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ABSTRACT
Estimation of information in spike trains generally consists of several steps: (i)
embedding spike trains into a space, (ii) clustering similar spike trains into
groups, (iii) using a “plug-in” formula for transinformation based on how these
groups relate to the stimuli, and (iv) estimating biases due to small sample size.
Traditional approaches use binning as part of the embedding stage (i), with
each bin corresponding to a separate dimension. Bins that are too wide lead to
underestimates of information since temporal detail is lost, while bins that are
too narrow lead to biases associated with extreme undersampling. Metric space
methods (Victor & Purpura 1997) avoid the binning problem, but still may
underestimate information due to the clustering at stage (ii). Jackknife
estimators at stage (iv) can be superior to the standard (Treves & Panzeri 1995)
bias correction, but no bias correction is effective when the amount of data is
limited.

We present an alternative to stage (iii) that bypasses the difficulties associated
with binning and clustering. We use linear, continuous embeddings of spike
trains in low-dimensional spaces, and apply an asymptotically unbiased
“binless” estimator of differential entropy (Kozachenko & Leonenko, 1987)
directly to the embedded spike trains. Information is estimated from the
difference between the entropy of the set of all spike trains, and the entropies of
the spike trains elicited by each stimulus. In simulations, the rapid convergence
properties of the binless entropy estimator lead to marked improvements in
information estimates in the regime of limited data.

OVERVIEW
Limited data is not the only hurdle in estimation of entropy and information from
neural data. An equally important issue is that the space of spike trains has a
peculiar hybrid topology.  It has a discrete character, since the number of spikes
in any spike train must be an integer.  But it also has a continuous character,
owing to the continuous character of time. Reducing a spike train to a discrete
series of integers via binning destroys this topology, in that small shifts in the
time of a spike (that cause a spike to cross a bin boundary) results in as much
of a change as moving a spike to an arbitrarily distant bin.  The distinguishing
feature of the present approach is that it exploits this natural hybrid topology of
spike trains, and is thus more likely to be robust and efficient than procedures
that ignore it.

These considerations are most relevant to situations in which responses are
spike trains of limited duration, elicited by a small set of stimuli presented at
discrete times.  In other situations (e.g., analysis of extended responses to a
rapid sequential presentation of a rich stimulus set), the temporal structure of
the stimulus acts to destroy whatever temporal structure might be generated by
neural processing. In such situations, bin-based methods work well (Strong et
al., 1998), and the topology of the response space is less crucial.

For data quantities typical of laboratory experiments using transiently-presented
stimuli, the present approach provides highly effective information estimates. At
the expense of a modest decrease in precision, convergence (as a function of
amount of data) and accuracy are substantially greater than that of binned
approaches.  Computations are straightforward and have a solid theoretical
underpinning.
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BINLESS ESTIMATES OF ENTROPY
Entropy estimates of one-dimensional distributions

Let p(x) be a continuous probability density on the real line . Our immediate
goal is to estimate the differential entropy of p(x), defined as

, (1)

from a finite sample of observations x1, …, xN drawn according to p(x). We seek
an estimate that depends continuously on the individual observations, and
exploits the continuous nature of p. The continuity assumption for p means that
within a sufficiently small neighborhood of xj, we can approximate p by a locally
uniform distribution of density p(xj).  In this neighborhood, observations are
approximately distributed as a uniform Poisson process. From local Poisson
statistics, one can determine q(x,λ), the probability that, after N-1 other samples
have been drawn according to p, the nearest neighbor to a sample x is at a
distance of least λ :

   . (2)

The expected value of log2(λ) can now be related to p.  This leads to the
estimate
 , (3)

where λj  is the observed distance from xj to its nearest neighbor and

is the Euler-Mascheroni constant  (≈0.5772156649). Eq. 3, essentially the one-
dimensional case of eq. 2 of Kozachenko and Leonenko (1987).  It was shown
by those authors to be asymptotically unbiased provided that p obeys certain
integrability conditions.
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Entropy estimates of multi-dimensional distributions

The above analysis readily extends to multidimensional distributions p(x), where
x is a point in an r-dimensional Euclidean space.  The relationship between p(x)
and the nearest-neighbor distribution q(x,λ) near must be modified to take into
account the volume associated with a change in nearest-neighbor distance from
λ to λ+∆λ , which is proportional to the volume of an r-dimensional spherical
shell of radius λ. and thickness ∆λ . Following along the same lines as the one-
dimensional analysis above, we find

    where

is the surface area of a unit r-dimensional spherical shell (S1=2, S2=2π, S3=4π,
…).  This leads to

, (4)

which is eq. 2 of Kozachenko and Leonenko (1987).
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BINLESS ESTIMATES OF INFORMATION
Information estimates in a Euclidean space

Consider a discrete set of symbols a1, …, as, presented with probabilities q1, …,
qs, resulting in outputs x characterized by conditional probability densities

in a Euclidean space of dimension r.  The transmitted information is given by

    , (5)

where Hdiff is the differential entropy for the (unconditional) density p(x), and
       is the differential entropy for the conditional density                           .

Applying eq. 4 leads to an expression for transmitted information that rests on a
comparison between the minimum distance between samples elicited by the
same symbol, and the unrestricted minimum distances:

  .  (6)

Here Nk is the number of presentations of the kth stimulus (Nk=qkN), λj is (as
before) the minimum distance between the observation xj and any other
observation, and  is the minimum distance between the observation xj and
any other observation elicited by the same stimulus.

