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ENHANCED COMPUTATIONAL METHODS
FOR THE ANALYSIS OF NEURAL CODING

SPIKE TRAIN ANALYSIS TOOLKIT

• Spike trains are embedded in a Euclidean space using  Legendre
polynomials.

• Mutual information is determined by the extent of the separation
of the clouds of points corresponding to each category. 

2. Binless Method (Victor, 2002)

We demonstrate capabilities of the toolkit by analysis of data from
Reich et al (2001), J. Neurophysiol. Spike trains were recorded from a
V1 neuron in an anesthetized macaque while drifting sinusoidal
gratings differing in contrast were presented at the neuron's optimal
orientation, spatial frequency, and temporal frequency. 

Dataset: V1 Response to Drifting Gratings

Extending the scope of the toolkit, we are also developing a 
web-accessible comprehensive resource for computational
neuroinformatics. This resource will integrate the data repository
and these analysis tools, using a graphical user interface, with:

• A dedicated parallel cluster for spike train analysis
For computationally intensive analyses, we are providing a 
Web-accessible 64-processor cluster for parallelized algorithms. 

• A means for sharing of analytical techniques
Neurodatabase.org will archive and share analytical algorithms 
as well as data, facilitating exploration of neural signals.

The toolkit includes several methods that correct for bias in the
entropy estimate or relax the data requirement:
• Classical bias correction techniques: jackknife, Miller-Carlton (see
Treves & Panzeri, 1995).
• More sophisticated entropy estimation techniques: best upper
bounds (Paninski, 2003), NSB (Nemenman et al., 2002).

1c. The Toolkit Implements Bias Correction 

• Distances between pairs of spike trains are given by cost required
to transform one spike train into another. The parameter q gives the
cost of shifting a spike per unit time, relative to the cost of
insertion/deletion.
• A clustering procedure finds a confusion matrix from the matrix
of distances. 
• Mutual information is determined by the extent of category-
specific clustering in the distances:

3a. Metric Space Method (Victor & Purpura, 1997)

1b. Multineuron Direct Method
• Simultaneously recorded spike trains are assembled into
superwords. Histograms of superword occurrences are tabulated.
• To reduce the data requirement of this method, the origin of the
spikes can be ignored, suggesting a population rate code. Also,
permuted spike trains could be considered identical. 

3b. Multineuron Metric Space Method (Aronov
et al., 2003)
• Simultaneously recorded spike trains are interleaved into a single
sequence of labeled events.

• The distance between (interleaved) spike trains is computed. In
addition to insertion/deletion or shift costs, a label can be changed
from one neuron to another at cost k, which describes the
importance of the identity of the neuron that fires a spike.

4. Other Methods Under Development
• Power series (Panzeri & Schultz, 2001)
• Codebook quantization (Dimitrov & Miller, 2001)
• Information bottleneck (Tishby et al., 1999)
• Markov tree method (Kennel et al., 2005)
• Stimulus reconstruction method (Bialek et al., 1991) 

To demonstrate the potential for our resource-catalyzed collaborations,
we analyzed data with the Toolkit using only metadata information
supplied with Neurodatabase.org datasets. Single- and multi-neuron
spike trains from parietal cortex of macaque monkeys recorded during
a reach/grasp prehension task (Debowy et al., 2002). Spike trains were
labeled with approach style, grasp style, and knob identity and
analyzed with the metric space method by Vaknin et al. (2005).

Dataset: Parietal Neurons During Prehension

The toolkit facilitates exploratory data analysis with
comprehensive searches of the parameter space. This analysis
reveals that most of the information about approach style is
conveyed in a window as small as 100 ms just prior to contact.

2. Toolkit Exploration of Parameter Space

Information conveyed by pairs of nearby neurons is largely
redundant, and keeping track of the source of each spike does
not increase the amount of information conveyed.

3. Multineuron Analysis Shows Redundancy

THE SPIKE TRAIN ANALYSIS TOOLKIT BRINGS TOGETHER DIFFERENT
INFORMATION–THEORETIC METHODS TO ADDRESS NEURAL CODING
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Computational neuroinformatics synthesizes computational
neuroscience—analyses of neural representation and information
processing—and neuroinformatics—standards-based methods for
archiving, classifying, and exchanging neuroscience data. 

