ATTENTIONAL CONTRIBUTIONS TO VISUAL PROCESSING OF SYMMETRY

Mary M. Conte, Keith P. Purpura and Jonathan D. Victor
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY

INTRODUCTION
Previously (SFN, 2002) we showed that processing of vertical-axis mirror symmetry (V) is not consistent with
either a pure parallel or serial model, and is more efficient along the vertical midiline than off-axis. Here w either a pure parallel or serial model, and is more efficient along the vertical midline than off-axis. Here we
extend the analysis to horizontal (H) symmetry, to determine the generality and basis of these observations Each stimulus consisted of four 888 arrays of black and white checks. Three of the arrays (distractors) were
colored at random; in the fourth array (the target), bilateral symmetry was introduced. We measured traction correct (FC) and reaction time in a 4 -AFC search task. Trained observers ($N=7$) viewed these stimuli in single-sym metry blocks $(\mathrm{or} \mathrm{H}$, and h rand deg from fixation along the cardinal axes, and presented for durations of either 100 or 400 ms . In
symmetry blocks, an RSVP mode (SFN, 2002) was also employed (100 ms per stimulus, 50 ms mss .
In many respects,, V and H symmetry results were similiar: FC in RSVP was higher than FC for simultaneous presentation at 1100 ms , but not as high ha FC for simultaneous presentation at $400 \mathrm{ms}$. . In RSVP modes. FC
was highest when the target was presented first. A masking effect was seen at 200 ms tollowed by recovery Was highest when the target was presented first. A masking effect was seen at 200 ms followed by recovery
of sensititity at 300 and 400 ms . Erors were not temporally random. When wrong, subjects usually selected

We conclude that stimulus expectation guides the focal attention scanning strategy employed when processing bilateral symmerty. In particular, stimulus expectation enhances processing of vertical symmetty

STIMULI \& METHODS
Simultaneous - Parafoveal (100 ms and 400 ms)

RSVP - Central $\begin{aligned} & \text { arayy are presented sequentially } \\ & \text { at one fixed location }\end{aligned}$

RESULTS

1. Not Parallel, Not Serial

Comparison Across Presentation Modes. Pooled fraction correct data for single-symmetry
blocks (horizonta or verital) are shown above for each of the four presentaiton modes.
Fraction

 suggesting that processing can be more e efifiention when the arayys are visible simultaneous:
This indicates that processing is not turely serial.
\qquad

There are individual differences between subjects, but within each subject, the performance
pattern is similar for horizontal and vertical symmetty. The advantage of 400 ms

RSVP Presentation Modes
2. When is the Target Detected?
3. When are the Errors Made?

Simultaneous - Parafoveal Modes

$$
\begin{array}{cc}
100 \mathrm{~ms} \\
\text { Single-symmetry Blocks } & \begin{array}{c}
\text { Mixed Blocks } \\
\text { V or H }
\end{array}
\end{array}
$$

H1 IH Hus H LHI III Ih1 IIII

SUMMARY \& CONCLUSIONS

- Horizontal and vertical symmetry detection is inconsistent with a purely parallel or serial process (Results 1). Both tasks show similar masking (Results 2) and temporal confusion errors (Results 3) in RSVP presentations.
- Positional biases in symmetry detection interact with the direction of the symmetry axis (Results 4). These biases can be induced by the subject's expectation of the direction of symmetry axis (single-symmetry blocks), and evolve over the processing of the stimulus (400 ms vs 100 ms).

The Symmetry Bias inde
is the difference betwe

matches the dispolay axis
and
and the traction
the oftaxis orest
and the fraction cor
the ottaxis
These findings suggest that symmetry detection utilizes a dynamic visual routine, in which ongoing processing guides attentional strategy, rather than a static neural computation.

