Chapter 7
Spike Metrics

Jonathan D. Victor and Keith P. Purpura

Abstract Important questions in neuroscience, such as how neural activity repre-
sents the sensory world, can be framed in terms of the extent to which spike trains
differ from one another. Since spike trains can be considered to be sequences of
stereotyped events, it is natural to focus on ways to quantify differences between
event sequences, known as spike-train metrics. We begin by defining several fam-
ilies of these metrics, including metrics based on spike times, on interspike inter-
vals, and on vector-space embedding. We show how these metrics can be applied
to single-neuron and multineuronal data and then describe algorithms that calculate
these metrics efficiently. Finally, we discuss analytical procedures based on these
metrics, including methods for quantifying variability among spike trains, for con-
structing perceptual spaces, for calculating information-theoretic quantities, and for
identifying candidate features of neural codes.

7.1 Introduction

7.1.1 Mathematics and Laboratory Data

Mathematical analysis of laboratory data plays a crucial role in systems neuro-
science. Perhaps the most fundamental reason is that often, the questions that we
ask of data are abstract. A prime example is the investigation of neural coding—
delineation of the relationship between stimuli, actions, and/or behavioral states,
and the activity of one or more neurons.

An invited chapter for “Analysis of Parallel Spike Trains” (S. Rotter and S. Griin, eds.)

J.D. Victor ()

Division of Systems Neurology and Neuroscience, Department of Neurology and Neuroscience,
Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA

e-mail: jdvicto@med.cornell.edu

url: http://vivo.cornell.edu/individual/vivo/individual6150

S. Griin, S. Rotter (eds.), Analysis of Parallel Spike Trains, 129
Springer Series in Computational Neuroscience 7,
DOI 10.1007/978-1-4419-5675-0_7, © Springer Science+Business Media, LLC 2010


mailto:jdvicto@med.cornell.edu
http://vivo.cornell.edu/individual/vivo/individual6150
http://dx.doi.org/10.1007/978-1-4419-5675-0_7

130 J.D. Victor and K.P. Purpura

To apply mathematical analysis to laboratory data in a principled way, a neces-
sary first step is to choose an appropriate mathematical framework. This would be
simple if laboratory data corresponded precisely to mathematical entities, but this
is rarely the case (Slepian 1976). Laboratory data do not permit one to apply meth-
ods that require taking limits as time goes to infinity or to zero, and one does not
have access to statistical ensembles, just individual experiments. Thus, explicitly or
implicitly, the neuroscientist must identify and abstract the essential features of the
data that are relevant to the problem at hand or the goal of the analysis. We there-
fore begin with a discussion of these considerations as they relate to the electrical
activity of neurons and to the problem of neural coding.

7.1.2 Representing Spike Trains as Samples of Point Processes

The electrical activity of individual neurons can be recorded extracellularly, intra-
cellularly, and somewhat more indirectly by optical means. The electrical activ-
ity, as often measured with micro- or macroelectrodes, consists of a combination
of small voltage fluctuations (on the order of 10 mV), upon which are superim-
posed larger, brief “action potentials™: stereotyped voltage transients of approxi-
mately 100 mV that last a fraction of a millisecond. Since action potentials prop-
agate without loss and result in the release of neurotransmitter, they are generally
considered to represent the components of a neuron’s activity that are “seen” by the
rest of the nervous system. Consequently, the sequences of action potentials emitted
by individual neurons (i.e., “spike trains”) are a natural focus for the study of brain
activity at the level of cells and circuits (Segundo and Perkel 1969; Abbott 2000;
Sen et al. 1996). To abstract the brief, stereotyped nature of spike trains, we choose
to represent them as instances of point processes, i.e., event sequences. |

7.1.3 Analyzing Point Processes: The Rationale for a Metric-Space
Approach

The point-process representation (see Chap. 1) has substantial implications for the
choice of signal-processing strategies. Had we chosen a vectorial representation?

IWaveforms of real action potentials are not completely stereotyped, and at least some of the
waveform-to-waveform differences are systematic. By representing neural activity as a point pro-
cess, we make the conscious decision to ignore these differences, as is typically done both in this
book and in general. However, this simplification is not as restrictive as it might at first seem. By
representing action potentials as instances of point processes, we are not assuming that every action
potential has the same effect on post-synaptic neurons; we are merely assuming that the differences
in the effects of each action potential can be understood from their temporal pattern. This makes
good biological sense, since temporal pattern (in particular, the time since the preceding spike) is
a crucial factor in governing both transmitter release and the subtle variations in action potential
shape.

2More specifically, a Hilbert space—because the dot-product is defined.



7 Spike Metrics 131

(e.g., had we represented neural activity as a continuous voltage record), certain
algebraic operations would immediately be defined—the usual vector-space opera-
tions of addition, multiplication by scalars, and inner (“dot”) product. These opera-
tions are the basis of signal-processing methods such as filtering, averaging, spectral
estimates, and signal detection. For point processes, these operations are not appli-
cable, and these vector-based signal-processing methods cannot be directly applied.

While this might at first seem to be a severe disadvantage of the point process
framework, further consideration shows that this is not the case. The reason is that
vector-based procedures require the imposition of a high degree of mathematical
structure, and this structure is often not appropriate or practical. One reason for this
is that in a vector space, linearity plays a fundamental role, and this is arguably at
odds with the nature of neural dynamics. A second reason is that the dot-product
induces an intrinsic Euclidean geometry. By representing spike trains as samples
of point processes, we are driven to analytical procedures that do not require us to
define vector-space operations (e.g., how two spike trains can be added). The point
process perspective can thus allow the researcher to investigate a wider gamut of
behavior in the spike trains.

Two examples from sensory physiology emphasize this point. Human color vi-
sion is a three-parameter space determined by the three cone absorption spectra,
and thus, one might hope that a three-dimensional vector space would provide an
appropriate representation for color percepts. However, experimental measurement
of perceptual distances within this three-dimensional space shows that perpendicu-
lars need not be unique (Wuerger et al. 1995)—in contrast to the requirements of a
Euclidean space. In olfaction, the situation is far more complex. Olfactory percep-
tual space may not even have a well-defined dimension, mixing of odorants need not
lead to intermediate percepts, and gross violations of linearity are present (Hopfield
1995). Thus, the Euclidean geometry implied by vector spaces may be too confining
to support a correspondence between neural activity and sensory perception.

To broaden our scope, we consider analytic procedures in which relationships
between pairs of spike trains play a central role, but we do not require that we know
how to “add” spike trains or to multiply them by scalars. Instead, our basic opera-
tion is a way to compute a distance (i.e., a measure of dissimilarity) between two
spike trains, d(A, B). In keeping with the philosophy of limiting our assumptions,
we only require that the distances d(A, B) are a “metric” (defined below). That is,
spike trains are considered to be points in a metric space, rather than a vector space.
While distances derived from vector spaces are necessarily metrics, the distances
derived from metric spaces typically cannot be mimicked by a vector space. Vector
space distances are unchanged by linear transformation; no corresponding property
holds for metrics in general. Typical metric spaces, including the several of those we
consider below, do not have Euclidean geometry (Aronov and Victor 2004). Thus,
metric spaces (and the distances that define them) are much more general than vector
spaces.

The reader might wonder about mathematical frameworks that are even more
general. For example, the notion of a “topology” on the set of spike trains is even
more general than that of a metric (see Singh et al. 2008 for a recent application of



132 J.D. Victor and K.P. Purpura

this notion to spike-train analysis). A topology merely requires that we define rela-
tionships between spike trains via a system of “open sets”, while a metric requires
that we quantify distances (and these distances in turn define the open sets). Fun-
damentally, there is no a priori reason to exclude nonmetrizable topologies, though
such spaces are typically quite strange and nonintuitive. Conversely, the notion of
“distance” is widely applicable to our current understanding of perception and be-
havior, and can be readily quantified, at least in principle, for example, as the num-
ber of “just noticeable differences” between two stimuli. Moreover, a compilation
of the distances between all pairs of points describes the intrinsic geometry of a
space. Thus, the metric-space framework is capable of capturing the essence of
what one hopes to account for (the intrinsic structure of the space represented by
neural activity) and carries with it only minimal restrictions. Finally, we point out
that under some circumstances, perceptual comparisons (Tversky and Gati 1982;
Tversky 1977; Maloney and Yang 2003) and other components of cognition and
learning may be nonmetric in that they violate either the postulate of symmetry or
the triangle inequality. Generalizations of metrics that accommodate this behavior
are straightforward; the reader is referred to (Victor et al. 2007) for further details.

We emphasize that we are not suggesting a single best way to define distances
in neurophysiological data. Rather, we present the metric approach (especially as
it applies to neural coding) as a general strategy to formalize biologically moti-
vated hypotheses concerning the meaningful features of spike trains and to deter-
mine whether these hypotheses are supported by observed neural activity associated
with sensory and motor events.

7.1.4 Plan for this Chapter

We begin with some formal preliminaries. We then define several families of met-
rics for spike trains, first considering metrics applicable to single-neuron responses
and then metrics applicable to multineuronal activity. We then describe several al-
gorithms by which these metrics can be calculated. We conclude by discussing a
range of analytical procedures based on these metrics that can provide insight into
spike trains and their relationship to behavior. These procedures include methods
of quantifying variability among spike trains, describing their relationship to per-
ceptual spaces, and information-theoretic techniques aimed at identifying candidate
features of neural codes.

