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OUR SUPPORT AND OUR STANDARDS:

TOWARD COMPUTATIONAL
NEUROINFORMATICS

6. An Output Data Container That Provides an
Intuitive Structure for Results of Analyses
A specialized output container stores discrete histograms and
associated statistics, commonly used for estimation of entropy. The
container accommodates multiple bias corrections and variance
estimates with each estimated entropy.

4. An Input Data Container That Facilitates
Information-Theoretic Analyses
We have developed a standard categorical data container that is:
• Agnostic to the procedure that generated the data
• Appropriate for both single and multichannel data
• General enough to handle time-stamped spike train data as well as 

field potentials and other continuously-sampled signals.

5. Neurodatabase.org Design Faciliates
Organizing Archived Data for Post-hoc Analyses
Data categorization is a complex and non-trivial task. The design of
neurodatabase.org facilitates inclusion of descriptive metadata,
stimulus time markers or replicas, and data groupings.

This example, drawn from neurodatabase.org, groups spike
trains from cortical neurons recorded in an experiment in which a
monkey grasped, lifted, held and lowered knobs in response to
visual cues. Metadata supplied by the submitter and codified by the
database and its BrainML data description language enabled the
post-hoc segregations, by knob grasped and by behavioral state,
shown in the lower panels (see Debowy et al., in The Somatosensory
System: Deciphering the Brain's Own Body Image 2002).

8. An Integrated Computational Neuroinformatic
Resource at Neurodatabase.org
Enhancing neurodatabase.org, the modules will also be used to
form an open, Web-accessible comprehensive resource for
computational neuroinformatics. In-development Java tools,
midlayer servers, and an algorithm database will integrate modules
and provide a graphical user interface for acquiring, supplying, and
applying algorithms as well as data.

These resources include a parallel array for the computationally
intensive analyses required by several of the algorithms we are
implementing. With the advent of multielectrode recording
technology, researchers are exploring population codes that exploit
the concerted activity of several neurons, requiring even more
computational power, exceeding the capabilities of a conventional
desktop computer. We have dedicated a 26-processor Beowulf cluster
as a parallel computational resource for community analysis of
databased data.

9. Towards Experimenter-
Theoretician Collaborations
Using these resources:
• Experimenters will be able to
analyze their data with cutting-edge
analytical techniques, an enhancement
that will further encourage submission
to the database and data sharing.
• Theoreticians will be able to apply
newly-developed analytical techniques to a diverse collection of
datasets and compare the results to those derived from established
methods.

By eliminating technical barriers such as incompatible data formats,
platform-dependent software, and lack of computational power,
neurodatabase.org will serve as a catalyst for collaboration
between these two complementary groups.

7. An Initial Modular Implementation of Two
Information-Theoretic Analytical Methods
Methods are implemented as a sequence of basic modules that can
easily be replaced with more sophisticated modules as they become
available. Here, methods share a module that estimates the entropy
of a discrete histogram and provides bias and confidence limits.

The initial two methods are :

• Direct method (Strong et al., Phys. Rev. Lett. 1998). 
Spike trains are divided into non-overlapping bins and the spikes in
each bin are counted. The number of spikes in the bins are
considered to be letters in a word. Entropies are estimated from the
histogram of the total and class-conditional word probabilities.

• Metric space method (Victor & Purpura, Network: Comput. in Neural
Sys. 1997). 
Distances between pairs of spike trains are computed under an
assumption of the neural code (e.g., dependence on spike count,
spike time, etc.). The spike trains are clustered according to these
distances and mutual information is computed based on the extent
of the stimulus-dependent clustering.

3. Modular Design Separates Parsing, Grouping,
and Analyses of Data 
The computational resource must accommodate data from a vast
array of preparations and experimental paradigms. Users of the
resource will be able analyze data submitted by members of the
community, performing analyses that the data submitter may not
have anticipated. This can be accomplished by reorganizing the
archived data with the aid of accompanying metadata. The
computational engine is not concerned with this process; it requires
only that the data be segregated into stimulus categories.

