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Introduction

• Reponses of V1 neurons to 
drifting compound gratings of 
equal energy reveal tuning to 
edge-like, line-like, and 
intermediate profiles (Mechler et 
al. 2002).
• Neither linear neurons nor 
energy-operator neurons can 
account for the observed tuning. 
• Recurrent connections have 
been used to explain simple and 
complex cell responses to single 
drifting gratings. (Chance et al. 
1999) Here we ask if this model 
can explain the feature tuning of 
V1 neurons to lines, edges and 
intermediate waveforms.

A Recurrent Network Model for 
Detection and Discrimination of Relative Spatial Phase by V1 Neurons

Ifije Ohiorhenuan, Ferenc Mechler, Jonathan D. Victor, Weill Medical College of Cornell University• Rough feature preference is endowed 
by the Gabor carrier phase, but is 
eliminated if the nonlinearity is a perfect 
half-wave rectifier.  
• Feature selectivity is sharpened by 
the firing rate generator via the iceberg 
effect of a threshold nonlinearity but 
weakened by increased recurrent gain.
• High gain also decreases the diversity 
of preferred features because of 
indiscriminate phase pooling.
• A family of models can account for 
much of the diversity of feature 
preference and selectivity seen in V1.

Conclusions

• Recurrent connections pool 
responses across all spatial phases 
and scales, diluting the phase 
sensitivity of the Gabor-filter, linear 
afferents. The network results in 
ideal simple and complex cells at 
opposite ends of the gain range. 
• We explore the dependence of 
feature tuning on two aspects of the 
network: the strength of the 
recurrent gain and the type of the 
rectifying nonlinearity.
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1D feature space Tuning in a single neuron

Feature tuning is quantified by 
3 response energy measures: 
Total, Odd and Even.
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On the right are the tuning curves of model 
neurons for different network parameters. 
For each spatial scale, circular vector plots 
summarize neurons’ optimal congruence 
phase (direction) and selectivity or the 
circular variance of tuning (radius). Wedge 
diagrams show the model distribution of 
optimal congruence phase across all scales.


