# **INFLUENCE OF SYMMETRY ON FACE DETECTION**

Rebecca M. Jones, Mary M. Conte, and Jonathan D. Victor

737.13 SFN2007

### Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065

## INTRODUCTION

- Symmetry and faces are highly salient in visual processing and ethologically significant (Chen et al., 2007; Kanwisher et al., 1997; Norcia et al., 2002; Saunders & Knill, 2001).
- Processing of symmetry and face perception interacts. Photographs of symmetric faces are preferred and perceived as more attractive compared to less symmetric faces (Perrett et al., 1999; Rhodes et al., 1998). Symmetry detection is enhanced for upright, normal faces compared to inverted, contrast- reversed faces (Rhodes et al., 2005)
- In previous studies, symmetry and face-likeness were not manipulated as independent variables. When stimuli were constructed in a manner that allowed symmetry and face-likeness to be varied independently, symmetry detection was enhanced for face-like images and there was no inversion effect (Conte, et al., SFN2006). So therefore we ask...

Does symmetry influence discrimination of face-like from non-face-like images?

### **STIMULI DESIGN**



Symmetry was quantified by mixing different proportions of check pairs

\* Olivetti, Olivetti Research Laboratory Face Library, http://www.cam-orl.co.uk/facedatabase.html 2002

Thanks to Logan Lowe for image generation

### METHODS

#### Participants:

 6 R-handed females, avg. age 25 yrs, corrected to normal visual acuity; 2 were raters of facelikeness

#### Procedure:

- ~ 500 practice trials
- 2880 experimental trials/participant
- Variables:
- Symmetry (0.2 0.6, 0.6 0.8, 0.8 1.0)
- Face Ratings (1.41-1.67, 1.67-1.97, 1.97-2.36, 2.36-4.0)
- Presentation Time (100 or 400 ms)
- Orientation (upright or inverted)



Rating the Images - 10 participants (5M, 5F) rated over 11,000 images as face-like on a 4-point scale (1 = least to 4 = most face-like). The overall ratings were derived from the 1st factor of missing-data principle component analysis. Each participant's ratings strongly correlated with the consensus rating.



To construct a trial, 4 images were chosen from the same symmetry range. 3 of the images were chosen from a face-rating of 1-1.41 (distractors) and 1 was chosen from one of 4 bands of face-likeness (target).



#### Face Ratings

#### Statistical analysis: ANOVA

| Main Effects                  | F      | р       |
|-------------------------------|--------|---------|
| Main Enects                   | -      | ٢       |
| Symmetry                      | 28.941 | < 0.001 |
| Face Rating                   | 236.29 | < 0.001 |
| Time                          | 18.566 | < 0.001 |
| Orientation                   | 0.058  | > 0.05  |
| Interactions                  |        |         |
| Symmetry * Time               | 3.682  | < 0.025 |
| Symmetry * Face Rating        | 4.633  | < 0.001 |
| Face Rating * Time            | 8.047  | < 0.001 |
| Face Rating * Time * Symmetry | 5.203  | < 0.001 |

#### Post-Hoc Analyses

- Errors were not systematic. They occurred equally in all locations, and were not correlated between participants.
- There were no differences in accuracy for participants who were raters (n=2) versus non-raters of the stimuli.

#### REFERENCES

Chen, C.C., Kao, K.L. & Tyler, C.W. (2007). Face configuration processing in the human brain: the role of symmetry. *Careb. Cortex*, **17**, 1423-32. Conte, M.M., Ashurova, A. & Victor, J.D. (2006). Influence of lace-likeness on symmetry perception. No. 609.2, Society for Neuroscience Meeting. Kanwisher, N., McDermott, J. & Chun, M.M. (1997). The fusifiom face area: a module in human extrastriate cortex specialized for face perception. J. *Neuroscience*, **17**, 4302-11.

Neuroscience, 17, 4302211.
Norcia, A.M., Gandy, T.R., Pettet, M.W., Vildavski, V.Y., & Tyler, C.W. (2002).
Temporal dynamics of the human response to symmetry. J. of Vision, 2, 132-9.
Perret et al., (1999). Symmetry and human facial attractiveness. Evol. Hum.
Behav, 20, 295-307.
Bodes G. Profitt F. Grady. J.M. & Sumich A. (1998). Facial symmetry and

Rhodes, G., Promit, P., Grady, J.M. & Sumich, A. (1996). Factal symmetry and the perception of beauty. *Psychom. Bull. Rev.*, 5, 659-669. Rhodes et al., (2005). Higher-level mechanisms detect facial symmetry. *Proc. Of Natl. Roc. Soc.*, 272, 1379-1384.

Saunders, J.A. & Knill, D.C. (2001). Perception of 3D surface orientation from skew symmetry. *Vision Res.* 41, 3163-3183.

#### Supported by NIH EY7977

### Identification of the most face-like target was:

- · worse as symmetry increased
- better as face-likeness increased
- better with longer viewing time (400ms vs 100ms)
- · not affected by inversion
- better at 400 ms and lower symmetry values
- worse as face-likeness and symmetry increased
- better as face-likeness increased and longer viewing time

No other interactions were significant Logistic Regression analysis replicated the ANOVA results

### CONCLUSION

When symmetry and face-likeness are manipulated as independent variables, symmetry *interferes with* discrimination of face-like from non-face-like images at the *featural* (parts-based) level, and has no effect at the *configural* (holistic) level.