)|()( kk axpxp =

∑
=

−=
s

k
kdiffkdiff axHqHI

1

)|(

)|( kdiff axH )|()( kk axpxp =

∑∑
== −

−−≈
s

k

kk
N

j j

j

N
N

N
N

N
r

I
1

2
1

*2 1
1

log)(log
λ
λ

*
jλ

Information estimates for spike trains: an embedding

To embed the n-element spike trains into a Euclidean space, we first apply a
monotonic time-warping transformation τ (t) so that so that the transformed
spike times are approximately equally spaced in the interval [-1,1].  This
transformation allows creation of approximately independent coordinates via the
Legendre polynomials Ph, which are orthogonal on [-1,1]. The hth embedding
coordinate ch maps a spike train xj containing n spikes at times t1,…tn into

(11).

By virtue of this normalization, if the n spike times within each spike train xj are
drawn at random from the pool of spike times, the mean-squared value of the
hth coordinate of an spike train with n spikes will be n.  Moreover, for spike
times are drawn at random, coordinate values will be uncorrelated.
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Two details

In estimating Itiming(n), terms in eq. 8 will be undefined if the embedding results in
nearest-neighbor distances of 0. Eq. 8 will also contain undefined terms if some
stimuli elicit only one spike train containing n spikes, since those spike trains will
have no nearest neighbors within their class from which to calculate   .

If there are “zero distances”, we partition the set of spike trains containing exactly
n spikes into disjoint sets Cn, Zn,1, Zn,2, …, Zn,b(n) such that (i) Cn contains all of the
spike trains that are not at a distance of zero from any other spike train and (ii)
each Zn,m contains a maximal subset of spike trains that are at a distance of zero
from each other.  The subsets Zn,m are then used to refine the partition (eq. 7) of
information into discrete and continuous components, Zn,b(n).

Singletons arise when eq. 8 applied to Cn to estimate Icontinuous but one or more
spikes train in Cn are the sole representatives (among the n-spike responses in
Cn) of the responses to its stimulus. Since this eventuality is a direct consequence
of having a limited amount of data, we consider two ways of extrapolating to what
the dataset might plausibly consist of, if we had additional data.  One extreme is
that additional observations would yield identical responses to this singleton. The
other extreme is that additional observations would indicate that the observed
singleton response is completely uninformative.  As illustrated below, both arms of
this bracketing strategy yield well-defined estimates of Itiming, and these rapidly
converge as the number of samples increases.
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SIMULATIONS: ENTROPY ESTIMATES
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Comparison of estimators of differential entropy from a finite number of samples.
Binned estimators with either the classical (eq. 10) or jackknife bias corrections
depend strongly on bin width and converge much more slowly with increasing
sample size than binless estimators, but have somewhat less scatter.

SIMULATIONS: INFORMATION ESTIMATES
Information estimates for spike trains: stratification by spike count

Eq. 6 cannot be applied directly to neural data, since it requires that spike trains
are represented by quantities lying within a Euclidean space of a particular
dimension r.  To describe a spike train containing n spikes requires n
parameters – effectively one for each spike time.  Thus, the set of spike trains
of finite duration naturally breaks into a hierarchy of spaces: an n-dimensional
space for the spike trains containing n spikes.  We then break the transmitted
information into two kinds of contributions:

,  (7)

where p(d(x) =n) is the probability that a response x contains exactly n spikes,
Icount is the contribution due to the number of spikes elicited by each stimulus,
and Itiming(n) is the contribution due to the distribution of spike times of all
responses containing n spikes.

We use the binless approach (eq. 6) to estimate Itiming(n) and the usual plug-in
estimates for discrete data to estimate Icount.  That is,

, (8)

where r is the embedding dimension for n-element spike trains (see below), the
j-summation is over all N(n) spike trains containing exactly n spikes, N(n, ak) is
the number of observed joint occurrences N(n, ak) in which a stimulus ak elicits
a response containing n spikes, and the minimum distances λj and     consider
only stimuli that elicit exactly n spikes. Icount can be estimated in terms of these
quantities and the known stimulus probabilities qk, by the “plug-in” estimate:

 . (9)

The bias in the estimate of Icount can be estimated by the classical correction for
entropy estimates (Miller 1955; Carlton, 1969; Treves and Panzeri, 1995)

(10)

or the jackknife estimate (Efron and Tibshirani 1993). The bias in the timing
term of eq. 7 is asymptotically zero.  This is because the binless estimate for
Itiming(n) and the naïve estimate for p(d(x)=n) are mutually uncorrelated and
each is asymptotically unbiased (Kozachenko and Leonenko 1987).
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Interesting form! Second term is
~ maximum information if
responses are fully segregated;
first term is reduction due to
interpenetration of responses.
No γ, no Sr.
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We applied the binless method
summarized by eqs. (7), (8),
and (9) to simulated spike
trains (modulated Poisson
processes) shown here, along
with binned procedures,
including embedding (eq. 11)
followed by binning and time-
domain binning, and the
metric-space method of Victor
and Purpura (1997).
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Information estimates are debiased with either the classical (eq. 10) or jackknife bias
corrections, and the spike count contribution to transmitted information (where applicable) is
indicated by the colored lines without data points.  For  the binless estimators, the bracketing
strategy described under “Two details” (above) leads to separate upper and lower estimates.
They converge to an asymptotic value (horizontal black line) much more rapidly than the binned
estimators.  This is especially true for higher embedding dimensions. Metric-space estimators are
rapidly convergent but slightly downwardly biased.  Similar results were found in other simulations
(not shown), including (a) Poisson spike trains differing only in rate, (b) sinusoidally modulated
Poisson spike trains differing only in modulation phase, and (c) non-Poisson spike trains.
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