We are assembling a computational neuroinformatic resource that
will aid the investigation of neural coding. This resource consists of
neurodatabase.org, a web-based neurophysiology data archive, and
a collection of information-theoretic spike train analysis tools. By
providing experimenters with advanced spike train analysis
techniques and theoreticians with broad collections of datasets, we
seek to advance collaborations toward understanding neural codes.

INTEGRATING COMPUTATIONAL
RESOURCES INTO NEURODATABASE.ORG

Bias correction performance of each of three
methods on a set of Poisson spike trains of known
entropy. Method performance depends upon data
properties.

The toolkit will provide Bayesian estimates
of the bias and variance for each estimator.

The Toolkit Implements Several Algorithms For
Computing Mutual Information.
Not all methods are applicable to all data sets.
The applicability of a particular method to a specific data set
depends upon:
• The amount of experimental data
• Assumptions about the topology of the response space
• Assumptions about the nature of the neural code

Different methods provide different insights.
The dependence of information on method parameters provides
insight about the nature of the encoding.

Toolkit Design and Implementation
The goal of this resource is to make information theoretic spike train
analysis techniques available to a wide audience. The toolkit is
available at http://cortex.med.cornell.edu/toolkit/
• Open-source, runs in Windows, Linux and Mac OS.
• Implemented in C, includes a Matlab interface.
• Uses a simple, platform-independent, human-readable format.

1a. Direct Method
(Strong et al., 1998)
• Spike trains are divided into
bins; the number of spikes in each
bin is counted.
• Each bin count can be
considered a letter in a spike train
word. A histogram of word
occurrences is generated and from
this histogram entropy can be
estimated:
• An experiment yields N words; word i occurs ni times. 
• Entropy is  –Σi pi log pi, estimated as  –Σi (ni/N) log (ni/N)
• The mutual information is computed from the difference between
the entropy of the responses and the entropy of the responses
conditioned on the stimulus.
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THE TOOLKIT FACILITATES ANALYSES OF COMPLEX NEURONAL SPIKE TRAIN DATASETS

1. Metric Space Analysis Reveals Which Aspects of
Task Kinematics Are Encoded by Specific Neurons in
Parietal Cortex

Forward approach

Lateral approach

Regrasp approach
Spike rasters for neuron 70-3 are
grouped by approach style; times
are with respect to contact time.
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Neuron 131-3.1, sighted trials,
grouped by approach style.
Information displayed as a
function of analysis window start
and end times. 
Red = 0.8 bit, blue = 0 bit.

Neurons 131-
3.1 and 131-3.2,
grouped by
approach style. 

• The neuron does not convey information about the knob identity. 
• About 0.4 bits of information are conveyed for both approach style and
grasp style.
• Information peaks at q=1 s-1 (corresponds to a timescale of 2 s).
• No significant difference between sighted and unsighted trials.

1a. Neuron 70-3 Reports Approach & Grasp Styles:
All trials, grouped 
by knob identity:

All trials, grouped
by grasp style:

All trials, grouped
by approach style:

• The neuron does not convey information about the knob identity. 
• Significantly more information is conveyed about approach style
during sighted (0.7 bits) than during blocked condition (0.4 bits).
• There is a strong peak in information for both sighted and blocked at
q=10 s-1 (corresponds to a timescale of 200 ms).
• A simultaneously-recorded neuron (131-3.2) displayed qualitatively
similar characteristics.

1b. Neuron 131-3.1 Reports Visually-Guided Approach:
Sighted trials, 
grouped by 
knob identity:

Blocked trials,
grouped by
approach style:

Sighted trials,
grouped by
approach style:
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NEURAL CODES AND INFORMATION THEORY

A profound question in neuroscience addresses neural coding: How
do neurons use spike trains to represent information? Different
neural systems are likely to use different representations. Therefore,
examination of a broad collection of preparations is needed to
elucidate the general principles of neural coding. The neural coding
problem can be approached in a rigorous, quantitative manner.
Techniques based in information theory are particularly well-suited
to address neural coding because they can quantify the amount of
information a neuronal response conveys about which of several
discrete stimulus categories it belongs to.
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