Maximum-entropy analysis of multi-neuron firing patterns in primate V1 reveals stimulus-contingent patterns
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Spikes are sorted and spike trains binned into 14.8 ms bins.

w

T3

-0.4

1

0.6

Normalized average pixel value
FEEE
YRS Y

.A;A‘J 0.9
Common-Input Model 08 %}/v 8 .
Common-Iinput Model: g \ s
Spike sorting prevents detection of multiple spike that are within a 1.2 ms f Constraints on the rate at which | =N T
lock-out window. each neuron fires alone and at Spike triggered averaging: Clusters of neurons, N T
This leads to a systematic underestimate of multi-neuron spiking events which it fires in participation simultaneously recorded from a tetrode, often 3 M
‘ ‘ ‘ ‘ ‘ ‘ ‘ within a 14.8 ms bin. with any ensemble. have similar receptive fields. Té; 1.
Correction assumes that within a bin all possible assortments of k spikes into g E 02 2ngl Most Informative Pixel
n slots are equally likely but only || are observable. Example 2 - 0
,. Conditioning on random pixels .. Conditioning on informative pixels 3rd Most Informative Pixel
Pairwise-Constrained Model: il 5
Constraints on the mean firing | i |
[ 1] rate of each neuron and the o | o

\ 4
4th Most Informative Pixel

Since a range of probability distributions could have generated the observed frequency of all pairwise
firing counts, we use Markov Chain Monte Carlo simulations to sample from firing events.
the a posteriori distribution under different Dirichlet priors (3 =0, 0.5, 1). \ \ \
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Because the a posteriori distributions were not significantly different
under the various priors, we present only the analysis from the naive estimate,

Log-Likelihood Ratio: Pairwise Model to Complete Model
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To fit the models, we seek the joint firing distributions that
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