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Summary
Tumor necrosis factor (TNF) receptor associated factor
6 (TRAF6) is a crucial signaling molecule regulating a
diverse array of physiological processes, including
adaptive immunity, innate immunity, bone metabolism
and the development of several tissues including lymph
nodes, mammary glands, skin and the central nervous
system. It is a member of a group of six closely related
TRAF proteins, which serve as adapter molecules, coupl-
ing the TNF receptor (TNFR) superfamily to intracellular
signaling events. Among the TRAF proteins, TRAF6 is
unique in that, in addition to mediating TNFR family
signaling, it is also essential for signaling downstream of
an unrelated family of receptors, the interleukin-1 (IL-1)

receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene
targeting experiments have identified several indispen-
sable physiological functions of TRAF6, and structural
and biochemical studies have revealed the potential
mechanisms of its action. By virtue of its many signaling
roles, TRAF6 represents an important target in the regu-
lation of many disease processes, including immunity,
inflammation and osteoporosis. BioEssays 25:1096–
1105, 2003. � 2003 Wiley Periodicals, Inc.

Introduction

The tumor necrosis factor (TNF) receptor associated factors

(TRAFs) were first identified as two intracellular proteins,

TRAF1 and TRAF2, associated with TNF-R2,(1) a member of

the TNF receptor (TNFR) superfamily. There are currently six

mammalian TRAFs (TRAF1-6), which have emerged as

important proximal signal transducers for the TNFR super-

family.(2–4) In addition, the most recently identified TRAF family

member, TRAF6, plays critical roles in the signal transduction

of the interleukin-1 (IL-1) receptor/Toll-like receptor (IL-1R/

TLR) superfamily.(5,6) By linking the activation of these re-

ceptors to downstream signaling events, culminating in the

regulation of gene transcription, TRAFs exert indispensable

functions in a wide array of physiological and pathological

processes, in particular various aspects of adaptive and innate

immunity, inflammation and tissue homeostasis.

Many of the biological effects of TRAF signaling are medi-

ated by the activation of kinases such as the IkB kinase (IKK)

and mitogen-activated protein (MAP) kinases, which in turn

modulate the transcriptional activities of the NF-kB and AP-1

families, respectively. IKK is a hetero-trimeric enzyme com-

prising two kinase subunits, IKKa and IKKb, and a regulatory

subunit, IKKg/NEMO.(7) Upon activation, IKK phosphorylates

the inhibitor of NF-kB, IkB, resulting in its degradation. This

releases NF-kB, enabling it to translocate to the nucleus and

activate transcription.(8) MAP kinases are Ser/Thr kinases that

include JNKs/SAPKs, ERKs and p38s.(9) They are at the

downstream end of a three-tiered system consisting of MAP

kinase kinases (MAP2Ks) and MAP kinase kinase kinases

(MAP3Ks). Direct phosphorylation and transcriptional activa-

tion of AP-1 components by MAP kinases lead to the stimu-

lation of AP-1 activity.(10)While NF-kB is known to promote the
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expression of genes involved in inflammatory responses and

protection from apoptosis,(11) the stimulation of AP-1 activity

by MAP kinases may elicit stress responses and promote

both cell survival and cell death.(12)

TRAFs comprise an N-terminal zinc-binding domain,

specifically a RING finger followed by several zinc fingers,

and a C-terminal TRAF domain, consisting of a coiled-coil

domain known as the TRAF-N domain and a highly conserved

TRAF-C domain.(1,13) The N-terminal domain is essential for

the activation of downstream signaling cascades, and deletion

of this domain renders it dominant-negative for signaling.(14)

Structural studies have shown that the C-terminal TRAF

domain adopts a mushroom-like shape with the ‘‘stalk’’ as the

coiled-coil TRAF-N domain and the ‘‘head’’ as the TRAF-C

domain(13) (Fig. 1a). This TRAF domain permits self-associa-

tion and interactions with receptors and other signaling

proteins. TRAFs have been identified in other multicellular

organisms such as Drosophila (dTRAF1-3), Caenorhabditis

elegans and Dictyostelium discoideum with a high degree of

evolutionary conservation.(4)

