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Open-loop vs closed-loop in�uences on drifts

Decoding single-trial trajectories 

Finding a shared transformation across subjects

Task knowledge guides microsaccades

Fig. 1. Drift velocity distributions and statistics 
(A) Examples of single drift velocity segments from one subject. Blue: H or N 
presented. Pink: E or F presented. (B) Top: Drift velocity covariance ellipse from all trials 
of one subject. Bottom: con�dence bands for covariance ellipse obtained by 
bootstrap resampling. (C) Dis-similarity between HN and EF covariance ellipses from 
six subjects. Error bars represent 1 standard deviation of the dis-similarity from 
bootstrap resampling (*p<0.05,**p<0.01).

Fig. 2. Drift statistics depend on the letter pair to be discriminated, even when 
stimulus is absent (A) Top: Drift velocity covariance ellipses from HN trials(blue) and EF 
trials (red), with letter present. Bottom: Same as top panel but from letter absent trials. (B) 
Dis-similarity between HN and EF covariance ellipses in each subject. Green: letter present 
trials. Orange: letter absent trials. (Error bars represent 1 standard deviation. * p<0.05, ** 
p<0.01) (C & D) Analysis of panels A and B applied to covariance ellipses after normalizing 
to the same total area.

Fig. 3. Decoding single trials via their drifts 
Drifts from 300-ms periods of individual trials were 
decoded into task (HN vs EF blocks) based on the 
similarity of the single trial covariance to the 
covariance estimated form all trials of each condition. 
Figure shows the performance of the similarity 
decoder in the six subjects. * marks the cases with 
fraction correct higher than chance (p<0.05).

Fig. 4. A shared model across subjects of graded transformations between ellipses 
We found that a single coordinate transformation, applied with di�erent strengths, could 
account for much of the change in drift statistics across all subjects. (A) Visualization of the 
shared transformation by applying graded amounts to the HN ellipse from subject 1 (top 
row) and to the HN ellipse from subject 5 (bottom row). (B) HN (blue) and EF (red) covari-
ance ellipses for each subject before and after applying varying amounts of the shared 
transformation. (C) Dis-similarities of HN and EF covariance ellipses before and after ap-
plying the shared transformation. Left: target present trials. Right: target absent trials. (D) 
The amount of transformation applied in each subject.

• Ocular drifts – the small, persistent, and seemingly  
involuntary eye movements made during �xation – are under 
cognitive in�uence.

•  Their dominant direction is in�uenced by speci�c task 
knowledge.

•  This in�uence occurs even in the absence of visual 
information, showing open-loop control.

•  Cognitive drift modulations can be su�cient to predict the 
task in which the subject engaged solely from the eye 
trajectories.

•  Drift velocity di�erences between the two kinds of 
letter-pair trials (HN, EF) could be accounted for by a shared 
transformation of drift velocity distributions, indicating a 
common strategy across subjects.

Fig. 5. Comparison of microsaccade landing points between HN and EF blocks 
(A) Microsaccade landing points on each target, along with minimum-area ellipses covering 
95% of the landing points. (B) Centers of landing point ellipses in HN trials (blue circles) and 
EF trials (red circles). * labels the statistically-signi�cant di�erences (see panel C for 
signi�cance level).(C) Euclidean distances between the centers of HN and EF distributions. 
Green: letter-present trials. Orange: letter-absent trials. Null distributions obtained by 
shu�ing and signi�cant di�erence are represented by * for p<0.05 and ** for p<0.01. No 
data are shown for letter-absent trials of subjects 3 & 4 because of the low number of 
microsaccades. Similar results were observed for microsaccade starting positions.

Trial structure, the contrast pro�le, and 
stimulus examples (below) For stimulus 
examples, top row shows E, F, and letter-absent; 
bottom row shows H, N, and letter-absent.

Most visual information is acquired during �xation. Although 
ocular drifts are now known to be a crucial part of visual 
processing, the underlying mechanisms of the neuronal control 
of this �ne oculomotor behavior is still not well understood. 
With the inspiration that large eye movements are known to be 
driven both by sensory information and cognitive factors, we 
investigate the role of cognitive factors - the in�uence of prior 
knowledge - on ocular drifts.
Ocular drifts modulate temporal coding of visual space

Ocular drift modulates input signals in a way that depends on the spatial 
frequency of the stimulus. The same amount of drift yelds larger temporal 
�uctuations at higher spatial frequencies. Higher spatial frequences also 
lead to broader temporal distributions. (Casile et al. 2019. Elife)

Rucci and Victor (2015) Trends in Neuroscience

To probe cognitive in�uence, subjects performed a 2AFC letter 
discrimination task in which the letters to be discriminated were known 
in advance.. We tested the subjects with two separate blocks of letter 
pairs, E vs. F and H vs. N. 

where λ1 and λ2 are the eigenvalues of T1-1T2.

This measure takes  into  account the size, shape, orientation, and considers 
orientation more strongly when the shape becomes more eccentric. In addition, 
this measure is unchanged if both covariance matrices are multiplied by the same 
scale factor or rotated by the same amount. 

Comparing drift statistics across conditions
We quanti�ed the statistics of �xational eye movements by the covariance matrix 
of their velocities. To compare two covariance matrices, we used the following 
distance: 

Subjects
6 healthy subjects participated in the 
study (4 females and 2 males with 
20/20 vision after correction)

Stimulus 
Stimulus subtended approximately 
1.5° , presented in positive contrast 
and superimposed on a 2°square 
patch of 1/f noise (f from 1 to 16 
cpd), with a root-mean-squared 
contrast of 0.195


