A model of sensitivity to binary local image statistics: Testing the predictions

Motivation and Overview
Early cortical stages of visual analysis rely on processing of loca that must be extracted for scene segregation and object identification. In natural images, these correlations are of low and high order, and occur together in complex mixtures. To analyze how they are processed, we synthesize image sets in which they var independently - thus generating a 10-dimensional "texture space"
Stimuli drawn from this space enable characterization of perceptual sensitivities to many kinds of individual image statistics, alone and in combinations
We made measurements of perceptual sensitivities along all 10 axe of the space, and in planes determined by their pairs. In each of the of the space, and in planes determined by their pairs. In each of the
planes, the contours are nearly elliptical, and the shapes and orientations of the ellipses were similar across subjects. The elliptical contour shape suggests that sensitivity in the full $10-\mathrm{d}$ space is described by an ellipsoid. Since the $10-\mathrm{d}$ ellipsoid is uniquely sensitivity to complex combinations of image statistics. As we show, these predictions are accurate
Methods and Psychometric Functions

Plots show fraction correct for stimuli that vary along a single texture coordinate. Performance is similiar for positive and negative excursions of a coordinate, and was highly consistent across subjects (MC and DT). Curves are maximum-likelihood fits to Weibull functions (shape parameter range:
$-2.65)$. Error bars are 95% confidence limits -2.6). Etror bars are 95% confidence limis

Each strip shows the exturues generated by varing one coordinate a across is is entié

Isodiscrimination Contours in Selected Coordinate Planes

Ellipsoid model for discrimination in the entire 10-D space

$$
\begin{aligned}
& f_{\text {, }} \text { are the texture coordinates }
\end{aligned}
$$

best possible predictions of any opponent model, i.e., any model that predicts equal thresholds for positive and negative deviations of the image statistic

The ellipsoid model and psychophysical data are in good agreement for each subject. We next use th ellipsoid model to compare across subjects (nex column), and then show that it correctly predicts sensitivities to directions in the texture space no used to fit the model (final column).

Thresholds and Model Fits in All 15 Unique Coordinate Planes

The planar plots show all of the experimentally determined thresholds in each of the coordinate planes tested, along with 95% confidence limits (via bootstrap), and fits of the ellipsoid model. Some predicted contours deviate slightly from ellipses
the values of out-of-plane parameters.

Consistency Across Subjects

sym1 sym2 sym sym sym hw1 hi do rot rotb
Example textures representing the 10 principal axes On each axis, texture samples are shown in both directions from the origin (which corresponds to the random texture). Correlations strengths, which correspond to distance from the origin, are 0.18 (for sym1 and sym2) and 0.36 (for the remaining textures). The pie charts show the contributions of first-, second-, third, and fourth-order correlations to each direction.

Ellipsoid Model Predicts Sensitivities in Multiple Directions in the Texture Space

For each subject, model prediction and measured sensitivities are shown for 12 directions. The first seven directions are principal axes of the ellipsoid. (Only seven principal axes are tested, because the other three axes are in the coordinate planes, and therefore not out of-sample.) The last five directions are Minkowski directions, which correspond to textures that have maximum or minimum porosity, as quantified by the number of holes per unit area.

CONCLUSIONS

> Psychophysical sensitivity to image statistics of low and high order can be modeled by ellipsoidal isodiscrimination contours.

- This model accurately predicts sensitivities to combinations of image statistics, including combinations that are predicted to be maximally salient, and combinations predicted to be undetectable