7.2 Spike Train Metrics

In this section, we define several families of metrics for spike trains. We empha-
size “edit-length” metrics, which are specifically applicable to event sequences and
yield distances that are fundamentally distinct from vector-space distances. Follow-
ing this, we consider a second class of metrics that are consequences of embedding
spike trains into vector spaces.



7 Spike Metrics 133

7.2.1 Notation and Preliminaries

We represent the activity of a single neuron as a sequence of stereotyped events. Cor-
respondingly we represent multineuronal activity as a sequence of labeled events.
More formally, we represent a spike train A observed over a period [0, T'] by a se-
quence of distinct real numbers ?1, ..., ) (4), the times of occurrence of the spikes.
M (A) is the total number of spikes (and may be 0), and the spike times are as-
sumed to be listed in increasing order. When considering the activity of multiple
neurons, we augment this framework by adding labels /1, /2, ...,y (a). The labels
lj are drawn from a set {1,..., L} of abstract tags, indicating which neuron was
responsible for each spike.

A metric d(A, B) is a mapping from pairs of spike trains to the nonnegative real
numbers. It satisfies three properties, namely (i) d(A, B) > 0, with equality only
when A = B, (ii) symmetry: d(A, B) = d(B, A), and (iii) the triangle inequality,
d(A,C) <d(A, B) +d(B, C). With these three conditions, the present use of the
term “metric” is consistent with the topological definition of this term (Gaal 1964)
and endows the set of event sequences (the spike trains) with the properties of a

topological “metric space”.?

7.2.2 Cost-Based (Edit Length) Metrics

7.2.2.1 General Definition

A simple, intuitive strategy enables the construction of metrics that formalize a
range of biologically motivated notions of similarity. The common element in these
metrics is that of a set of “elementary steps” between two spike trains, each of which
has an associated nonnegative cost. We require that the cost c(X, Y) of an elemen-
tary step from X to Y is symmetric and that for any two spike trains A and B, it is
possible to find some sequence of elementary steps that begins at A and ends at B.

Any set of elementary steps satisfying these conditions leads to a metric between
spike trains: the cheapest total cost to transform A to B via elementary steps. More
formally, we define

n—1

d(A,B)=min{ Y c(X;. X;11) . (7.1)
j=0

3Below we will also want to consider a very simple distance that is not, strictly speaking, a metric.
This is the “spike count distance” DsPke[0]. For the spike-count distance, the distance between
two spike trains is given by the difference in the number of spikes they contain. Thus, we can have
DKe[0](A, B) = 0 for distinct spike trains A and B if they contain the same number of spikes.
While this distance is not strictly a metric, the formal structure of a metric space still applies,
because we can think of D*P*°[0] as acting on the equivalence classes of “distinguishable” spike
trains, rather than on the spike trains themselves.



134 J.D. Victor and K.P. Purpura

where {Xo, X1, ..., X,} is a sequence of spike trains with Xo = A and X, = B.
Metrics defined in this fashion are guaranteed to satisfy the triangle inequal-
ity, since the cheapest path from A to C cannot be more expensive than a path
that is constrained to stop at B. These cost-based distances are analogous to
“edit-length” distances for symbol sequences, including those used in analysis
of EEG data (Wu and Gotman 1998), and, more prominently, in comparison of
genetic sequences (Sellers 1974; Needleman and Wunsch 1970). In this anal-
ogy, each of the elementary steps can be considered to be a way of “editing”
the spike train. The minimum total cost of the elementary transformations, the
“edit-length”, quantifies the dissimilarity of the spike trains. Thus, efficient dy-
namic programming algorithms for comparison of genetic sequences (Sellers 1974;
Needleman and Wunsch 1970) can be adapted to calculate many kinds of spike
metrics (Victor and Purpura 1997, 1996). Interestingly, although these algorithms
have been in use for almost 40 years for genetic sequence comparison, their use in
neuroscience is much more recent.

7.2.2.2 Spike Time Metrics

As a first example of the strategy described above, we create a family of metrics that
are sensitive to the timing of individual spikes (Victor and Purpura 1997, 1996). The
biological motivation for these metrics is that neurons have a firing threshold. As a
consequence, neurons can often be regarded as coincidence detectors (Softky and
Koch 1993; Egger et al. 1999; Kuba et al. 2005; Abeles 1982): one spike arriving
on a presynaptic neuron will not cause a postsynaptic neuron to fire, but a sufficient
number of spikes arriving within a sufficiently narrow time window will cause the
postsynaptic neuron to fire. Thus, the “meaning” of a spike train depends on the
timing of its spikes.

To capture this dependence in a metric, we invoke the above machinery with two
kinds of elementary steps (Fig. 7.1). The first elementary step consists of inserting
or deleting a spike and is assigned a cost of 1. This rule ensures that every spike train
can be transformed to any other spike train by some path: the path that successively
deletes all spikes from one train and then successively inserts all spikes into the
second train. The second elementary step defines the sensitivity to spike timing.
It consists of moving a single spike, and the associated cost is proportional to the
amount of time that the spike is moved. That is, if two spike trains X and Y are
identical except for a single spike that occurs at ty in X and ty in Y, then

c(X,Y)=qltx —ty|. (7.2)

Along with (7.1), this set of elementary steps defines a spike time metric, DPe[].
Note that these metrics constitute a parametric family, parameterized by the value
of ¢ that specifies the cost per unit time to move a spike. Since moving a spike by
an amount AT = 1/q has the same cost as deleting it altogether, g can be viewed
as determining the relative sensitivity of the metric to spike count and spike tim-
ing.



7 Spike Metrics 135

X

[ L1
vl 1 11 11

Fig. 7.1 A diagram of a
sequence of elementary steps
that transforms spike train X
into spike train Y. Each
elementary step is one of
three types: deletion of a
spike (deleted spike shown in
red), insertion of a spike
(inserted spike shown in
green), or shifting a spike in
time (blue arrows)

i T S N iy

The character of DP%¢[4] depends strongly on g. When ¢ is small, then the
times of individual spikes have little influence on the calculated distance between
spike trains. In the limit of g = 0, spikes can be shifted freely in time, and
DKe[0](A, B) = |[M(A) — M(B)|. So D*Pk¢[0] corresponds to comparing spike
trains in terms of their spike counts alone. As ¢ increases, the metric DPk®[4] be-
comes increasingly sensitive to spike timing: a change in the time of a spike by
1/q sec has the same cost as deleting the spike altogether. That is, for neurons
that act like a coincidence detector with integration time (or temporal resolution)
1/q, spike trains will have similar postsynaptic effects if they are similar in the
sense quantified by D*°[¢]. Since the effective temporal resolution is typically
not known in advance, it is useful to carry out analyses across a range of values
of g, rather than specifying the resolution a priori.

7.2.2.3 Spike Interval Metrics

Within the same framework of (7.1), we next define a contrasting metric (Victor and
Purpura 1997, 1996), one that is sensitive to the pattern of spike intervals, rather
than individual times. The biological motivation is that the postsynaptic effects of
a spike may depend strongly on the recent activity at that synapse (Sen et al. 1996;
Dan and Poo 2004; Markram et al. 1997). For transformations dominated by this
dependency, the meaning of a spike train does not depend on the spike times them-
selves (as captured by DP¢[¢]) but rather on the sequence of intervals. To quantify
this notion, we define D™®™al[4] by (7.1), along with a different set of elementary
steps. For D'"®™al[4]  the first kind of elementary step is insertion or deletion of
an interspike interval, at a cost of 1. The second elementary step consists of short-
ening or extending an existing interspike interval. The cost of this step is equal to
qgAT, where AT is the amount of time by which the interval has been lengthened



136 J.D. Victor and K.P. Purpura

or shortened.* Since changing the length of an interval changes the time of occur-
rence of all subsequent spikes at no additional cost, pintervali o) and DsPike[4] have
fundamentally different topological characteristics (Victor and Purpura 1997).

7.2.2.4 Multineuronal Cost-Based Metrics

We now consider ways of extending the above metrics to multineuronal data. While
multineuronal extensions can be constructed for either of the above single-neuron
metrics, the extension is more natural for DSPike [¢], so we focus on it.

Recall that our formal representation of multineuronal activity A is a sequence
of M(A) spike times ¢;, each of which is associated with a label /; € {1,..., L}
that indicates its neuron of origin. To extend D*P*®[4] to the multineuronal context
(Aronov et al. 2003), we add another elementary step, consisting of changing the
label associated with an event. The simplest way to do this is to assign the same cost,
a parameter k, to any label change. These three steps, along with (7.1), define a two-
parameter family of metrics, DSPike[q, k], where for k = 0, the metric ignores the
label associated with each event. The metrics with k = 0 correspond to a “summed
population” of neural activity. Conversely, when k = 2, the impact of the label is
maximal, since it costs as much to change the label as it does to delete a spike and
then reinsert it with a new label. Metrics with k = 2 correspond to a “labeled lines”
interpretation of neural activity.