TRAF-mediated signal transduction is initiated by trimeric

TNF family ligands that induce receptor oligomerization and/or

conformational changes to produce signaling competent

receptors.(15) This appears to result in the trimerization and

recruitment of TRAFs through avidity-based affinity enhance-

ment,(16) which subsequently activates intracellular signaling

pathways. Artificial oligomerization of TRAF2 and TRAF6 has

been shown to activate effector kinases and gene induc-

tion.(17) Although trimerization per se may be sufficient for

signaling by some receptors, it is likely that the formation of

higher-ordered complexes comprising multiple receptor-

TRAF trimers localized in one area of the cell membrane upon

Figure 1. Structural and sequence analyses of TRAF6. a: Paradigm of TRAF-mediated signal transduction via TRAF trimerization,

shown by the symmetrical interaction of trimerized TRAF (cyan, blue and green for the TRAF-C domains and yellow for the coiled coil

domains) with receptor peptide (orange arrows). b: Worm Ca traces of superimposed TRAF6 and TRAF2 structures. c: Surface

representation of TRAF6, colored based on electrostatic potential (�10kbT/e to 10kbT/e, where kb, T and e are respectively the Boltzmann

constant, temperature and the electron charge), and the bound RANK/TRANCE-R peptide. d: The PxExx(Ar/Ac) TRAF6-binding motif

(Ar for aromatic residues; Ac for acidic residues). The surface area buried (SAB) upon TRAF6 interaction for the eight contacting residues

(P�4 toP3) are shown.CD40 residues that havebeenmutated to assess their effect on invitro interactionwithTRAF6are toppedwith circles

(opencircle: did not abolish interaction; filled circle: abolished interaction).e:Thepresenceof oneormultiplePxExx(Ar/Ac)motifs inRANK/

TRANCE-R, IRAK, IRAK-2, IRAK-M and RIP2. Part of this figure was modified from earlier publications.(4,25)
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ligand engagementmay play an essential role and/or enhance

signaling for other receptors.

This review will focus on the biology and signaling mecha-

nism of TRAF6, the most recently discovered mammalian

TRAF familymember. For general comments on other TRAFs,

please see recent reviews on the subject.(2–4)

TRAF6 is a unique TRAF family member

TRAF6 was independently cloned by a search against a DNA

database for TRAF2-like sequences followed by cDNA library

screening(18) and by a yeast two-hybrid screen using CD40

as bait.(19) Unlike other TRAFs, which only mediate signaling

from the TNFR superfamily, TRAF6 also participates in the

signal transduction from the IL-1R/TLR superfamily. The im-

portance of TRAF6 in signal transduction outside the TNFR

superfamily was first shown by its participation in IL-1

signaling(18) and subsequently by its involvement in TLR

signaling.(20) Interestingly, TRAF6 exhibits close homology to

dTRAF2, which has been implicated as the intracellular ad-

apter for theDrosophila Toll receptor involved in anti-microbial

responses and in dorsal–ventral patterning.(21) Evolutionary

analyses showed that TRAF6 is one of the most divergent

mammalianTRAFs inboth sequencehomology in theTRAF-C

domain and its gene structure.(4)

The unique biological function of TRAF6 is largelya product

of its distinct specificity for upstream receptors and signaling

proteins, which is determined by its unique TRAF-C domain.

While TRAF1, TRAF2, TRAF3, and TRAF5 exhibit similar

receptor-binding specificity,(22) TRAF6 recognizes completely

different binding sites on members of the TNFR superfamily,

such as CD40 and RANK (also known as TRANCE-R).(23,24)

Structural studies of TRAF6 in complex with CD40 and RANK

peptides revealed striking differences between receptor re-

cognition by TRAF6 and TRAF2(25) (Fig. 1b,c). The bound

receptor peptides on the surface of TRAF6 showed a 408
difference in the peptide directions relative to TRAF2-binding

peptides. Structure-based sequence alignment suggested

that TRAF6 recognizes a conserved Pro-X-Glu-X-X-(aromatic/

acidic residue) motif (Fig. 1d). Moreover, further sequence

inspection showed that signaling proteins IRAK,(26) IRAK-2(27)

and IRAK-M(28) in the IL-1R/TLR pathways contain one or

multiple copies of the TRAF6-binding motif, providing a struc-

tural basis for the participation of TRAF6 in these pathways

(Fig. 1e). IRAK-4, the most recently identified IRAK-like

protein,(29), does not appear to contain TRAF6-bindingmotifs,

suggesting that it interacts with TRAF6 indirectly, possibly

through hetero-oligomerization with other IRAKs.

