Orientation change detection and orientation pooling in space and time performed by two subpopulations of neurons in V2

Anita M. Schmid, Jonathan D. Victor

Department of Neurology \& Neuroscience, Weill Cornell Medical College, New York, NY

INTRODUCTION

In natural images, some boundaries are defined by luminance differences; others are defined by texture differences. Most neurons in primary visual cortex (V1) are well-driven by luminance boundaries at the appropriate orientation ${ }^{1-2}$. Boundaries defined by differences in texture, however, are more effective stimuli for neurons in the secondary visual cortex (V2) ${ }^{3-9}$. Since the larger receptive fields of $V 2$ are produced by combining the output of V neurons ${ }^{10-12}$, the extraction of texture boundaries by V 2 receptive fields must involve computations on its V1 inputs across space. These computations must accomplish a specific goal - extraction of texture boundaries - while preserving the luminance-boundary information already extracted by V1.

How do V2 neurons combine V1 receptive fields?
METHODS
(4×5 or 6×6)
Preferred orientation or orthogonal orientation

- Grid aligned with receptive field, covering surround
- Pseudo-random sequences (m -sequences)
- Frame rates of 20 or 40 ms (results shown for 20 ms) - Measuring first-order as well as second-order responses

Reverse correlation

- Anesthetized and paralyzed macaques
- Extracellular single unit recordings using tetrodes

Figure 1. Orientation discontinuity stimulus and kernel computation.
(a) Stimulus setup. $\mathrm{A} 4 \times 5$ grid of rectangular regions covered the classical (eed dil (a) Stimulus setup. $A 4 \times 5$ grid of rectangular regions covered the classicill (red ellipse) and
non-classical receptive field. The stimulus was aligned with the preferred orientation of the
 the orthogonal, non-preferred orientation. The orientation in each region changed every 20
milliseconds. Blue and green lines show the region boundaries parallel (blue) and orthogonal (green) to the receptive field; these lines were not part of the stimulus. (b) Computation of a firs-order kernel. For each region in the stimulus, the neuron's spike response was
cross-corelated with the stimulus sequence, coded as +1 for the prefered orientatio cross-correated with the stimulus sequence, cooded as 1 for the preferred orientation and -1
for the orthogonal orientation. Note that spatial phase is randomized. (c) Computation of the
 correlated with the product of the values of the stimulus in the two neighboring regions: 1 ,
the grating orientation in the two regions is equal and - 1 if they are different. (d) Analogous compu
field.

RESULTS

First-order kernels:
Responses to the orientation of gratings in individual regions.

Figure 2 . First-order response kernels.
(a) First-order response ernels of a neuron in 11 1. The check size of the stimulus was 0.4×0.75 ttimulus; blue and green lines orrespond tos subdivisisions of the stimulus (compore Figure 1 a). The mean response kernel (of 32 repeetitions) is plotted in black and the jackknife estimate of
he standard deviation in gray. Asterisks mark timepoints at which the response is significantly the standarr deviation in Irga. Asterisks mark timepoints at which the response is significantly
different from zeroo (two-tailed t-test, a $=0.001$, corecected for multitile comparisons). Dashed vertical lines show the timepoints 0,100 and 200 milliseconds. (b) First-order respon ne kernels
of another V neuron. The check size of the stimulus was 0.4×0.4 degrees of visual angle. (c) First-order response kernels of a V V neurron. The check size of the stimulus was 0.6×0.75 degrees of visual angle. (d) First-order response kernels of a V 2 neuron. The check size of the
stimulus was 0.4×0.2 degrees of visual angle.

Figure 3 Population summary of first-order kernels
(a) Normalized fist-order response kernels ofV1 neurons. (b) Normalized first-order response kernels of VV2 neurons, monophasic responses are colored blue and biphasic responses red
Fist and second scores of PCA decomposition of all normalized fist--rder kemels. The corresponding principal components are ploteted in insets along the corresponding axes. V1
Kermels are colored in black; biphasic $V 2$ kernels (first score larger than 0) in red; monophasic kemels (first score smaller than O) in blue.

Second-order kernels:
Responses to combinations of gratings in neighboring regions.

Figure 4 . Spatial second-order response kernels.
(a) Secend-order response kemels of n neuron in 1 . The check size of the stimulus was 0.4×75 degrees of visual angle. Colored lines depict the boundaries between the 20 regions, the green
ines stand for boundaries orthogonal to the receptive fields preferred orientation and blue ines for those parallel. The response kermels are plotted on the line corresponding to the 22 repetitions) is plotted in black and the jackknife estimate of the standard deviaition in raray Asterisks mark timepoints at which the response is significantly different t rom zeroo (two-tailed Test, $a=0.01$, corrected for multiple comparisons). Dashed deritial lines show the time.taiints ayout was 6×6 and the check size of the stimulus $0.4 \times$ 0.4 d degrees of visual angle. Only ayout was 6×6 and the check size of the stimulus 0.4×0.4 degrees of visual angle. Only
kernelf f ora a $4 \times 4 \times 4$ subregion centered on the ereceptive field are shown. (c) Second-order esponse kernels of 'transient' neuron in V2 (same as in Figure $2 c$). (d) Second-order response
kenels of
a 'sustained'neuron in $V 2$. The layout was 6×6 and the check size of the stimulus 0.4 $\times 0.2$ degrees of visual angle. Only kernels for a $4 \times 4 \times 4$ subregion centered on the receptive feild $\times 0.2$ degree
are shown.

Figure 5. Population summary of spatial second-order response kernels. (a) Normalized second-order response kernels to boundaries orthogonal to the opulation average for $V 1$ neurons is black, transient $V 2$ neurons in in red and dustained e receptive field (corresponding to blue lines in Figure 1 ald

SUMMARY

V1 neurons:

Consistent timing across the population
Monophasic responses to orientation signal in individual regions Monophasic "positive" responses to combinations of orientations in neighboring patches. This yields larger responses to in neighboring patches. This yields larger respo

V2 neurons:

Two distinct patterns of responses

Transient V2 neurons':

Biphasic responses to orientation signal in individual regions. his means that the optimal stimulus within a patch is the sered orientation followed by the preferred orientation dientation over time. ientio over phasic or monophasic "negative" responses to combinations of rientations in neighboring patches. This yields larger responses dicontinuities than to continuous orientation.

'Sustained V2 neurons':

Monophasic responses to orientation signals in individual gions, wh a broader peak than the V1 responses. No measurable nonlinear spatial interaction.

CONCLUSIONS

This study shows, firstly, how non-linear as well as linear responses of V2 neurons differ from V1 responses. Secondly, we identified two different classes of orientation selective V 2 neurons. The transient V2 neurons differentiate the V1 input in space and time and therefore respond well to changes in orientation. Sustained V2 neurons pool the V1 input and respond better to constant orientation signals.

References:

1. Hubel DH, Wiesel Tv (1955), J Physiol 148:574-591.
2. von der Heydt R, Peterthans E, Bhaumgartner G ((1984), Science 224:1260-1262. 4. von der Heydt R, Peeterhans E (19899 , J Neurosci $9: 1731-1748$. 5. Grosof DH, Shapley RM, Hawken MJ (1993), Nature 365.55--552.

3. Foster KH, Gaska JP, Nagler M, Poollen DA (1985), J Physiol 365:331--363
4. Levitt JB, Kiper DC, Movshon JA (1994), J Neurophysiol 71:2517-5542.

Acknowledgmen

This study was supported by grant NIH EY09314