7.2.2.5 Other Cost-Based Metrics

There are many directions in which the above examples can be generalized, and we
present some of the more important ones here. In each case, additional degrees of
freedom are added to the metrics described above. This flexibility arguably provides
a closer approximation to biologic reality but often carries the penalty that a greater
amount of data is required for a meaningful analysis. We also indicate which exten-
sions are readily incorporated into the dynamic programming algorithms described
in Sect. 7.2.2.6.

More Flexible Assignments of Costs to the Elementary Steps First, the cost of
moving a spike by an amount of time At (or the amount by which an interval is
changed) need not be proportional to At.

4Special consideration needs to be applied to the interval between the start of data collection and
the first spike and to the interval between the last spike and the end of data collection. These are not
interspike intervals, since they are bounded by the limits of data collection, rather than a second
spike. It is therefore natural to take the view that each of these “intervals” could be considered
an exact match to any interspike interval that is at least as long. This is equivalent to minimizing
the distance to any spike train that matches the observed spike train within the data collection
interval. A simpler (but arguably more arbitrary) strategy is simply to place an artificial spike at
the beginning and end of data collection.



7 Spike Metrics 137

For example, DP¢[¢] can be generalized by replacing the cost defined in (7.2)
by

c(X,Y)=0Q(ltx —tvl) (7.3)
for any nondecreasing cost function Q (|AT) satisfying Q(0) =0 and
O(IAT|+[AT']) = Q(IATI) + Q(|AT')). (74)

This does not interfere with the dynamic programming algorithms, since (7.4)
means that breaking down a single elementary step into two smaller ones can never
decrease the total cost.

Another generalization is that the cost to move a spike could depend on its abso-
lute time and on the distance moved. General dependences of this sort will interfere
with the dynamic programming algorithm, since they allow for a minimal path in
which a spike moves twice, once to enter a region of low-cost movement and once
to move to its final position. But certain forms of this dependence are consistent
with the dynamic programming algorithm. One such form is

c(X.Y) =q(|F@x) — Fty)]). (7.5)

where F is an increasing function. That is, T = F(¢) represents a distortion of time,
and the cost to move a spike is uniform in the distorted time t. Because of this
distortion, the cost assignment of (7.5) allows for the metric to have a nonuniform
dependence on spike times in the original time ¢. In particular, for small displace-
ments, (7.5) can be approximated by

t t
c(X,Y)~ F’(%)%T. (7.6)

So for example, a decelerating function F would lead to a stronger dependence of
the metric on the time of early spikes than on the time of late spikes.

Since the cost of moving a spike determined by (7.5) is related to a uniform
cost through a time-distortion the corresponding metric (7.1) can be calculated from
DPke[4](F(A), F(B)), where F(X) denotes a spike train derived from X by the
time-distortion T = F (¢).

Other Kinds of Elementary Steps The kinds of elementary steps used to define a
cost-based metric can be thought of as formalizing a hypothesis that certain aspects
of spike train structure are meaningful. Above we have considered two contrasting
metrics, focusing on absolute spike times and on spike intervals; these are but two of
many possibilities. As another example, we consider the notion that spike times are
important, but absolute time is uncertain. This arises in the analysis of spike trains
associated with spontaneous motor activity (i.e., not synchronized to an external
event or clock). Under these circumstances, spike trains that differ only by an overall
translation in time have the same meaning. To capture this in a metric, one could
augment D*K°[4] by a step that allows an entire spike train to be translated en bloc
at reduced cost per unit time, say, ¢’, with ¢’ < g.



138 J.D. Victor and K.P. Purpura

For this metric, the dynamic programming algorithm for D*P*¢[¢] enables a cal-
culation in polynomial time (see below). The reason is that in this metric, a minimal-
cost path between two spike trains can always be found in which the en bloc transla-
tion moves at least one spike in train A into coincidence with a spike in train B. To
see this, assume that no spikes are in coincidence and consider the effects of chang-
ing the size of the block movement by an infinitesimal (signed) amount d7T. Say
that this block movement is part of a path (7.1) in which there are n4_, p individual
spikes that move forward in time between A and B, and np_, 4 individual spikes
that move backward. Then this infinitesimal en bloc translation incurs a net cost of
(¢’ —gna_sp+qnp_ A)dT.]If this number is nonzero, then either an infinitesimal
translation forward or backward would reduce the total cost further. If it is zero,
then an infinitesimal movement in either direction would leave the cost unchanged.
In either case, further infinitesimal translations could be applied, without incurring
additional cost, until at least one spike pair was in coincidence. Thus, to calculate
this metric, it suffices to calculate D*P*¢[4] for all M (A)M (B) block translations
that move any spike in train A into coincidence with any spike in train B.

Another kind of elementary step is motivated by the notion that motifs of spikes
(Abeles and Prut 1996) (i.e., a set of three spikes, not necessarily contiguous, with
specific interspike intervals) are meaningful. To capture this notion, one adds an el-
ementary step that allows subsets of noncontiguous spikes to be moved as a block.
One could also combine the rules of DPk¢[¢] and D™*™l[4], perhaps associated
with different costs. Unfortunately, it is unclear how to incorporate these generaliza-
tions into a polynomial-time algorithm, since in either case, there is the possibility
that a minimal-cost sequence of transformations will require several movements of
individual spike-train components.

Further Generalizations For the multineuronal metric DSPike[q, k], the cost to
change the label (neuron) associated with an event, k, is independent of the label
itself. This restriction is inessential to the definition of the metric; the cost to change
a label from [ to [’ can be an arbitrary symmetric function k(l, ") of the labels. In
its full generality, this extension incurs a substantial increase in the number of pa-
rameters, but this parameter explosion can be mitigated by a priori hypotheses on
the form of k(/, I). For each choice of values of k(/, I"), the time required for calcu-
lation of the metric does not increase, but the storage requirements of the “parallel”
algorithm (see below) increase dramatically.

7.2.2.6 Algorithms

Identification of a minimal-cost path (7.1) might at first seem to be a daunting task.
However, because the cost-based metrics D*Pk¢[4] and D™e™[4] are similar to
the edit-length distances used for comparison of genetic sequences, the efficient dy-
namic programming algorithms developed for sequence comparison (Sellers 1974;
Needleman and Wunsch 1970) are readily adapted to calculate spike train metrics
(Victor and Purpura 1997, 1996). For all of these algorithms, the number of com-
putations required to calculate a distance between two responses is bounded by a



7 Spike Metrics 139

polynomial function of the number of spikes. This efficiency (in contrast to the very
laborious search of all possible sequences of elementary steps) is important in that
it makes the application of metric-space methods practical.

The algorithms described below have been implemented in public-domain
software, available at http: http://neuroanalysis.org/toolkit/ or http://www.apst.
spiketrain-analysis.org/ and described in (Goldberg et al. 2009).

The Basic Dynamic Programming Algorithm To describe this algorithm, we
use a formulation (Victor et al. 2007) that, while perhaps more elaborate, provides
an easier path to generalization. We focus on DPk®[4], but the same algorithmic
structure is applicable to D™ 4] A simpler formulation, but one that is less-
readily generalized, can be found in (Victor and Purpura 1997, 1996).

We begin by deducing certain properties that any minimal-cost path (7.1) must
have. First, we observe that we can always reorganize a minimal-cost path so that the
first steps consist of deleting spikes that occur in train A but not in train B, the inter-
mediate steps consist of moving some spikes that occur at times Ay, Ag,, ..., Aag
in train A to “linked” spikes that occur at times By, , Bp,, ..., Bpy in train B, and
the final steps consist of inserting spikes that occur in train B but not in train A
(Fig. 7.1). This reorganization is always possible because any movement of a spike
before it is deleted (or insertion of a spike followed by moving it) is inefficient—the
spike should simply be deleted before it is moved, or inserted where it is needed.
Moreover, the cost of moving a spike is independent of the times of moving any
other spike, so performing the deletions first and the insertions last does not change
the costs of the moves.

Therefore, a minimal-cost path can be summarized as an “alignment”: a desig-
nated subset of R spikes in train A and a designated subset of R spikes in train B
to which they are linked by R elementary steps that move a single spike. Given this
alignment, the distance between the two spike trains can be expressed as

R
d(A,B):(M(A)—R)—i—qZIAaj — By, |+ (M(B) — R), (7.7)
j=1

where the first term is the cost of the deletions, the final term is the cost of the
insertions, and the middle term is the cost of the moves, namely, the total link length
multiplied by the cost, g.

Since (by hypothesis) the total cost of these steps is minimal, then the total
link length Zj-e: 1 |Aa; — Bp;| must also be minimal, among all possible links be-
tween R pairs of spikes. This in turn implies that the two sequences of spike times
Ay Aays oo, Aag and By, By,, ..., By, must be monotonic. In other words, the
links between spikes cannot cross, since if they did, then the total link length could
be reduced by uncrossing them.

