Mapping receptive fields using stimuli with third－and fourth－order statistics：

black blobs better than random
Anita M．Schmid，Yunguo Yu，Jonathan D．Victor
Department of Neurology \＆Neuroscience，Weill Cornell Medical College，New York，NY

INTRODUCTION

Because neurons in visual cortex do not act as simple linear filters，mapping receptive fields can be challenging and de－ white checkerboard stimuli（with no correlations）are only modestly effective．Naturalistic stimuli are somewhat more effective，but it is unclear what aspects of those stimuli un－ derlie the improvement．
How do receptive field maps in V1 depend on higher－order spatial correlations in the stimuliz

METHODS
Physiology：
－Anesthetized and paralyzed macaques －Extrace
－Seven different types of binary checkerbards －Random，third－or fourth－order correlations No second order correlations（＂isodipole textures） Example isodipole textures used for receptive field mapping

1024 examples of each type（two repetitions each） －Stimuli presented for 320 ms
－Different types of stimuli randomly interleaved Analysis：
Reverse corelation for each stimulus type using 320 ms
bins
Receptive Field Maps：
Red pixels（ （positive values）signify increased fring rate to white checks（on－response），blue pixels（negative values）sig－ nity increased firing rate to black checks（off－response）．The
black line denotes the Region Ofl｜ters black line denotes the Region Of Interest：enclosing all pixels
with a statistically significant response compared to a shufled response（tteest，alpha $=0.05$ ，corrected for multiple－compari－ sons）for at least one map and／or the average map．Isolated significant pixels that are more than 2 pixels away from the
main response were deleted．Asterisks denote that there is main response were deleted．Asterisks denote that there is
least one significant pixel for that particular stimulus type． Relative power of on－and off－responses for different stimulus types：
To quantify how strongly the neurons respond to the different types of stimuli，we computed the power of the response with the Region of Interest．We did so separately for the on－and off－
response．Then we normalized those values by the sum of the on－ and off－power over all maps．This gives us a profile of relative power of on－and off－responses for each neuron．
\qquad $N=144$

Profile types observed：

There is a continuum of profiles we observe，but for easier There is a continuum of profiles we observe，but for easia
representation，we clustered them into several groups：
 \qquad ${ }_{20}^{20}$
國國國

 －9 M M

© 先

（10）（1）（

（0） 00010
$\approx \rightarrow \sqrt{4}$

（6）（8）（6）

（0）（3）（3）
$=-8$.

이웅（ ） 0 ）

Results in Numbers：

Out of 134 neurons with at least one significant map， $11(53 \%$ ）had a significant map for the random stimulus， while 106 （79\％）had a significant map for the black blobs．
The relative power of the responses was largest for the black blobs（ 23.5% ），followed by the white blobs ut of all 144 neurons， $102(71 \%$ ）had a stronger map for the black blobs than for the white blobs． Out of all 144 neurons， $104(72 \%$ ）had more off－pixels han on－pixels in the aper all stimulus types．
Out of the
ut of the 63 neurons without a significant map for andom stimuli， $49(78 \%)$ had a map for black blobs， 32 ．
51% ）had a map for＂even＂stimuli and 31 （49\％）had a nap for white blobs．

SUMMARY

Introducing statistical structure into random stimuli ap－ proximately doubled the number of neurons that could e mappe
duced black blobs were the major contributors．They re sulted in more cells with significant maps than any ther type of stimulus，and also produced the strongest taps．
fatained with stimul the most pronounced maps were produced black or white blobs，and with＂even＂stimuli． here were more neurons with a stronger map for the stimuli with black blobs than for those with white off－subfields and with previous studies（1）． Stimuli enriched in black blobs enhanced the off－ subfields，while the stimuli enriched in white blobs en－ tanced the on－subfields．Simulations showed that this half－wave rectification．

CONCLUSIONS

In sum，stimuli with black blobs on a random background are the most efficient for eliciting maps，because they en－ hance off－subfields，which are most prevalent．Using white blobs on a random background is most efficient for map－ orrelations to these two sets leads to significant maps in more additional neurons than any of the other stimulus ypes we tested．We conclude that the use of these three stimulus types is an effective strategy for augmenting stan ard approaches for mapping receptive fields．

References：
i）Xing V, Ve

Acknowledgment：

