61.03

Dual representations of a visual perceptual space Jonathan D. Victor, Syed M. Rizvi, Mary M. Conte Brain and Mind Research Institute, Weill Cornell Medical College

Motivation and Overview

A perceptual space is a representation of a sensory domain (e.g., color, faces, or image statistics) that serves as a substrate for discrimination, classification, and working memory. It is unclear how perceptual spaces are represented within biological constraints. The main challenge is that most perceptual spaces have high dimension. Consequently, representing each region of the perceptua space independently leads to a dimensional explosion. the resources required to represent a space the dimensional explosion: representations via projections onto coordinates, and distributed representations. Here, using the perceptual space of local image statistics as a model, we present psychophysical studies that imply that both of these strategies are used in parallel.

Summary and Conclusions

We studied perceptual distances in a 10 -dimensional space of local image statistics - a space large enough to make a brute-force representation implausible.
> One experiment determined perceptual distances between nearby points Thresholds were close to uniform throughout the space; this is readily explained by a coordinate-based representation.

- A second experiment determined perceptual distances between distant points. Along some axes, distant points that were on opposite sides of the origin were perceived as similar. This is readily explained by a distributed representation whose resources are concentrated near the origin of the space.
Neither representation, alone, can account for both sets of findings. Thus, the experiments suggest two coexisting representations: a coordinate
based strategy that supports near-threshold judgments and a distributed one that supports suprathreshold judgments.

> We use isodiscrimination contours to summarize threshold judgments. Gray contours, centered at the origin co the space, show thresholds of sold for discriminating a structured texture from a random one. Colored contous, in the periphery of the space, show thresholds for discriminating one structured texture from a reference texture, a sindicated by the markers in the stimulus planes above each column. Thresholds in the periphery of the space are only slightly higher than thresholds at the origin, and the isodiscrimination contours have a similar orientation throughout the space. Contours correspond to 62.5% correct, halfway between chance and perfect. Errar bars indicate 95% confidence limits.

Models for the representation of perceptual space

Methods - Border Salience Expt.

Results - Multidimensional Scaling

We used multidimensional scaling to summarize suprathreshold judgments. Points corresponding to the five stimuli were positioned in the plane so that their pairwise distances best account for the border saiience comparisons. . some cirections, a straight tine locus indicates a correspondence of locus of points was strongly curved, corresponding to the perceptual similarity of points at opposite ends of the space. Contour lines, when visible $=95 \%$ confidence limits. Scale bar $=0.1$

