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For the majority of clusters, both the Pairwise Model and Common-Input Model 
capture most of the higher order correlations observed in the data. However, the 
Pairwise Model (mean=0.95) captures a larger fraction of the correlations than the 
Common-Input Model (mean=0.85)

Maximum-entropy analysis of multi-neuron �ring patterns in primate V1 reveals stimulus-contingent patterns 
I�je E. Ohiorhenuan, Jonathan D. Victor

Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York
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The activity of pairs of neurons in V1 are correlated 
over a few tens of milliseconds. However, the implications
of these correlations on the higher-order structure of 
cortical networks is not known.

In the retina, maximum entropy (MaxEnt) techniques 
have demonstrated that the structure of multi-neuron 
�ring patterns can be accounted for by interactions 
between pairs of neurons (Schneidman et al. 2006 and 
Shlens et al. 2006). 

Here, we implement a similar maximum entropy analysis
of multi-neuron �ring patterns from tetrode recordings in 
V1 of the anesthetized macaque. 

In contrast to the retina, we �nd that nearly half of the neuronal clusters 
exhibited signi�cant higher-than-second-order interactions, indicating 
that cortical circuits can manifest complex patterns of population activity.

To determine whether these �ndings could be accounted for by stimulus 
driving, we condition models on informative pixels. For some clusters, 
higher order interactions are enhanced by speci�c stimulus con�gurations.

This suggests that V1 neurons can be �exibly and rapidly organized into 
stimulus-dependent groups.

To determine which pixels most strongly modulated the response of neural clusters,
we calculated the K-L distance between stimulus-triggered population responses to 
each of the stimulus conditions (On/O�) for each pixel, at each lag.

Since each conditional pixel divides the data in half, we restrict the analysis to the 
four most informative pixels.
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Cross validated models: MaxEnt models vs. the Complete Empirical Model 
(where all possible interactions are accounted for). After 1 minute of data, 
the Pairwise Model is e�ectively indistinguishable from the full model for 
11 of 19 sites.
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Spike triggered averaging: Clusters of neurons, 
simultaneously recorded from a tetrode, often 
have similar receptive �elds.
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Control: Conditioning on random pixels 

To evaluate the models we compare 
the likelihood of generating the data 
under the di�erent models. We 
calculate the log-likelihood ratios
between models (perfect �t = 0).
These can be computed from  �ring 
pattern probability distributions, via 
the K-L distance. 

Analyzing the in�uence of stimulus driving

Independent Model

Common Input Model

Pairwise Model

6 macaques under sufentanil/propofol anesthesia and vecuronium paralysis.

Tetrode recordings of V1 - 19 di�erent sites with 3-5 simultaneously recorded 
single units. 14 triplets, 3 quadruplets, 2 quintuplets, 64 neurons in total.

Binary m-sequence modulated checkerboard stimulus. 67.6 Hz frame rate. 
(14.8 ms frame length). 8-16 repeats of 60.6 s stimulus and its contrast inverse 
(16-32 mins of data).

Spikes are sorted and spike trains binned into 14.8 ms bins.

Since a range of probability distributions could have generated the observed 
�ring counts, we use Markov Chain Monte Carlo simulations to sample from 
the a posteriori distribution under di�erent Dirichlet priors (β = 0, 0.5, 1).  

Because the a posteriori distributions were not signi�cantly di�erent 
under the various priors, we present only the analysis from the naive estimate, 
β = 0.

Sampling from the a posteriori distributions generates con�dence intervals for 
model �ts.

Cell 2 Cell 3Cell 1

Independent Model

Cell 2 Cell 3Cell 1

Common-Input Model

Cell 2 Cell 3Cell 1

Pairwise Model

Common-Input Model:  
Constraints on the rate at which 
each neuron �res alone and at 

which it �res in participation
with any ensemble.

3 models:

To �t the models, we seek the joint �ring distributions that 
are consistent with the speci�ed constraints, but are otherwise 
as unstructured as possible – i.e. that maximize the entropy (H) of
the distribution.

Independent Model:
Constraints on the mean �ring

 rate of each neuron.

Pairwise-Constrained Model:
Constraints on the mean �ring
 rate of each neuron and the 

frequency of all pairwise
�ring events.

To determine the fraction of deviations 
from independence observed in the 
data that can be accounted for by the 
models, we calculate ratios of the 
connected information.
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Spike sorting prevents detection of multiple spike that are within a 1.2 ms
lock-out window.
This leads to a systematic underestimate of multi-neuron spiking events 
within a 14.8 ms bin.
Correction assumes that within a bin all possible assortments of k spikes into 
n slots are equally likely but only         are observable.n
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K: number of di�erent �ring patterns
c: counts of �ring patterns
θ: probability of �ring patterns

Support: GM7739 and NEI1TEO7138 (IEO) 2RO1EY9314 (JDV)

0 1 2 3 4
-35

-30

-25

-20

-15

-10

-5

0

Lo
g-

Li
ke

lih
oo

d 
Ra

tio
: P

ai
rw

is
e 

M
od

el
 to

 C
om

pl
et

e 
M

od
el

Number of Pixels Used for Conditioning

Example 2 

Conditioning on random pixels Conditioning on informative pixels 

Conditioning on informative pixels reveals two regimes of behavior: 
For some pixel states the Pairwise Model is su�cient, but for others, 
higher order correlations persist.

Population Analysis 


