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Characterization of primate visual cortex responses to local motion signals: Fourier, non-Fourier, and glider 306.22
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Motivation and Background Results
Analysis of motion is critical to many visual tasks, such as segregating objects from background and navigating through space. Motion analysis Examples Of indiViduaI neuron responses COrrelaﬁonS between SenSiﬁViﬁes Of neurons tO standard FOU rier mOﬁon and Other mOtiOn kindS

is generally considered to begin with an initial stage in which local motion signals are extracted. Two kinds of local motion signals are well-

recognized: Fourier (F) signals, which consist of simple spatiotemporal correlation (Reichardt 1961), and non-Fourier (NF) signals, which Fourier Non-Fourier Non-Fourier Glider Contraction  Glider Contraction Glider Expansion Glider Expansion
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Data anal\ISIS: Spike sorting: After bandpass filtering (300 to 9000 Hz) and thresholding, waveforms were clustered using custom -
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versions of KlusterKwik and Klusters (Hazan et al, 2006). Features consisted of peak amplitudes and principal components. R =-0.91 R=0.26 R =-0.02 R =-0.39 R =0.35 R =-0.01 R=0.16
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Visual stimuli: stimuli were constructed by concatenating segments (illustrated below — Panel A) that contained examples of one Pos_itive correlations Neggtive correlations Positive correlations Negative correlations & . s
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were separated by 500 ms of a constant gray background. The size of the check and the orientation of the array was determined by Fouri J 40 V2 0 5 0 S 0 0 = 0 ﬁ =
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h ; . o lectivi i L In each scattergram, the abscissa is the DI for standard F; the ordinate is the DI for one of the other motion types. There is a very strong negative correlation for reversed-phi motion (first column), and weaker but highly
For ea.c type of motion, direction selectivity was quantified by a direction index . significant positive and negative correlations for most of the other motion types. Findings in V1 and V2 are similar. The R values are Pearson correlation; * indicates p<0.05, ** indicates p<0.01 and *** indicates p <0.001.
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StImUIus Constructlon. Panels A and B: Each kind of motion corresponds to a correlation rule inside a space-time template of DI = —re i i ; _
checks. For Fourier (F) motion, the array is a pair of checks on a diagonal in space-time. For non-Fourier (NF) motion, the template consists M, +M,, Fourier positive correlations 059 <0.001

of a parallelogram of four checks — here, two checks sharing an edge at one time, and then shifted in position at the next time. For glider (G) where M, and M, are the mean firing rates for stimuli in the two opposing Fourier negative correlations  -0.62 <0.001 CO"‘ElaﬁonS between SenSitiVities to motion With pOSitive a nd negative correlaﬁons

motion, the template consists of three checks in a spatiotemporal triangle. A spatiotemporal movie is synthesized by requiring that the total directions over the period 50 to 1600 milliseconds following stimulus onset.

number of black checks inside the template is an even number (panel C), or an odd number (panel D); see colored dots for examples. When L . . . . NF positive correlations 0.05 0.091 . . . . . .
Significance was determined by a t-test (paired, two-tailed) across 25 trials
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(middle column), or contraction of white triangles (right column). When the number of black checks in a glider is odd (panel D), this results in ' g ’ : - " -~ i In the. standard Hgssensteln-Rellchardt (HR) model (Reichardt  1961) for
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(right column). Further variants can be constructed based on other glider shapes and orientations (Panel E). Note that for NF and G stimuli, _ _ 0.2 0.2 values, and correlations in opposing directions are compared. Neurons that
pairwise correlations to motion (Fourier cues) are absent. Moreover, NF stimuli do contain G cues, and G stimuli do not contain NF cues. To determine whether motion responses were consistent with an opponent Glider Cont. black triangles 0.13 <0.001 : : embody this “opponent” model should therefore have opposite DI's for
For further details, see Hu & Victor (Journal of Vision, 2010). mechanism, we defined a “motion complexity” (MC) score: Glider Exp. white triangles 0.07 0.001 motion stimuli with positive correlations, vs. stimuli with negative correlations.
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