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Introduction
Locating a food source or a mate based on olfac-
tory cues is a challenging task since instantaneous
concentration gradients do not, typically, point to-
wards the source. Proposed navigation algorithms
range from models with full spatial map to eval-
uating only local cues to guide behavior. A sim-
ilar diversity is found in what features of the ol-
factory scene are measured (such as instantaneous
concentration, intermittency, time between odor
encounters).
Here we are interested in the intrinsic utility of these
different kinds of features in determining the lo-
cation of an odor source. We therefore used an
information-theoretic approach to comparing differ-
ent encoding strategies. We found that resolving
concentration differences is less important than ob-
taining multiple samples, either in time or space. As
we show via a simple navigational model, encoding
only two levels of concentration can suffice to find
the source of an odor when coupled with temporal
sampling.

Environment
Odor molecules are volatile and often travel on
turbulent plumes. To study a natural olfactory
scene, we measured concentrations of a neutrally-
buoyant odor surrogate by planar laser-induced
fluorescence1.

Two typical snapshots are shown above. We sam-
pled eight minutes of concentration data at 15Hz
(yielding 7200 samples at each of 495 × 281 pixels).
In order to quantify how useful different cues are,
we use the framework of information theory. We
chose a narrow and a wide grid of 16 locations (L;
blue circles and green triangles above) to evaluate
how much information is provided through different
encoding strategies.

Comparison of different encoding strategies
Single samples
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Information saturates with increasing
concentration resolution.

Samples at two locations
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Sampling at two locations provides more
information at lower concentration resolution.

Samples at two times
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Sampling at two times also provides more
information at lower concentration resolution.

Method
Following Shannon1, the mutual information is

I(L,M) = H(L)−
∑

m∈M
p(m)H(L|m),

where H(L) is the entropy of the probability dis-
tribution prior to taking sample m, and H(L|m)
is the conditional entropy given m. The posterior
distribution is obtained by Bayes theorem after
measuring the code word m, which can comprise
one or more spatial and temporal measurements.
We compare different strategies (S) of encoding
odor measurements, using the notation

S(nbits; kspatial, ktemporal),
where nbits denotes the number of bits that re-
solve concentration, kspatial is the number of spa-
tial samples (kspatial ∈ {1, 2}) and ktemporal is the
number of consecutive samples in time (ktemporal ∈
{1, . . . , 8}). Control analyses showed that our
estimates of mutual information were not data-
limited.

Two sensors aligned cross-stream Two sensors aligned downstream
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Allocating 8 bits to 2 or 4 spatiotemporal samples yields more information than
allocating them to 8 samples.

Multiple temporal samples (narrow grid) Multiple temporal samples (wide grid)
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Temporal order contributes minimally to information.

Application to a model of binaral comparison
To show the utility of these cues, we constructed a simple model that is able to locate the odor source. The
model is based on binaral comparison3. Odor concentration is binarized at the front end with an adaptive
threshold. Left-right differences in weighted averages of previous odor samples determine turning behavior.
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where v = 1, τ = 0.1, β = 0.5, α = γ = 1, τF = 50.

Conclusions
• Investing more than a few bits in concentration
resolution yields diminishing returns.

•Multiple samples at lower resolution yield more
information than one sample at high resolution.

•For each encoding scheme, there is a significant
benefit of investing more than 1 bit per sample.

•Temporal sequence of measurements yields only
minimal information.
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