The role of local image statistics in separating figure from ground
Jonathan D. Victor and Mary M. Conte
Feil Family Brain \& Mind Research Institute, Weill Cornell Medical College, New York, NY

Motivation

separating figure from ground is a crucial step in early visual processing. In complex, textured images, local analysis of image statistics provide several kinds of cues: the tatistics within the figure, the statistics within the ground, and the differences between them. Here, we attempt to separate these roles.

Methods

Possible Outcomes
Sample Trials and Task

Weibull Functions

Results

 For first-order statistics, thresholds for figure-ground
seearation were closely apporximated by two parallel lines at separation were closely approximated by two parallel lines at a
slope of 45 deg. This indicates that thresholds depended only on the absolute value of the difference between figure atd
ground, and not on the sign of the statistic in either region.

Figure correlation strength Figure-ground thresholds for first-, second-, third- and fourth-order
image statistics (color-coded to adjacent plots). For each kind of image statistics (color-coded to adjacent plots). For each kind of
statistic, loci are approximately parallel lines, indicating that thresholds statistic, loci are approximately parallel lines, indicating that thresholds
are primarily driven by the figure-ground difference. Deviations are more prominent for higher-order statistics. Results are averaged across three subjects. Here and below, error bars are 95% confidence limits.

Summary and Conclusions
> Thresholds for figure-ground separation depended on the order of the image statistic: lowest for first-order, then second-order, then fourth-order, then third-order. This matched previous findings in a texture-segmentation task.
$>$ To a first approximation, figure-ground thresholds were determined difference between value of an image statistic in figure vs. ground.
For image statistics beyond first-order, consistent deviations across subject were found: unequal sensitivities to positive vs. negative correlations, and unequal sensitivities to statistics in figure vs. ground.
$>$ Thus, ground and figure composition, as well as figure-ground texture contrast, influence figure-ground thresholds.

For second-order statistics, thresholds for figure-ground separation deviated somewhat from two parallel lines. The threshold for negative correlations in the ground was
positive correlations in the ground, or for negative correlations in the figure.

figue corelaionstengh figure correlation strength For third- and fourth-order statistics, the deviations are more pronounced, and the threshold loci
show some evidence of curvature. A hyperbolic threshold locus suggests that the figure-ground show some evidence of curvature. A hyperbolic threshold locus suggests that the figure-ground

Image	${ }^{\text {ge }}$ Variance	Testing the hypothesis that threshold
Staisitic	tic Unexplained	depends on texture contrast. This
	0.05	hypothesis accounts for all but 5% of
β -	0.32	the variance for γ, but leaves 25.50%
β_{1}	0.40	of the variance unexplained for
B,	0.35	higher-order staisitics. All deviaioions,
β,	0.48 'Mcony	
	0.55	$p<0.01$ for γ and $p<0.001$ for all

References

Victor, J.D. and Conte, M.M. (2012) Local image statistiss: maximum-entropy
constructions and perceptual salience. J Opt Soc Am 29.1313 . 1345 . Victor , JD. Then and perceptual salience. J Opt Soc Am 29, 1313-1345. Victor, J.D., Thengone, D.J., , Rizv, S.M., and Conte, M.M. (2015) A perceptua
space of local image statistics. Vision Research 117, 117-135.