Let us now assume that we have found the minimal cost path between spike
trains A and B. We now focus on the final spike in the two trains, at times Apza)
and By (p). We use X (®) to denote a spike train consisting of the first k spikes
in X. For example, AMA =D ig the spike train A with the last spike deleted. If


http://neuroanalysis.org/toolkit/
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/

140 J.D. Victor and K.P. Purpura

the final spikes are connected by a link, then removing those spikes and their link
must yield a minimal-cost path between the truncated spike trains. That is, if the final
spikes are linked, then d(A, B) = d(AMA=D pMBEI=D) 4 g1A,,  — By .
Alternatively, if the final spikes are not connected to each other by a link, it must be
that at least one of the spikes is unlinked, since otherwise, their links would cross.
If the final spike in A is unlinked, then d(A, B) = d(AMW=D B) 4 1; if the final
spike in B is unlinked, then d(A, B) = d(A, BM®B)=D) 1 1. Since at least one of
these possibilities must hold, we have the relationship

d(A, B) = min{d(AMN=D gME=DY 4 g1a, By,
d(AMD=D B) 41 d(A, BMB-D) 4], (7.8)

That is, we have expressed the distance between two spike trains in terms of the
distances between spike trains that have been shortened by one spike.

It is far more efficient to implement (7.8) as a forward iteration than as a recur-
sion. To make this explicit, we note that (7.8) holds for all spike trains A and B, so
it may be recast as

d(A(a), B(ﬂ)) — min{d(A(a_l), B(ﬁ—l)) +qlAq — Bgl,
d(A@=D, B®) 1 1,d(A®, BP=D) 41} (7.9)

Equation (7.9) amounts to an iterative procedure for calculating D**°[4](A, B) =
d(AMA)  pM(B))y by building up each spike train one spike at a time. The itera-
tion is initialized (at « =0 or § = 0 when one spike train is empty) by noting that
d(A®, BO) = ¢ (since all spikes must be deleted) and d(A®, B®)) = g (since
all spikes must be inserted). At each stage of the algorithm, one spike train or the
other is elongated by a single spike, and the resulting distance is the minimum of
three simply calculated quantities. Thus, the computational burden is proportional
to the product of the number of spikes in each spike train, i.e., O (M 2), where M is
the typical number of spikes in each train to be compared.

We also mention that fast algorithms for identifying minimal-cost alignments
can also be based on weighted bipartite matching (Dubbs et al. 2009), and these are
applicable not only to D*Pk¢[4] but also to variants that may be more suitable for
Euclidean embedding and multidimensional scaling.

Extensions of the Dynamic Programming Algorithm D*°[4](A, B) can be
calculated for multiple values of the cost parameter ¢ in an efficient, parallel fashion
(Victor et al. 2007). The key observation is that the dependence of DPk®[4](A, B)
on g is piecewise linear. The breakpoints occur when the cost of a link is equal to 2
(so that removing it is equal to the cost of deleting and inserting its paired spikes).
The positions of the breakpoints can be calculated by a dynamic programming al-
gorithm whose computational burden is O (M?3).

The above algorithms can also be applied to the multineuronal spike-time met-
ric DSPike[q, k]. The main hurdle is that in a minimal-cost alignment of multineu-
ronal spike trains, links between paired spikes may cross if their labels are different
(Fig. 7.2A). Thus, it would appear that the iterative process of (7.9) would have to



7 Spike Metrics 141

may have a

i ) lower cost than I
Y I Y

B

) always has a

vy E higher cost than y E

Fig. 7.2 The noncrossing rule for alignment of multineuronal responses. Spikes from different
neurons (i.e., with different labels) are diagrammed as filled, open, and hashed. Panel A shows a
configuration in which an alignment with crossed links may have a lower cost than an uncrossed
alignment. Although the total link length is longer in the crossed alignment, one linked pair of
spikes has the same label, allowing it to have a lower cost. In configuration B, both spikes in one
of the spike trains (here, train X) have the same label. Because of this, the minimal-cost alignment
must be uncrossed, since uncrossing the links does not influence whether the links connect spikes
of the same label or of different labels

be implemented in nested loops for each of the L labels on each of the two spike
trains. This would yield an algorithm with a computational burden of O (M?L).

However, a closer look (Aronov 2003) yields an algorithm with a computational
burden of only O(ML+1). The reason for this reduction is the observation (Aronov
2003) that for certain configurations of labeled spikes, the noncrossing rule still
holds (Fig. 7.2B). In particular, noncrossing can be guaranteed if both spikes in one
train have the same label, since in this case, uncrossing the links does not affect
whether any labels need to be changed and thus, cannot incur an additional cost k.
To exploit this observation, the two spike trains are treated asymmetrically. That
is, the iterative process of (7.9) is applied to one spike train independently of label
and to the other spike train on a label-by-label basis. Details of the algorithm are
provided in Aronov (2003).

7.2.3 Spike-Train Metrics Based on Vector-Space Embeddings

Above, we began with the notion of spike trains as event sequences and defined
distances based on the “cost” of transformations between these sequences. Here,
we describe another class of metrics that are based on embedding the spike trains
into a vector space. Typically (van Rossum 2001; Richmond and Optican 1987), the
embedding is linear, so that the resulting metric respects linearity. But this is not a
prerequisite for this approach, and, more recently, Houghton (2009) has developed
metrics based on nonlinear embeddings.

There are two main reasons for considering vector-space embeddings. First, the
embedding process (i.e., the transformation of an event sequence 11, ..., fp(4) into



142 J.D. Victor and K.P. Purpura

a function of time A(¢)) can be considered as an abstraction of what happens at a
synapse: a sequence of action potentials results in a pattern of transmitter release,
and this, in turn, has an effect A(#) on the postsynaptic conductance. Second, in
many cases, these metrics are simpler to calculate than the cost-based metrics.

7.2.3.1 Single-Neuron Metrics Based on Vector Space Embeddings

We use a formulation that encompasses the metrics considered by van Rossum
(2001) and Houghton and Sen (2008). The first step is to represent a spike train A

as a function of continuous time, A(#). To do this, the event sequence 1, ..., tp(4)
is taken to be a sum of delta-functions
M(A)
Salt)= > 8(t—1)), (7.10)
j=1

and the resulting sum 84 (¢) is convolved with a kernel function K (¢). This is equiv-
alent to replacing each spike by the kernel waveshape and adding the waveshapes
when they overlap. More formally,

00 M(A)
A(t)=(8A*K)(t)=/ Sa(K(t—1)dTr = Z K@—1t). (711
—o0 o

With the above embedding, any vector-space distance can be used to define a dis-
tance between the two spike trains, d(A, B); in particular, the L”-norm yields the
distance

00 1/p
d(A,B):(/ |A(t)—B(t)|pdt) : (7.12)

For all metrics defined in this fashion, the distance between two spike trains that
differ by inserting or deleting one spike is given by the L”-norm of the kernel K,
ie., (/70 IK@®)|PdD)/P.
van Rossum (2001) focuses on the L2-distance (the Euclidean distance) and the
exponential kernel
K1) = { e 120,
0, t <0.
We denote the metric that results from combining (7.11), (7.12) and (7.13) by
DVR[1.1(A, B), where f. is a parameter that controls the sensitivity of the metric
to temporal detail. The kernel is normalized so that for two spike trains that differ
by the addition or deletion of a single spike, (D"X[7.](A, B))?> = 1/2, regardless
of t..
DVR[1.1(A, B) is designed to be similar to DP*¢[¢](A, B), with 1/, playing
a role analogous to that of g in the cost-based metrics. That is, small values of
1/t. compare spike trains based on the number of spikes, while large values of 1/z,
compare spike trains based on precise times of occurrence. To see this, we consider

(7.13)



7 Spike Metrics 143

several simple cases. For two spike trains that have only a single spike for which
the times differ by an amount AT, the distance is given by (D"E[z.](A, B):=1-—
e~ 1T/ "3 quantity that is 0 at AT = 0 and, for small AT, increases proportionally
to |AT|/t.. In the limit as 7, — oo, 2(D"R[1.](A, B))? is the square of difference in
the number of spikes in the two trains (similar to the count-dominated behavior of
DPke[41(A, B) as ¢ — 0), while in the limit as z. — 0, 2(D"R[1.](A, B))? is the
number of spikes in the two spike trains that occur at distinct times (matching the
timing-dominated behavior of DKe[4](A, B) as g — o0).

Houghton and Sen (2008) explicitly consider L!-norms and a kernel that makes
the correspondence to DP*¢[4](A, B) even closer. For their kernel choice

S, .~ _)a/2, 0=<t<2/q,
K (q’t)_{O, otherwise, (7.14)

and p =1 in (7.12), the correspondence of the distance DHS [¢q1(A, B) to
D*P[4](A, B) is exact when one spike train has no spikes, when both spike
trains have one spike, when all spikes within each train are widely separated, when
q — 0, or when ¢ — oo. However, like DR [#.]1(A, B), the correspondence of
DHS[41(A, B) to DP¢[4](A, B) is typically not exact when there are many spikes
in each train, and the spikes occur with separations less than 2/q (or O(z.)). The
main qualitative difference is that DVE[t.1(A, B) and DHS [¢1(A, B) are Euclidean
or can be converted to a Euclidean distance by a power-law transformation, while
DPke[4](A, B) cannot (Aronov and Victor 2004).

In addition to the exponential (van Rossum 2001) and boxcar (Houghton and Sen
2008) kernel, other kernel shapes, such as a Gaussian, have been used in this context
(Schreiber et al. 2004). Metrics on spike trains can also be derived by binning the
spike times (Lim and Capranica 1994). Here, the temporal function A(¢) used in
(7.12) is the mean firing rate in each bin. These metrics can be viewed as approx-
imate versions of the metrics considered above, in which the convolution integral
(7.11) is replaced by a discrete sum, and the kernel (for a bin width 2/¢) is given by
(7.14).

