector, with the 95% confidence circle as determined by 7. The 95%
confidence ellipse as determined by 72 is shown as the lowest graph
in B and C, but not in A, since confidence regions cannot be
determined from T2 with only 2 repeats.
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3 irials (Fig. 6B), responses bordered on
into the eleventh segment (apcmumdelx
Rl ~y the T::>. statisue. Ho ‘L 7o staus
oo indicated significanve only in
ments. and the confidence regions weore man)
larger than those determined by 7. For comparisons
across all 4 trials (Fig. 6C). responses bordered on
significance into the wwelfth segment (approximately 6.7
¢/deg) by the T, statistic. The T~ statistic indicated
significance as far as the eleventh scgment. Confidence
regions determined by 7- were approxjmatcl)’ twice as
large as those determined by 7.
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Discussion

Comparison of methods of signal detecrion

While the need to have rigorous yet efficient methods
to assess the reliability of Fourier components esti-
mated from experimental data is clear. current practice
is to adapt standard statistics from other contexts. For
example. Norcia and Tvler (1985) and Stapells et al.
(1987) determined the presence of signal in individual
epochs on the basis of measures of phase coherence
(Mardia 1972). Picton et al. (1987) made a rigorous
comparison of phase-coherence methods with the T2
statistic (Anderson 1938). in the extraction of steady-
state auditory evoked potentials, and found no signifi-
cant advantage for either method: both methods were
somewhat superior to the (+) average initallv intro-
duced for transient signals (Schimmel 1967).

In Figs. 2 and 3. we used simulated data to compare
the two methods found most efficient by Picton et al.
and the T, statistic described here. The results of Figs.
2 and 3 may be summanzed as follows. There are 2
regimes: a regime in which the number N of analysis
segments is limiting. and a regime in which the SNR of
individual analysis segments is lmiting. In the first
regime, T, and the RPC are superior, and T2 is
relatively inefficient. In the second regime. T2 and T2
are superior, and the RPC is relatively inefficient. For
intermediate valués of the SNR and the number of
analysis segments. T}, performs better than either sta-
tistic.

The first regime (a limitingly small number N of
analysis segments) can be understood by counting up
the number of parameters available from the data, and
the number of parameters which must be estimated by
the statistical technique. Each analysis segment provides
2N pieces of data: a real and an imaginary component
of the estimated Fourier component. To apply the T
statistic. a total of 3 quantuties must be estimated: the
real and imaginary parts of the actual response. and the
radius of a confidence circle. Thus. with N Founer
estimates. there are 2N ~ 3 effective degrees of freedom.

However, 10 apply the T~ statistic. a total of 3 guanu-
ties must b~ estimzied: the real and imaginary parts of

132, thelr vanane2s Which ars oot uas-

and thair covarizncs. Thus, with N
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Fourier estimates. there ars
freedom. Finally, the RPC =ssentially attempts to es
mate one parameter (phase coherence). but only makns
use of one parameier from each segment (phase). and
hence has .* — 1 cffective degress of freedom. The T°
statistic cannot even be applied unless there are at least
3 segments; the RPC and T, statistic can be applied if
there are onlv 2 segments. For a small number of
segments, the number of degrees of freedom determines
the relative efficiency of the statistical methods.

The second regime is that of low SNNR. When the
SNR is low. many segments must be averaged in order
to reach significance. Here. it becomes crucial to use all
of the daia available from each segment: the effective
number of degrees of freedom is no longer imiting. The
statistics 7.2 and T use both real and imaginary parts
of the Fourer estimate. The RPC, however, depends
only on phases of individually estimated components.
In ignoring amplitude information, it throws out a
portion of the already degraded signal and hence can-
not perform as well as the other statistics.

In both regimes. 7. performs as well as (or better
than) 72 and the RPC. This enhancement is attained
without an increase in the rate of false positives. Funda-
mentally. the enhancement relies on amplitude informa-
tion not used by the RPC statistic. and a priori informa-
tion not used by the T2 statistic. The critical piece of a
priori information is that fluctuations of real and imag-
inary parts of Fourier estimates are of equal variance
and zero covariance.

There are 2 ways of justifying this assumption. First,
it is a consequence of the hypothesis that the EP signal
and the EEG noise are independent. However. while
this is a tacit assumption of the T statistic as well. it is
not typically tested explicitly (see Mast and Victor 1991
for a review). When we searched for interactions of the
VEP and the EEG. we found that additivity and inde-
pendence were only approximations (Mast and Victor
1991). However. despite additivity failure. deviations
from the assumptions of independent real and imagin-
ary parts of equal vanance could not be detected in
approximately 90 min of combined VEP/EEG data.
Thus, although the assumption of additivity is not en-
tirely valid. the central assumptions underlying the T2,
statistic were verified.

The theoretical advantages of the T2, statistic were
borne out in practice as well as in numerical simula-
tions. T} detected signals earlier than 72 and the RPC.
and confidence regions derived from T, were con-
sistently smaller than those derived from T2 The im-
provement offered by 7.2, depended on the amount of
data and its signal-to-noise in a manner consistent with
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the theorzical analysis: the largest difference was ob-
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high and only a few s sgments

g 15 simpler: theyv arc \.U'LLIQT .md are deﬂ\ ed
from the variances of the real and imaginary par:s of
the Fourier esimates. In contrast. confidence regions
derived from T~ are elliptical and require calculation of
covariances and determinants as we]l (Anderson 193%).

The potential advantages of the T;.. statistic apply to
sinusoidal analysis of steadv-state responses in the gen-
eral physiological context. and not only 1o VEPs. In-
deed. this statistic has been previously used in the
analysis of single-unit responses as a criterion for
whether responses were significantiv ‘dfferent from zero
(Victor and Shapley 1979).
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Nor the last word

We pointed out that although T  represents an
improvement over T2 for analysis of steady-state re-
sponses in a background of additive noise. it does not
represent the last word. One situation in which further
gains may be anticipated is that in which the variance of
a Fourier estimate is known from a priori data. Further-
more. our analysis only treats statistics of a single
harmonic. In sitvwations in which more than one
harmonic is present. extensions of 7. may need to be
considered.

Conclusion

The standard T? statistic (Hotelling 1931: Anderson
1958) is the optimal statistic for determining the confi-
dence limits for a vector quantity corrupted by additive
gaussian noise of unknown variance/covariance. We
have exploited the additional information that real and
imaginary parts of an estimate of the Fourier compo-
nent are independent and of equal variance to improve
on the T statistic.
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