Interaction of first-order and isodipole statistics in a texture segregation task

Jonathan D. Victor ${ }^{1,2,3}$, Mary M. Conte ${ }^{1}$, and Charles F. Chubb ${ }^{4}$
${ }^{1}$ Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, ${ }^{2}$ The Rockefeller University, New York, NY 10021
${ }^{3}$ Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, NY 10029, ${ }^{4}$ Department of Cognitive Sciences, University of California at Irvine, Irvine, CA 92697

PARAMETER SPACE DETAILS
Luminance parameter (γ): $\gamma=p\{\square\}$ -
Isodipole parameter (α):

Textures are specified by two parameters, γ and α. First-order (luminance) statistics are speeified by $\gamma, \gamma=0$ specifies a texture that has an equal number of bright and dark checks; $\gamma=1$ specifies a
texture that has only bright checks, and $\gamma=-1$ specifies a texture that has only dark checks. Fourth-order (isodipole) statisitics are speeified by $\alpha . \alpha=1$ speeifies a texture in which all 2×2
blocks contain an even number of bright checks, and $\alpha=-1$ specifies a texture in which all 2×2 blocks contain an odd number of bright checks. There is no second- or thirc-order correlatio structure. That is, the probability that any pair of checks is bright is $(1+1)^{2} / 4$, and the probability that
any triple of checks is bright is $(1+\gamma)^{3 / 8}$. Such textures can be constructed provided that

Speciification of the textures is completed by requiring that they are maximum entropy, subject to the constraints specified by the two parameters γ and α. Such maximum-entropy textures may
constructed by a two-dimensional Markov process (Zhu, Wu, and Mumiord, 1998). Following this construction, the probabiility of a particular 2×2 block that contains n bright checks is given by $\left[(1-\gamma)^{4 n}(1+\gamma)^{n}+(-1)^{n}\left(\alpha-\gamma-\gamma^{4}\right)\right] 16$.

INTRODUCTION

PSYCHOMETRIC FUNCTIONS
For each of the three subjects, psychometric
functions (traction correct) along the isodipole (α) functions (fraction correct) along the isodipole (α)
and
Weibulin funce fiotions vies were separately fit Weibull functions via maximum-likelihood. $p_{\text {mode }}(\alpha, 0)=1-\frac{3}{4} \exp \left(-\left|\frac{\alpha}{a_{\alpha}}\right|^{b}\right)$

$$
p_{\text {mode }}(0, \gamma)=1-\frac{3}{4} \exp \left(-\left|\frac{\gamma}{a_{\gamma}}\right|^{0}\right)
$$

The scale parameters a_{w} and a_{y} of the Weibull
functions were allowed to depend on the sign of α or γ, and were also allowed to depend on
whether the target was structured or random whether the target was structured or random
A single Weibull exponent b was used for all eight curves within each subject.
-The scale parameter in the isodipole direction, a_{a}
was about fourfold highher than the scale parameter was about fourolald higher than the scale parameter
in the luminace direction a, This indicates a
corresponding difference in sensitivity.

- - In all directions except for the "odd" direction (rand) ,
ran background was better than pertormance for a random target on a structured background
- Performance in the oblique directions $(\alpha \neq 0, \gamma \neq 0)$
suggested that suthbresud suggested that subthreshold isodipole and
luminance cues could be combined.

Insets show observed fraction correct for stimuli along each
of the coordinate axes (data points) along wit the tune coordinate axes (data points), along with the Weibur
functions curves fit via maximum Iikelihood. Main graphs
compare these Weibull functions (smoolth compare these Weibull functions (smooth curves) with the diections (isolated squares and triangles).
 squares and triangless), craestion worre present was (isolated when either cue was presented alone (smooth curves).
his relationship held in all four oblique directions and in all three subjects.

(10)

CONCLUSIONS Absolute sensitivity to dififerences in luminance statistics was
approximately four times greater than sensitivity to isodipole differences.

- Salience of a texture patch was independent
difference in first-rrder (luminance) statistics. Salience of a texture patch was strongly derentent on the of the difiference in fourth-order (isodipole) statisticics. A random
 an even patch on a ra
for the odd textures.
Luminance and isodipole statistics behave like cardinal axes, and the corresponding cues combined according to a Minkowsh exponent of 2

REFERENCES