Finally, we point out that the transformation from the sequence of delta-functions
(7.10) to the temporal function A(¢) (7.11) need not be linear. Indeed, since the lat-
ter can be considered to represent the postsynaptic effect of an impulse train, it is
reasonable to consider nonlinear transformations that caricature biophysical mech-
anisms, such as an incomplete return to resting potential when spikes are in rapid
sequence. Houghton (Houghton and Sen 2008) has recently done this, implementing
a simple model of short-term synaptic adaptation (Sen et al. 1996).

7.2.3.2 Multineuronal Metrics Based on Vector-Space Embeddings

Houghton and Sen (2008) have extended the above strategy to multineuronal met-
rics. The construction begins by extending, to multiple neurons, the representation
(10) of a single neuron’s spike train A as a sequence of delta-functions 54 (¢). To do
this, they augment the delta-function corresponding to each spike by a unit vector c;;



144 J.D. Victor and K.P. Purpura

the direction of this unit vector represents the label / (neuron of origin) of that spike.
However, rather than simply assigning a separate orthogonal unit vector ¢; as the di-
rection for each of the L labels /, they allow the directions to be nonorthogonal,
ie., ¢ =) ¢ ér. As we will see below, orthogonal labels correspond to labeled
lines (the k = 2 extreme for DP%¢[¢, k), collinear labels correspond to a summed
population code (the k = 0 extreme for DP¥¢[¢, k]), and intermediate choices cor-
respond to intermediate behaviors.

With these preliminaries, a multineuronal spike train (with L neurons) with
events at times #; and associated with labels /; is represented by an L-dimensional
array of sums of scaled delta-functions,

M(A)
Saty=Y_ @;8(t—1t)). (7.15)
j=1
In coordinates, §A (t) = (6a,1(2),...,84,0(t)), where each scaled delta-function
84,-(t) is given by
M(A)
Sar®)= > ci,,8(t—1)). (7.16)
j=1

As in the single-neuron metrics, temporal factors are taken into account by con-
volving the delta-function array (7.15) by a kernel, yielding A 1) = (5 A * K)(1),
with the convolution carried out separately for each coordinate (7.11). (In principle,
different kernels can be assigned to each coordinate, or different kernels can be as-
signed to each neuron prior to mixing them in (7.15).) Finally, the distance between
two multineuronal spike trains A and B is the L”-norm between their associated
temporal functions A(¢) and B(t) namely,

L 1/p
d(A, B)—( Z|Al(t)—Bl(t)|pdt) , (7.17)

=

where A;(t) and Bj(t) are, respectively, the /th component of A (1) and E(t). We
note that (7.17) is equivalent to

L
dP(A, B) =Zd”(A1, B)). (7.18)
=1

As an example of this construction, Houghton and Sen (2008) consider the two-
neuron case and assign the unit vector ¢| = ((1)) to the first neuron, and ¢, = (Z?:g)
to the second neuron. & = 0 corresponds to summing the spikes independent of
neuron of origin, because spikes of all labels are represented by the same direc-
tion (¢; = ¢2). On the other hand, 8 = 7 /2 (for which ¢| and ¢, are orthogonal)
corresponds to a labeled line code. In this case, each A;(¢) and B;(t) consists of a
sequence of delta-functions corresponding to the spikes of an individual neuron, and
(7.18) shows that their contributions to the overall squared distance, (7.17), merely
add.



7 Spike Metrics 145
7.2.3.3 Computational Considerations

Computation of metrics based on vector-space embeddings is straightforward. One
strategy is to approximate the integrals in (7.12) or (7.17) or by a discrete sum; in this
situation, the computational burden is O (M L2 D), where M is the typical number
of spikes from each neuron, L is the number of neurons, and D is the number of
points used for the discretization (Houghton and Sen 2008). For the typical norms
of p=1 or p =2, these integrals can be reduced to sums over all spikes (p = 1)
or spike pairs (p = 2), resulting in a further saving if the density of spikes is low.
Note that the computational burden of these metrics grows much more slowly as a
function of the number of neurons (L) than for the cost-based metrics (O (MLT1),
see above).

7.2.4 Applications

7.2.4.1 Overview

In this section, we discuss several ways in which spike metrics can be used to ask
biological questions about neuronal spike trains. (Here, we no longer distinguish
between single-unit spike trains and multineuronal “labeled” spike trains; the mate-
rial in this section applies to both.) We will mention applications to specific neural
systems, but we organize our discussion in terms of the nature of the analytical goal.
To do this, it is helpful to take a geometrical view, in which each spike train is repre-
sented by a point in an abstract space. The most direct application of spike metrics
is simply to use the distances to quantify the variability within a set of spike trains.
In the geometric view, the statistics of these distances provides a description of the
cloud of neural responses.

However, quantifying variability does not probe the manner in which the spike
trains relate to perception or behavior. One way to take this next step is to analyze the
pairwise distances by standard multivariate techniques, such as multidimensional
scaling. Via multidimensional scaling, the individual responses are then embedded
into a neural “response space”. In the neural response space, the distances between
the points representing individual responses approximate the metric distances be-
tween the spike trains (as determined by a spike metric), and each kind of stimulus
or behavior corresponds to a labeled cloud of points in the response space. One can
then examine the positions of the clouds of spike trains that correspond to each stim-
ulus or behavior and ask whether similarities in these domains correspond to similar
kinds of neural activity. In other words, one can ask whether the notion of similarity
provided by the spike metric provides a neural representation of the perceptual or
behavioral phenomena.

From the point of view of neural coding, it is crucial to measure the quality
of the representation of the perceptual or behavioral domain by the spike trains.
Geometrically, this corresponds to asking whether the clouds that correspond to



146 J.D. Victor and K.P. Purpura

each stimulus or behavior are distinct, vs. overlapping. The former corresponds to
a high-fidelity representation, while the latter corresponds to a noisy one. Because
of their nonparametric nature, the tools of information theory are natural to use
in this context. If a spike metric leads to a high-fidelity representation, then the
temporal features that it captures are candidates for neural codes. Conversely, when
it is possible to show that behavioral performance exceeds that of a candidate code
(Jacobs et al. 2009), the neural code can be ruled out.

7.2.4.2 Assessment of Variability

Measures of variability for time series depend in general on the time scale of inter-
est; for example, a standard way of describing the variability of a continuous-time
series is to compute its power spectrum, which quantifies variability as a function of
frequency. This holds for point processes as well. In the present context, this obser-
vation means that in assessing the variability of spike trains, it makes sense to use
spike metrics that are sensitive to a range of timescales (e.g., D*P*¢[¢] for a range
of values of ¢).

Some examples of the use of spike metric for this purpose include the study of
Kreiman et al. (2000), who examined a class of afferents in the weakly electric fish
Eigenmannia whose spike trains are loosely phase-locked to the periodic discharge
of its electrosensory organ. Kreiman et al. (2000) chose to quantify the variability
by DSPike_since (because of the phase-locking) measures based on spike count or its
variance proved ineffective in capturing trial-to-trial variability.

Grewe et al. (2003) used pspike along with a Euclidean metric, to examine vari-
ability in a motion-sensitive visual neuron (H1) of the blowfly. By examining vari-
ability in the presence of varying amounts of added sensory noise, they determined
that performance of the H1 neuron was limited by its internal noise, rather than
photon noise.

In response to full-field random flicker, retinal and lateral geniculate neurons
often fire in discrete “firing events” consisting of several spikes, at times that are
reproducible across trials. Reinagel and Reid (2002) used DP¢ to quantify this
reproducibility and, moreover, to show that these firing patterns were conserved not
only across trials, but also across animals.

Finally, several authors have used D*PK® to evaluate spike train variability of
synthetic data for the purpose of evaluating models and describing their qualitative
behavior (Keat et al. 2001; Tiesinga 2004; Banerjee et al. 2008).

7.2.4.3 Construction of Response Spaces

A variety of multivariate techniques can be used to visualize the geometry of the
neural “response spaces” that correspond to a spike-train metric. The basic strategy
for doing this is multidimensional scaling (MDS) (Kruskal and Wish 1978). In the
framework of MDS, given a set of spike trains A and a particular spike metric D,



7 Spike Metrics 147

one seeks an embedding ¢ from the spike trains A to n-dimensional vectors p(A) =
(p1(A), ..., pn(A)) for which the spike metrics D(A, B) are well approximated by
the standard Euclidean distances between ¢(A) and ¢(B):
n
2 2
D(A, By~ |p(A) —o(B)| =D (p;(A) —9;(B))". (7.19)
j=1

Standard Multidimensional Scaling To determine an embedding ¢ that satisfies
(7.19), we carry out the classical MDS recipe (Kruskal and Wish 1978). The crucial
step is to diagonalize the symmetric matrix M4p:

1 2 1 2 1 2
Mg = §<—D(A, BP + XS:D(A, S+ XS:D(B, s)

-3 2D(s8)?). (720

N

where N is the number of spike trains in the dataset, and the summations range
over all spike trains S or pairs of spike trains S and S’. Rows and columns of M
are indexed by each of the spike trains in the data set, so the entries in each of its
eigenvectors ¢l/1 are indexed by the spike trains as well. Thus, we may write

N
Map=Y x;0}'9}, (7.21)
j=1

where ¢E4j] denotes the value of the jth eigenvector at spike train A. Provided that
the eigenvalues A ; are all nonnegative, this allows us to write the desired embedding

@ as
P(A) = (¢1(A), ..., 0a(A) = (Vriol!, .. Vo) (7.22)

(see Kruskal and Wish 1978).

