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EXTREME TEXTURES
There are 16 extremes of the binary 2x2 block 
probabilities that allow for maximum-entropy 
extension.  The textures that have zero 
second-order correlation (purple background) 
are extreme examples of the textures shown 
above.  Textures with nonzero second-order 
correlations can be grouped into isodipole 
families (each background color), within which 
local second-order statistics are identical. 
Within each of these families, discrimination is 
strong.
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THE RULES
The pair (B,C) can be colored in four ways. For each 
coloring of B and C, the rule specifies either D=A or D=~A.  
This yields 24=16 different rules.  For each rule,
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All 8 fillings of                have probability 1/8.

So the Pickard conditions are satisfied.
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All 8 fillings of                have probability 1/8.

MIXING SCALES
The critical area for analysis of isodipole textures grows 
proportionally with check size (Victor & Conte, 1989).  
But is scale information lost?  If so, a superposition of a 
coarse-scale even texture and a fine-scale odd texture 
should be indistinguishable from the superposition of a 
fine-scale even texture and a coarse-scale odd texture, 
and vice-versa (red arrows). But if scale information is 
preserved, these textures should be as distinguishable 
as the superposition of even textures at two scales, from 
the superposition of odd textures at two scales (green 
arrows).  This demo suggests the latter.
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INTRODUCTION
Second-order and some higher-order image statistics support 
texture discrimination.  However, a concise parameterization of the 
image statistics relevant to perception remains elusive. Here we
suggest a minimal structure for the perceptual space of textures. 
The motivation for the present approach is that the visual system is 
likely to represent image statistics in a manner that is efficient, but 
perhaps not comprehensive.

A complete description of a generic texture requires specification of 
image statistics of all orders, and at all scales.  We hypothesize that 
any texture is perceptually equivalent to a texture for which all 
statistics of all orders can be reconstructed from a small subset of 
image statistics.  The maximum-entropy formalism (Zhu et al., 1998) 
is a natural way of performing this reconstruction, in a manner that 
adds the minimal amount of additional structure. For example, if
pairwise correlations between pixels (A,B) and (B,C) are specified,  
maximum-entropy extension specifies the pairwise correlations 
(B,C) and the third-order correlations (A, B, C). 

Maximum-entropy extension can always be carried out when only 
individual pixel statistics are specified.  This leads to the “IID” 
(independent, identically-distributed) textures, studied extensively 
(Chubb et al. 1994, 2004). 

Maximum-entropy extension can also be carried out when pixel-
block statistics are specified for one-dimensional blocks.  This leads 
to one-dimensional Markov textures (Julesz et al., 1973).  Such 
textures are discriminable only when they contain second-order 
differences.  Second-order correlations of distant pixels imply 
second-order correlations of adjacent “pixels” on a larger scale.

The Pickard conditions result in a 7-parameter set of textures.  
Within this, a 3-parameter set (upper panel) has no second-order 
correlations.  The middle panel shows the extreme textures within 
the full 7-parameter set.  These textures all have salient visual 
structure. Conversely, the “2x2” hypothesis accounts (GLIDERS 
panel) for the lack of salience of other maximum-entropy textures.

We hypothesize that two-dimensional statistics are visually salient 
only if they correspond to 2x2 block probabilities at some spatial 
scale.  Maximum-entropy extension of 2x2 blocks is possible only if 
the probabilities satisfy certain conditions (Pickard 1980):
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Conditional independence of B and C, given A, denoted B⊥C|A:
p(BC|A) = p(B|A)p(C|A)

Pickard’s conditions:
{B⊥C|A and B⊥C|D}  or {A⊥D|B and A⊥D|C} 

odd:  (0,0,-1)even:  (0,0,1)

white triangles: (0,1,0) black triangles: (0,-1,0)

Independent (IID):  (γ , γ3, γ4)

VALUES OF (γ, θ, α) FOR SPECIAL CASES

ISODIPOLE TEXTURES
There is only a three-parameter family of 
binary 2x2 block probabilities that (a) are 
compatible with maximum-entropy 
extension and (b) contain no second-
order correlations. The parameters of this 
family are γ, the luminance bias; θ, the 
third-order bias, and α, the fourth-order 
bias.  Only some triplets (γ, θ, α) can be 
realized. 

Iso-discrimination contours 
in this plane are elliptical 
and oriented along the α

and γ axes (Victor, Chubb, 
& Conte 2005)
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GLIDERS
Parity rules within a generic “glider” generate maximum-
entropy textures (Gilbert, 1980). Only some gliders yield 
salient visual structure (Victor and Conte, 1991).  These 
include the 2x2 block glider that defines the even texture 
and gliders that induce the same correlation structure at 
a different scale, or after linear transformation in the 
plane.

Four-element gliders that cannot be transformed to 2x2 
blocks yield textures with at most minimal visual 
structure, as quantified via psychophysics or VEP’s.  

Textures are constructed by specifying one or more rows and columns, and completing the 
interior recursively so that the number of white squares within each glider template is even.


