CUEING RAPIDLY DEPLOYS TOP-DOWN INFLUENCES IN A MIXED SYMMETRY SEARCH TASK

Mary M. Conte and Jonathan D. Victor
F125
VSS 2004
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY
Supported by NIH EY7977 http://www-users.med.cornell.edu/jdvicto/vps.html

INTRODUCTION

We recently showed that a subject's implicit knowledge of the direction of the symmetry axis biased the positions in which symmetry was detected. That is, when stimuli were presented in single-symmetry blocks, vertical symmetry was best detected on the vertical axis of the display and horizontal symmetry was best detected along the horizontal axis of the display. However, these biases were reduced when symmetry types were mixed within a block, thus implying a role of top-down influences. Here we investigate how explicit knowledge (cueing the direction of symmetry axis) influences these positional biases.

STIMULI \& METHODS

Post Cue Trial

SYMMETRY INDICES

Symmetry Bias Index based on Raw Data

Symmetry Bias Index based on Modeled Detection

Symmetry Bias Index based on Modeled Guesses

The Symmetry Bias Index is the difiference between the fraction correct when the target's symmetry axis
matches the display axis, and the tracion correct in the offtaxis positions.
Model-based Separation of Detection Bias and Guess Bias
 nallo

 to to and aso to the

SUMMARY \& CONCLUSIONS

- Positional biases in symmetry detection interact with the direction of the symmetry axis and evolve over time (100 to 400 ms).
- These biases can be induced by the subject's expectation of the orientation of symmetry axis, either implicitly (single-symmetry blocks), or explicitly (cued blocks).
- Biases for symmetry detection are present even when cueing follows stimulus presentation. Modeling indicates that this reflects changes in detection, and not merely biased guessing.
- These findings indicate that symmetry detection utilizes a dynamic visual routine, in which ongoing processing guides attentional strategy, rather than a static neural computation