The analysis also yields embeddings in lower-dimensional spaces that approxi-
mate the metric D(A, B). To find an approximate embedding, we simply number
the eigenvalues in descending order and only use the first K < N of them for coor-
dinates in (7.22). These approximate embeddings (e.g., with K =2 or K = 3) can
be used to visualize the relative similarities of a set of spike trains, as determined
by D(A, B).

Examples The above procedures have been used to characterize the geometry of
response spaces in several sensory systems. In the auditory system, Victor and Pur-
pura (1997) applied this approach to the data of Middlebrooks et al. (1994), who
recorded responses of single neurons in cat ectosylvian gyrus to sounds that varied
in spatial location. The original data showed that these neurons’ responses could dis-
tinguish the origin of the sound source in a panoramic (360°) fashion and that spike
timing at a resolution of ca. 4 ms was critical for this (Middlebrooks et al. 1994;
Furukawa and Middlebrooks 2002). The reanalysis (Victor and Purpura 1997),



148 J.D. Victor and K.P. Purpura

which applied MDS to the distances yielded by DPk® and Dinteval added to this
picture by showing that the geometry of these responses (i.e., their relative dis-
tances) recovered the circular geometry of the stimulus space.

In the visual system, Aronov et al. (2003) used DSpike[q, k] to characterize the
representation of spatial phase across pairs of neurons in primary visual cortex. The
geometry of the stimulus set (the circle of spatial phase) could be recovered by
applying MDS to the response similarities, as quantified by D*¥°[¢, k]. Moreover,
response spaces became more nearly circular for nonzero values of k, indicating
that within a local cluster, the neuron of origin of a spike, as well as its timing,
contributes to the representation of spatial phase.

Aronov et al. (2003) also introduced a technique that can be used to interpret the
axes obtained in the MDS procedure. Essentially, for each dimension m in (7.22),
they regressed the coordinate value m of each response, ¢1[4m], against a binned post-
stimulus histogram A(z). By showing that qbl[‘\m] could be approximated by a linear
weighting of the response time course, i.e.,

ol ~ / A(t) L (1) dt, (7.23)

they identified “temporal profiles” L, (¢) that could be associated with each dimen-
sion of the embedding.

Recently, Di Lorenzo et al. (2009) applied this procedure to single-neuron record-
ings in the nucleus tractus solitarius of the rat, during stimulation by each of the
four primary tastants (salt, sweet, sour, bitter) and their binary mixtures. Neurons
that were broadly tuned in terms of spike count were nevertheless able to distin-
guish among these tastants via temporal coding. The neural response space, as con-
structed by the above procedure, recapitulated the tetrahedral geometry anticipated
from gustatory psychophysics (Erickson 1984).

Implications of Non-Euclidean Nature of Spike Metrics The above approach
(standard MDS) seeks to embed spike trains into a Euclidean vector space in a
distance-preserving manner. Thus, the embedding can only be exact if the spike
metric itself is Euclidean, which is not the case (Aronov and Victor 2004). The
above procedure fails to be exact for non-Euclidean metrics because some of the
eigenvalues of M are negative. Consequently, the bilinear form (7.21) is not pos-
itive definite (and hence, not an inner product), and the coordinates (7.22) are not
real. Nevertheless, since the first several eigenvalues of M are typically positive, the
above procedure finds an Euclidean approximation of the spike metric that suffices
for visualization of the spike trains. Other approaches to deal with this problem are
described below.

Relationship to the “Kernel Trick’ and van Rossum-Type Metrics The “kernel
trick” is applicable to a situation in which one wishes to classify a set of objects
(here, the spike trains) which either do not have a linear structure, or in which the
important features are nonlinearly related to the objects. To do this, one introduces
an embedding ¥, which maps the objects into a vector space. Then, the original
objects can be classified via linear classifiers in the feature space.



7 Spike Metrics 149

This is a generalization of the approach of van Rossum (2001), Richmond and
Optican (1987), in which spike trains are embedded into an infinite-dimensional
vector space (functions of time) by convolving them with a smoothing kernel (e.g.,
(7.11)). Suppose that we have a set of spike trains Ay that correspond to temporal
functions Ag(¢) via this transformation. It is natural to ask what would happen if
we apply the above MDS procedure to their L2-distances, (7.12). Since this is man-
ifestly a Euclidean distance, an exact embedding must be possible. However, we
cannot recover the original vector space of functions of time, because the latter is
infinite-dimensional, but the MDS procedure necessarily yields a finite-dimensional
embedding. Instead, we would find that the successive eigenvectors of M corre-
spond to the successive principal components of the set of temporal functions Ay (t)
(minus their overall mean). That is, although the MDS procedure does not recover
the smoothing kernel that defines the distance, it finds the vector space that contains
all of the temporal functions that result from applying this kernel.

As a converse, we mention that these relationships imply that the non-Euclidean
spike metrics cannot be calculated via a “kernel trick”, since if this were possible,
then the metrics could be recovered exactly by an MDS procedure (see below).

Nonlinear Scaling Above we have focused on finding an embedding ¢ that ap-
proximates a spike metric by a Euclidean distance (7.19). However, since spike
metrics typically do not correspond to any Euclidean distance (Aronov and Victor
2004), there is no guarantee that embeddings that satisfy (7.19) can be found. This
motivates several other strategies for response space construction, which we now
briefly mention. One such strategy is to seek embeddings into a curved space. That
is, the Euclidean distance on the right-hand side of (7.19) is replaced by the geodesic
distance between ¢(A) and ¢(B) within a data-defined curved manifold. This can
be accomplished by the isomap (Tenenbaum et al. 2000) and geometric diffusion
(Coifman et al. 2005) methods of dimensionality reduction. A second approach is
to replace D(A, B) in (7.19) by f(D(A, B)) for some monotonic function f. The
resulting embedding preserves the rank order of the distances, and, if f is concave,
f(D(A, B)) remains a metric. f(D(A, B)) = D(A, B)P for 0 < B < 1 is a natural
choice for this transformation, since it is scale-invariant. However, while specific
choices of 8 (e.g., = 1/2) may be useful to “euclideanize” particular datasets, it
is possible to show (Aronov and Victor 2004) that there is no single choice of 8 > 0
that universally suffices to transform Dspike [g, k] into a Euclidean distance.

7.2.4.4 Applications to Information-Theoretic Analysis

Finally, we consider applications of spike metrics to information-theoretic analysis
of neural data. Information theory (IT) (Shannon and Weaver 1949) (see Cover and
Thomas 1991 for a general review) forms a natural framework for the analysis of
neural coding (Rieke et al. 1997) (Chap. 13). However, the application of IT to neu-
ral systems can be difficult: estimates of mutual information from laboratory data
can be biased, imprecise, or both. The estimation problem, whose origin is that the



150 J.D. Victor and K.P. Purpura

space of possible responses is undersampled, is compounded for analyses of multi-
neuronal activity, because the dimensionality of the response domain is proportional
to the number of neurons.

To motivate some strategies to mitigate this difficulty, we consider a naive at-
tempt to estimate mutual information from laboratory data. The mutual information
between a set of stimuli S and a set of responses R is defined as

I(S,R)==)_p()logp(s)+ Y _p(r)Y_ p(sirlog p(slr),  (7.24)

seS rer seS

where the first term is the entropy of the unconditioned distribution of stimuli, and
the second term subtracts the average entropy of the distribution of stimuli, condi-
tioned on observing a particular response r € R. Typically, the distribution of stim-
uli is known, so the estimation of information rests on the conditional probabilities
p(s|r) = p(s,r)/p(r). Below we will make use of a reorganization of (7.24) into a
symmetric form,

I(S,R)==>_p(s)logp(s) = Y _ p(r)logp(r)+ > pls,r)logp(s,r),

seS rer seS,reR

(7.25)

which states that mutual information is the difference between the entropies of the
stimulus and response distributions (the first two terms) and the entropy of their
joint distribution (the third term).

Implementing (7.24) or (7.25) directly requires estimates of the joint stimulus-
response probabilities p(s, r). The obvious way to obtain these estimates is to count
up the number of joint occurrences of each stimulus s and each response r, and di-
vide by the number of events. To do this, the investigator must know how to partition
the response domain R into different kinds of responses, r1, r2, ... . The Data Pro-
cessing Inequality states that if probability estimates from different responses r; and
rp are inadvertently pooled, then the resulting estimate of mutual information will
be downwardly biased. Thus, it might appear that the most conservative approach
would be to estimate p(s,r) by separately tracking all distinguishable responses.
This would then avoid the downward bias due to pooling responses.