• We Have Begun Development of a Portable
Spike-train Analysis Toolkit.
Modules will be supplied as an integrated portable computational
suite for information-based analyses. This toolkit will be suitable for use
on local desktop workstations and individual parallel clusters.

Users will have the option of interfacing with the data repository
and data formatter at neurodatabase.org, or with local data (if
stored in a valid data container). The open source code is written in
C for portability and supplied with MEX wrappers so that modules
can be called from the Matlab command line.

MODULAR COMPUTATIONAL AND INFORMATIC COMPONENTS SUPPORT STANDALONE ANALYSES
AS WELL AS INTEGRATED RESOURCES AT NEURODATABASE.ORG
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Understanding neural coding—how neurons represent and process
information with spike trains—-is a central goal of neuroscience.
Information theory, originally developed as a means of studying
modern communication systems, is now being applied to questions
of neural coding by many laboratories. We present a planned
computational neuroinformatic resource that combines the
neurophysiology data repository at neurodatabase.org with a
suite of complementary methods for information-theoretic analyses.

Upon completion, this neurodatabase.org resource will provide:

• Neurophysiological data from many preparations, modalities,
and experimental paradigms, stored in a standard format with
detailed metadata.

• A means for experimenters to share their data, encouraging and
ensuring compliance with the NIH data sharing mandate.

• Mathematically sophisticated algorithms for the analysis of spike
train and other informative neural data.

• A site for researchers to disseminate analytical algorithms,
facilitating feedback from, and adoption by, the neuroscience
community.

• Access to a dedicated parallel computer for computationally
intensive analyses.

2. Information-Theoretic Analytical Methods
The established algorithms in this suite vary in their computational
and informatic requirements, the nature of the assumptions they
make about neural coding, and their applicability to multichannel
data. Each analytical method will provide a set of criteria to ensure
appropriate applicability and meaningful results, including type of
signal (continuous/discrete, single/multi-channel) and quantity of
data required. Reconstruction is the only method that requires
information about the stimulus beyond a categorical classification.

1. Toward an Understanding of Neural Coding
The application of information theoretic concepts to the study of
neural coding is non-trivial, because straightforward estimates of
information theoretic quantities often require prohibitively large
amount of data. Alternative methods reduce the amount of requisite
data by making assumptions about the neural system under study.
Because we lack a priori knowledge about the appropriateness of
these assumptions, it is essential that multiple methods be made
available to analyze datasets from multiple systems. 

The synthesis of neuroinformatics and computational resources
ushers in a new era of computational neuroinformatics in which
neuroscientists will be able develop a rigorous understanding of
neural coding that encompasses a diverse array of preparations and
transcends particular methods.

TO UNDERSTAND NEURAL CODING, APPLY
MULTIPLE METHODS TO MULTIPLE DATASETS

TWO COMPUTATIONAL NEUROINFORMATIC
RESOURCES FOR ANALYSIS OF NEURAL CODING
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direct general low no virtually none no
reconstruction time series favorable yes Volterra yes
metric space general very favorable no specific models yes
embedding general favorable yes continuous minimal

power series general favorable no Volterra yes
spectrotemporal general favorable yes continuous yes

* low: exponential growth with number of channels
* favorable: polynomial growth (for low-order models)
* highly favorable: no growth

bottleneck/codebook general yes continuous yesvery favorable

# from most to least general: 
virtually none, continuous,
Volterra, specific models
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Stimuli Direct method Metric space method

Taste stimuli representing
four basic taste qualities are
presented, and spike trains
are recorded from the NTS of
anesthetized rats (Di Lorenzo
& Victor, J. Neurophys. 2003).

The direct method, which
makes no assumption of the
underlying code, often
requires more data than are
easily obtainable. Here,
results are not meaningful,
even for large bin sizes, as
demonstrated by the large
amount of (apparent) infor-
mation in shuffled surrogate
datasets.

The metric space method
assumes that neural codes
can be parametrized by the
importance of spike timing. It
provides a more useful esti-
mate of information from the
available data. It also charac-
terizes how the information is
transmitted. 
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