A qualitative difference may also be expected between

TRAF6- and TRAF2-mediated downstream biological effects.

Like TRAF2, TRAF6 activates the NF-kB and AP-1 trans-

cription factors. However, it does so through different down-

stream signaling complexes and is therefore regulated by

different signaling contexts. For example, TRAF2 appears to

cooperate with RIP to directly activate IKK.(30,31) In contrast,

theactivationof IKKbyTRAF6appears to involve theassembly

of a large signaling complex containing ubiquitin ligases, TAK1

andTABs, forwhich nondegradative polyubiquitinationmaybe

required.(32,33) The RING domain of TRAF6 is required for this

signaling event, likely by acting as an E3 ubiquitin ligase. In

addition, TRAF6 can also activate Src family nonreceptor

tyrosine kinases such as c-Src,(34) imparting additional

diversity to TRAF6 signaling.

Non-redundant role of TRAF6 in the

signal transduction of members

of the TNFR superfamily

The TNFR superfamily is classified based on extensive homo-

logy of extracellular regions containing conserved cysteine-

rich repeats.(35) The intracellular regions of these receptors,

however, do not share significant sequence homology, but are

often characterized by the presence of TRAF-binding sites.

Like other TRAFs, TRAF6 can directly interact with and

participate in the signal transduction of members of this

receptor superfamily. The two best-characterized TRAF6-

interacting receptors are CD40 and RANK, both of which play

important roles in the generation of antigen-specific adaptive

immunity. CD40 is crucial for the maturation and survival of

B cells and dendritic cells. RANK is essential for osteoclast

differentiation, maturation, and survival and plays an impor-

tant role in dendritic cell biology. Both CD40 and RANK can

recruit TRAF1, TRAF2, TRAF3, TRAF5 and TRAF6 to their

cytoplasmic tails. While TRAF1, TRAF2, TRAF3, and TRAF5

interact with the same conserved binding sites on these

receptors, TRAF6 interacts with binding sites distinct from

those of the other TRAFs(23,24) (Fig. 2). More importantly,

TRAF6-binding sites on these receptors appear to exert

specific and non-redundant biological roles.

In CD40 signaling, TRAF6 can either mediate distinct

effector functions or cooperate with TRAF2 for certain down-

stream events. For example, TRAF6 appears to dominantly

mediate p38MAP kinase activation,(36) is important for CD40-

induced IL-6 and immunoglobulin (Ig) secretion and B7-1 up-

regulation,(37) and controls affinity maturation and plasma cell

survival.(38) Defective CD40 signaling is observed in TRAF6-

deficient cells.(39) In renal epithelial cells, TRAF6 is crucial for

the production of IL-8 and chemokine MCP-1 upon CD40

ligation.(40) In contrast, both TRAF2- and TRAF6-binding sites

appear to be required for optimal NF-gBand JNKactivation(36)

and transcriptional induction of germline Ig-Cg1 and Ig-e
promoters, an obligatory step in Ig class switching inBcells.(41)

In another study, either the TRAF6- or TRAF2-binding site of

CD40can induce significant extrafollicular B cell differentiation

and Ig class switching, but germinal center formation requires

both TRAF2 and TRAF6.(42) TRAF2, but most likely not

TRAF6, may down-modulate CD40 signaling by regulating

CD40 membrane trafficking.(43) Given the discrepant findings
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between some of these studies, it is likely that TRAF2 and

TRAF6 play cell-type-specific roles in CD40 signaling.

