INFLUENCE OF SYMMETRY ON FACE DETECTION

Rebecca M. Jones, Mary M. Conte, and Jonathan D. Victor

INTRODUCTION

> Symmetry and faces are highly salient in visual processing and ethologically significant (Chen et al., 2007; Kanwisher et al., 1997; Norcia et al., 2002; Saunders \& Knill, 2001).
> Processing of symmetry and face perception interacts. Photographs of symmetric faces are preferred and perceived as more attractive compared to less perceived as more attractive compared to less
symmetric faces (Perrett et al., 1999; Rhodes et al. 1998). Symmetry detection is enhanced for upright, 1998). Symmetry detection is enhanced for upright,
normal faces compared to inverted, contrast- reversed normal faces compared to in
faces (Rhodes et al., 2005)
> In previous studies, symmetry and face-likeness were not manipulated as independent variables. When stimuli were constructed in a manner that allowed symmetry and face-likeness to be varied independently, symmetry detection was enhanced for face-like images and there was no inversion effect (Conte, et al., SFN2006). So therefore we ask.

Does symmetry influence discrimination of face-like from non-face-like images?

STIMULI DESIGN

Symmetry was quantified by mixing different proportions of check pairs.

METHODS

Participants:

- 6 R-handed females, avg. age 25 yrs, corrected to normal visual acuity; 2 were raters of facelikeness

Procedure:

- ~ 500 practice trials
- 2880 experimental trials/participan

Variables:

Symmetry (0.2 - 0.6, 0.6-0.8, 0.8-1.0)

- Face Ratings (1.41-1.67, 1.67-1.97, 1.97-2.36, 2.36-4.0)
- Presentation Time (100 or 400 ms)
- Orientation (upright or inverted)
"Choose the image that is most face-like" Sample Trial

Rating the Images -10 participants ($5 \mathrm{M}, 5 \mathrm{~F}$) rated over 11,000 images as face-like on a 4 -point scale ($1=$ least to $4=$ most tacee-like). The overall rating
wwere derived from the 1 st factor of missing-data pricipile were derived from the 1 st factor of missing-data principle component anal
Each participant's ratings strongly correlated with the consensus rating

To construct a trial, 4 images were chosen from the same symmetry range 3 of the images were chosen from a face-rating of $1-1.41$ (distractors) and 1 was chosen from one of 4 bands of face-likeness (target).

RESULTS

100 ms inverted

400 ms inverted

Face Ratings

Statistical analysis: ANOVA	
Main Effects	F
Symmetry	$28.941<0.001$
Face Rating	$236.29<0.001$
Time	$18.566<0.001$
Orientation	$0.058>0.05$
Interactions	
Symmetry * Time	$3.682<0.025$
Symmetry * Face Rating	$4.633<0.001$
Face Rating * Time	$8.047<0.001$
Face Rating * Time * Symmetry	$5.203<0.001$

Identification of the most face-like target was:

- worse as symmetry increased
- better as face-likeness increased
- better with longer viewing time (400 ms vs 100 ms)
not affected by inversion
- better at 400 ms and lower symmetry values
- worse as face-likeness and symmetry increased
- better as face-likeness increased and longer viewing time

No other interactions were significant
Post-Hoc Analyses
Errors were not systematic. They occurred equally in all
locations, and were not correlated between participants.
There were no differences in accuracy for participants who
were raters ($n=2$) versus non-raters of the stimuli.

REFERENCES

 Temporal dynamics of the human response to symmetry. Jo of V.sion, $2,132-9.9$
Pereret etal., (1999) Symmetry and human tacial atractiveness. Evol. Hum. Behav, 20, 295-307.

Saunders. J.A. \& Knill. D.C.C. (2001). Perception of $3 D$ surface orientation from
skew symmerty. Vision Res. $41.3163-3183$.

Supported by NIH EY7977

CONCLUSION

When symmetry and face-likeness are manipulated as independent variables, symmetry interferes with discrimination of face-like from non-face-like images at the featural (parts-based) level, and has no effect at the configural (holistic) level.