The difficulty with this approach is that when the response domain is partitioned
very finely, then the number of events that contributes to each estimate of p(s, r) is
small, often either O or 1. Since entropy and information are nonlinear functions of
the underlying probabilities, an overly narrow binning of the response space incurs
an upward bias (Treves and Panzeri 1995; Miller 1955; Carlton 1969; Victor 2000)
in the estimate of mutual information. So the investigator has a dilemma: to avoid
a downward bias due to the Data Processing Inequality, the stimulus domain must
be sampled as finely as possible, but this leads to an upward bias because of the
nonlinearity of the logarithm.

There are two general strategies that can be used to mitigate this dilemma
(see Victor 2006 for further details). One strategy is to use a fine partitioning of
the response domain but to use advanced estimation techniques (Paninski 2003;



7 Spike Metrics 151

Nemenman et al. 2004) to reduce the upward estimation bias inherent in naive es-
timators. This strategy makes minimal assumptions about the nature of the neural
code but still has large data requirements.

The second strategy, which is where spike metrics are relevant, is based on the
observation that pooling distinct responses r; and r, only reduce the estimate of mu-
tual information when the responses are associated with distinct a posteriori proba-
bilities, p(s|r1) and p(s|ry). Conversely, if two responses r; and r, have the same
“meaning” (i.e., lead to identical a posteriori estimates of what the stimulus was),
then probability estimates can be pooled without incurring an upward bias.

This places the focus on determining which neural responses have the same
meaning. Each spike metric, in essence, is a formal hypothesis about exactly this:
two neural responses are hypothesized to have the same meaning if their distance is
zero, and increasing distances indicates progressively different meanings.

Motivated by this observation, a spike metric can be used to provide an estimate
of mutual information that is relatively unaffected by the undersampling problem
but strongly sensitive to whether, in fact, the hypothetical distance is close to the
correct one. A strategy for doing this for a discrete stimulus set is detailed in Victor
and Purpura (1997); we summarize it here.

The first step in the analysis is to calculate all of the pairwise distances between
the responses. Then, response clusters are created, with one cluster for each stim-
ulus s,. The clusters are formed based on the experimenter’s knowledge of which
stimulus elicited each response. In particular, a response r is placed into a cluster
B if the average distance between r and all the responses elicited by the stimulus
sp is smaller than the average distance between r and the responses elicited by any
other stimulus. (The averaging process is carried out following a negative-power
law transformation, to emphasize near-matches. The exponent, typically —2, is the
parameter z of Victor and Purpura 1997.) The result of applying this clustering to
all responses is a table N(«, 8) which counts the number of times that a response
to the stimulus s, is assigned to cluster 8. From this table mutual information is
estimated as

I(S,R)~ =) pla,e)logp(e, ) = Y p(s, B)log p(s, B)
o B

+Y_ ple, B)log ple, B), (7.26)
o,p

where p(a, ) = =, pla, ) = Xy ple, B), and p(o, ) =3, p(@, ).
The reason that (7.26) represents a useful approach to the undersampling strat-
egy is that p(s, r) has been replaced by p(«, B). The former requires keeping track,
separately, of the number of occurrences of each response, while the latter only re-
quires keeping track of the number of occurrences of responses in the same cluster.
That is, we have dealt with the undersampling problem by introducing a clustering
procedure: we have lumped responses together (into the same cluster g) if they are



152 J.D. Victor and K.P. Purpura

similar to responses that are known to be elicited by the stimulus sg > The Data Pro-
cessing Inequality guarantees that this will result in an underestimate of information
(assuming that the clusters are sufficiently well sampled), but the key point is that
the extent of this underestimate is determined by whether or not the metric-based
clustering properly classifies spike trains that have the same meaning.

In sum, estimates of information based on (7.26) reflect the extent to which
the chosen spike metric accurately captures meaningful differences between spike
trains. That is, the dependence of the information estimates of (7.26) on the choice of
spike metric (e.g., for DPk®[4 k], the temporal precision parameter ¢ and the spike
label parameter k) characterizes the informative features of the neural response. In
particular, if gmax is the value of g for which estimates of information via (7.26)
based on DPKe[4] (or D*Pke[4, k]) achieves its highest value, then 1/gmax can be
viewed as the “informative temporal precision” of a spike, namely, the amount of
time by which moving a spike has the same impact on the meaning of the spike train
as deleting the spike altogether.

Examples Victor and Purpura (1996) used this approach extensively to charac-
terize how individual neurons in primary (V1) and secondary (V2 and V3) visual
cortices carried information about multiple stimulus attributes, such as contrast,
orientation, and texture. They found that greater information was recovered from
clustering based on DPe[4] than from that based on D™¢™2l[4]. Moreover, using
DsPike[ 4], they found that the informative precision of a neuron’s response depended
on the stimulus attribute—with the highest precision for contrast (10 to 30 ms) and
lowest precision for texture (~100 ms). Thus, individual spike trains can be con-
sidered to carry information about several stimulus attributes in a temporally multi-
plexed fashion.

Estimates of informative temporal precision obtained by the above approach are
necessarily averages across the entire response. This is underscored by the study of
Reich et al. (2000), who used DPk¢ to show that most of the information about
contrast could be extracted from the latency of the first spike and that, if only the
first spike is considered, the informative temporal precision can be as low as 2 to
5 ms.

Samonds and Bonds (2004) and Samonds et al. (2003), examined signaling of
orientation in cat primary visual cortex with D*Pke and pinte™al ‘including multi-
neuronal extensions of these measures. Their analysis showed that large orientation
differences could be signaled by firing rate but that orientation differences of 10°
or less were signaled by the temporal fine structure (2 to 10 ms) of spike times and
spike intervals.

Additional information-theoretic applications of spike metrics in the visual sys-
tem include the work of Mechler et al. (1998), who showed that temporal structure

3The “hard clustering” used in this procedure might also lead to an underestimate of information, in
comparison to a procedure that gives soft, or probabilistic, assignments to each response. Recently,
I. Nelken (2009) has proposed a procedure that circumvents this difficulty, by applying the “binless
embedding” method (Victor 2002) to the distances calculated by spike metrics.



7 Spike Metrics 153

played a much larger role in the coding of edges (square-wave gratings) than of
smooth variations (sine gratings), and the study of Chichilnisky and Rieke (2005),
who found that for near-threshold responses in retinal ganglion cells, the informative
temporal precision was approximately 100 ms.

There have also been a number of applications of this approach in other sen-
sory systems (e.g., Machens et al. 2001 in the grasshopper auditory system, Di
Lorenzo and Victor 2003, 2007 in the gustatory system). Particularly noteworthy
are the combined behavioral and neurophysiological experiments of Laurent and
colleagues (MacLeod et al. 1998) in the olfactory system of the locust. They used
DsPIke to show that increasing timing jitter of spike trains in projection neurons leads
to loss of behavioral discrimination of similar odors, though coarse odor discrimi-
nation remains intact (Stopfer et al. 1997). These elegant experiments demonstrate
the functional relevance of precise spike timing for fine sensory discriminations.

Several of the above studies (e.g., Victor and Purpura 1996; Di Lorenzo and
Victor 2003, 2007) made use of a surrogate data technique, “exchange resampling”.
The authors reanalyzed surrogate data sets in which individual spikes were swapped
across pairs of responses to the same stimulus. These surrogate data sets, by con-
struction, have the same number of spikes in each trial as the original data and have
the same time-varying firing rates as the original data, but spike correlations within
trials are destroyed. Information estimates from these surrogate data sets were some-
what less than the estimates obtained from the original data, indicating that the pat-
tern of spikes in individual trials, and not just the time course of firing probability,
was informative.

It is important to emphasize that these methods quantify the amount of in-
formation that is available in the neural response and the spike train features
that carry this information. In order to claim that the information is actually
used, the analyses must eventually be coupled to behavior (MacLeod et al. 1998;
Jacobs et al. 2009).

7.3 Conclusion

Spike metrics provide a formal structure for analyzing neural activity as event se-
quences and provide a means to assess variability, to visualize patterns of response
similarity, and to estimate information-theoretic quantities. While many simple and
useful spike metrics can be calculated by efficient dynamic programming algo-
rithms, extensions of the approach to additional metrics present a range of algo-
rithmic challenges.

Acknowledgements This work is supported in part by National Eye Institute Grant 1RO1
EY9314 to J. Victor and National Institute of Mental Health Grant IRO1 MH68012 to Daniel Gard-
ner. We would like to thank Sebastien Louis for his thorough reading of a draft and his thoughtful
and helpful comments.



