TEMPORAL STABILITY OF IMAGE STATISTICS IN VISUAL WORKING MEMORY

Mary M. Conte and Jonathan D. Victor

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021

INTRODUCTION

Images can be represented in visual working memory not only on a pixel-by-pixel basis, but also in a more abstract way, in terms of their statistical structure. We previously showed (ARVO, 2002) that for $1^{\text {st- }}$-order statistics (luminance) and local categorical Thes (hal of this study is to examine the timecourse of pixel-by-pix and statistical representation of images in visual working memory

METHODS

- $\mathrm{N}=$ = traned obsenvers; corrected to
20202 VA

 - Binocular viewing at 102.6 cm - Mean luminance: $47 \mathrm{~cd} / \mathrm{m}^{2}$
- Cambicige Research VSG22/3 system - 4 -AFC praradign: without feedbach - 1536 trials per subject - Measured fracion correct (FC) and
reacion times (RT)

TASK: Which one of the four arrays has changed? In S 1 , four 8×8 arrays of black and white checks were presented; in s 2 , one of the arrays was altered
by changing the luminance of 16 checks. Temporal sequences of trials are shown below. In the no change condition, the statistics of the target in $\$ 2$ matched the statistics of the array in S1
that it replaced (e.g., dark to dark, osd to to dd, symetric to symmetric). In the change condition, that it replaced (e.g., dark to dark, odd to odd, symmetric to symmetric). In the change condition,
the statistics of the target in $\$ 2$ differed from those of the array in S 1 (e.9., dark to light, odd to even, the statistics of the earget
symmetric to random).