154 J.D. Victor and K.P. Purpura
References

Abbott LF (2000) Integrating with action potentials. Neuron 26:3—4

Abeles M (1982) Role of the cortical neuron: integrator or coincidence detector?. Isr J Med Sci
18:83-92

Abeles M, Prut Y (1996) Spatio-temporal firing patterns in the frontal cortex of behaving monkeys.
J Physiol Paris 90:249-250

Aronov D (2003) Fast algorithm for the metric-space analysis of simultaneous responses of multi-
ple single neurons. J Neurosci Methods 124:175-179

Aronov D, Victor JD (2004) Non-Euclidean properties of spike train metric spaces. Phys Rev E
Stat Nonlin Soft Matter Phys 69:061905

Aronov D, Reich DS, Mechler F, Victor JD (2003) Neural coding of spatial phase in V1 of the
macaque monkey. J Neurophysiol 89:3304-3327

Banerjee A, Series P, Pouget A (2008) Dynamical constraints on using precise spike timing to
compute in recurrent cortical networks. Neural Comput 20:974-993

Carlton AG (1969) On the bias of information estimates. Psychol Bull 71:108-109

Chichilnisky EJ, Rieke F (2005) Detection sensitivity and temporal resolution of visual signals
near absolute threshold in the salamander retina. J Neurosci 25:318-330

Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW (2005) Geometric
diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc
Natl Acad Sci USA 102:7426-7431

Cover TM, Thomas JA (1991) Elements of information theory, Schilling DL (ed). Wiley, New
York

Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23-30

Di Lorenzo PM, Victor JD (2003) Taste response variability and temporal coding in the nucleus of
the solitary tract of the rat. J] Neurophysiol 90:1418-1431

Di Lorenzo PM, Victor JD (2007) Neural coding mechanisms for flow rate in taste-responsive cells
in the nucleus of the solitary tract of the rat. J] Neurophysiol 97:1857-1861

Di Lorenzo PM, Chen J-Y, Victor JD (2009) Quality time: representation of a multidimensional
sensory domain through temporal coding. J Neurosci 29(29):9227-9238

Dubbs AJ, Seiler BA, Magnasco MO (2009) A fast Lp spike alignment metric. arXiv:0907.3137v2

Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy
in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098-1105

Erickson RP (1984) Ohrwall, Henning and von Skramlik; the foundations of the four primary
positions in taste. Neurosci Biobehav Rev 8:105-127

Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory space: information-
bearing features of spike patterns. J] Neurophysiol 87:1749-1762

Gaal SA (1964) Point set topology. Academic Press, New York

Goldberg DH, Victor JD, Gardner EP, Gardner D (2009) Spike train analysis toolkit: enabling
wider application of information-theoretic techniques to neurophysiology. Neuroinformatics
7(3):165-178

Grewe J, Kretzberg J, Warzecha AK, Egelhaat M (2003) Impact of photon noise on the reliability
of a motion-sensitive neuron in the fly’s visual system. J Neurosci 23:10776-10783

Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus rep-
resentation. Nature 376:33-36

Houghton C. (2009) Studying spike trains using a van Rossum metric with a synapse-like filter.
J Computat Neurosci 26:149-155

Houghton C, Sen K (2008) A new multineuron spike train metric. Neural Comput 20(6) 1495-
1511

Jacobs AL, Fridman G, Douglas RM, Alam NM, Latham PE, Prusky GT, Nirenberg S (2009)
Ruling out and ruling in neural codes. Proc Natl Acad Sci USA 106:5936-5941

Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model for the responses
of visual neurons. Neuron 30:803-817


http://arxiv.org/abs/0907.3137v2

7 Spike Metrics 155

Kreiman G, Krahe R, Metzner W, Koch C, Gabbiani F (2000) Robustness and variability of neu-
ronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia. J Neuro-
physiol 84:189-204

Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Beverly Hills

Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence
detection in nucleus laminaris of the chick. J Neurosci 25:1924-1934

Lim D, Capranica RR (1994) Measurement of temporal regularity of spike train responses in audi-
tory nerve fibers of the green treefrog. J Neurosci Methods 52:203-213

Machens C, Prinz P, Stemmler M, Ronacher B, Herz A (2001) Discrimination of behaviorally
relevant signals by auditory receptor neurons. Neurocomputing 38:263-268

MacLeod K, Backer A, Laurent G (1998) Who reads temporal information contained across syn-
chronized and oscillatory spike trains?. Nature 395:693-698

Maloney LT, Yang JN (2003) Maximum likelihood difference scaling. J Vision 3:5. doi:10.1167/
3.8.5

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coinci-
dence of postsynaptic APs and EPSPs. Science 275:213-215

Mechler F, Victor JD, Purpura KP, Shapley R (1998) Robust temporal coding of contrast by V1
neurons for transient but not for steady-state stimuli. J Neurosci 18:6583-6598

Middlebrooks JC, Clock AE, Xu L, Green DM (1994) A panoramic code for sound location by
cortical neurons. Science 264:842-844

Miller GA (1955) Note on the bias on information estimates. Information Theory in Psychology:
Problems and Methods I1-B:95-100

Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J Mol Biol 48:443-453

Nelken I (2009) Personal communication

Nemenman I, Bialek W, de Ruyter van Steveninck R (2004) Entropy and information in neural
spike trains: progress on the sampling problem. Phys Rev E Stat Nonlin Soft Matter Phys
69:056111

Paninski L (2003) Estimation of entropy and mutual information. Neural Comput 15:1191

Reich D, Mechler F, Victor J (2000) Temporal coding of contrast in primary visual cortex: when,
what, and why?. J Neurophysiol 85:1039-1050

Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons. J Neurosci
22:6837-6841

Richmond BJ, Optican LM (1987) Temporal encoding of two-dimensional patterns by single units
in primate inferior temporal cortex. II. Quantification of response waveform. J Neurophysiol
57:147-161

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural
code. MIT Press, Cambridge

Samonds JM, Bonds AB (2004) From another angle: differences in cortical coding between fine
and coarse discrimination of orientation. J Neurophysiol 91:1193-1202

Samonds JM, Allison JD, Brown HA, Bonds AB (2003) Cooperation between area 17 neuron pairs
enhances fine discrimination of orientation. J Neurosci 23:2416-2425

Schreiber S, Fellous JM, Tiesinga P, Sejnowski TJ (2004) Influence of ionic conductances on
spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. J Neurophysiol
91:194-205

Segundo JP, Perkel DH (1969) The nerve cell as an analyzer of spike trains. In: Brazier MAB (ed)
The interneuron. University of California Press, Berkeley, pp 349-390

Sellers P (1974) On the theory and computation of evolutionary distances. SIAM J Appl Math
26:787-793

Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding synapses. J Neurosci 16:6307—
6318

Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois
Press, Urbana

Singh G, Memoli F, Ishkhanov T, Sapiro G, Carlsson G, Ringach DL (2008) Topological analysis
of population activity in visual cortex. J Vision 8:1-18


http://dx.doi.org/10.1167/3.8.5
http://dx.doi.org/10.1167/3.8.5

156 J.D. Victor and K.P. Purpura

Slepian D (1976) On bandwidth. Proc IEEE 64:292-300

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal
integration of random EPSPs. J Neurosci 13:334-350

Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desyn-
chronization of odour-encoding neural assemblies. Nature 390:70-74

Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear di-
mensionality reduction. Science 290:2319-2323

Tiesinga PHE (2004) Chaos-induced modulation of reliability boosts output firing rate in down-
stream cortical areas. Phys Rev E Stat Nonlin Soft Matter Phys 69:031912

Treves A, Panzeri S (1995) The upward bias in measures of information derived from limited data
samples. Neural Comput 7:399-407

Tversky A (1977) Features of similarity. Psychol Rev 84:327-352

Tversky A, Gati I (1982) Similarity, separability, and the triangle inequality. Psychol Rev 89:123—
154

van Rossum MC (2001) A novel spike distance. Neural Comput 13:751-763

Victor JD (2000) Asymptotic bias in information estimates and the exponential (Bell) polynomials.
Neural Comput 12:2797-2804

Victor JD (2002) Binless strategies for estimation of information from neural data. Phys Rev E
66:51903

Victor JD (2006) Approaches to information-theoretic analysis of neural activity. Biological The-
ory 1:302-316

Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-
space analysis. J Neurophysiol 76:1310-1326

Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and appli-
cation. Network 8:127-164

Victor JD, Goldberg DH, Gardner D (2007) Dynamic programming algorithms for compar-
ing multineuronal spike trains via cost-based metrics and alignments. J Neurosci Methods
161:351-360

Wu L, Gotman J (1998) Segmentation and classification of EEG during epileptic seizures. Elec-
troencephalogr Clin Neurophysiol 106:344-356

Wauerger SM, Maloney LT, Krauskopf J (1995) Proximity judgments in color space: tests of a
Euclidean color geometry. Vision Res 35:827-835



	Spike Metrics
	Introduction
	Mathematics and Laboratory Data
	Representing Spike Trains as Samples of Point Processes
	Analyzing Point Processes: The Rationale for a Metric-Space Approach
	Plan for this Chapter

	Spike Train Metrics
	Notation and Preliminaries
	Cost-Based (Edit Length) Metrics
	General Definition
	Spike Time Metrics
	Spike Interval Metrics
	Multineuronal Cost-Based Metrics
	Other Cost-Based Metrics
	More Flexible Assignments of Costs to the Elementary Steps
	Other Kinds of Elementary Steps
	Further Generalizations

	Algorithms
	The Basic Dynamic Programming Algorithm
	Extensions of the Dynamic Programming Algorithm


	Spike-Train Metrics Based on Vector-Space Embeddings
	Single-Neuron Metrics Based on Vector Space Embeddings
	Multineuronal Metrics Based on Vector-Space Embeddings
	Computational Considerations

	Applications
	Overview
	Assessment of Variability
	Construction of Response Spaces
	Standard Multidimensional Scaling
	Examples
	Implications of Non-Euclidean Nature of Spike Metrics
	Relationship to the "Kernel Trick" and van Rossum-Type Metrics
	Nonlinear Scaling

	Applications to Information-Theoretic Analysis
	Examples



	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