TRAF6 appears to be the dominant adapter for RANK,

at least in its osteoclast-related functions, as TRAF6 knock-

out mice display severe osteopetrosis (abnormal thickening of

the bone).(39,44) Of the two independently reported TRAF6

deletions, one completely lacks osteoclasts,(44) while the other

has osteoclasts that are incapable of resorbing bone.(39) In

both cases, this complete lack of osteoclast function likely

accounts to a large extent for the runting phenotype, lack of

tooth eruption, extramedullary hematopoiesis and early death

(within 2 weeks) after birth. In another study, the interaction

of RANK with TRAF6 is absolutely required for the proper

formation of cytoskeletal structures and functional resorptive

activity of osteoclasts.(45) TRAF6�/� mice also have deficien-

cies inmammary gland development as a result of impairment

in RANK signaling and in lymph node organogenesis, possibly

also through a RANK-dependent pathway downstream of

LTbR.(44) RANK on dendritic cells responds to TRANCE (also

known as RANKL), the cognate ligand for RANK, on activated

T cells, resulting in increased dendritic cell activation and

survival.(46) TRANCE–RANK interactions are necessary for

T-cell-mediated clearance of certain viral pathogens. Since

TRANCE is expressed on activatedCD8þ in addition to CD4þ

T cells, while CD40L is only expressed on CD4þ T cells, it is

likely to play other non-redundant roles in Tcell–dendritic cell

communication.(47)

TRAF6 has been implicated in signaling by several other

members of theTNFreceptor superfamily. A recently identified

member of the TNFR superfamily, XEDAR, depends on

TRAF6 for signaling, as TRAF6�/� mice displayed hypohi-

drotic ectodermal dysplasia, with deficiencies in the develop-

ment of epidermal appendices such as guard hair follicles,

sweat glands and several types of sebaceous glands.(48) The

p75 neurotrophin receptor appears to directly interact with

TRAF6 and induce NF-kB activation.(49) Interestingly, IRAK

has been implicated as a conserved component in p75-

mediatedNFkBactivation.(50) TRAF6also likely participates in

signaling by BCMA, a member of the TNFR family that is

expressed only on B-lymphocytes.(51)

The dominant role of TRAF6 in

IL-1R/TLR signaling

The IL-1R/TLR superfamily plays critical roles in innate

immunity to infection and injury.(6) While the IL-1Rs consist

of receptors for IL-1 and IL-18, TLRs are a family of receptors

that share homology to Drosophila Toll and recognize molec-

ular patterns associated with pathogens. Examples of ligands

for TLRs include bacterial lipopolyssacharides (LPS), lipopro-

teins, peptidoglycan, CpG DNA, flagellin, and heat-shock

proteins.(52) These receptors are characterized by the pre-

sence of an intracellular protein interaction module known as

the Toll/IL-1 Receptor (TIR) domain.(52)

The signal transduction pathway for the IL-1R/TLRs was

first established for IL-1. IL-1 binds to IL-1R, which is

associated with an accessory protein (IL-1RAcp), inducing

the formation of an intracellular signaling complex that

includes the TIR-domain protein MyD88(20,53) and Tollip.(54)

This is then followed by the recruitment of Ser/Thr kinases

IRAKs (IRAK, IRAK-2and IRAK-M).(26–28)Whilemanystudies

have established that some TLRs activate NF-kB through

similar IL-1 signaling mediators, other TLRs such as TLR4

recruit a TIR domain containing adapter Mal (also known as

TIRAP), followed by IRAK-2.(55,56) In either case, IRAKs in

turn dissociate from the receptor complex, and associate with

TRAF6 to elicit signaling(18) (Fig. 2). Recently, IRAK-4,(29) an

IRAK molecule closely related to the Drosophila Pelle protein,

was shown to be indispensable for responses to IL-1 and

ligands that stimulate various TLRs.(57) On the other hand,

IRAK-M appears to be a negative regulator, as targeted

deletion of IRAK-M leads to enhanced TLR signaling.(58)

The critical biological role of TRAF6 in IL-1R/TLR signal-

ing has been demonstrated by the targeted deletion of

TRAF6.(39,44) In the absence of TRAF6, IL-1 treatment failed

Figure 2. Summary of TRAF6-mediated signal-

ing pathways. TRAF6 is a key intermediate in

proximal signaling from members of the TNFR

superfamily such as RANK and CD40, as well as

the IL-1R/TLR superfamily. A simplified scheme

depicting some major intermediates in the ulti-

mate activation of target proteins such as Akt and

the transcription factorsNF-kBandAP-1 is shown.

See text for details.
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to induce Tcell proliferation,(44) and LPS stimulated prolifera-

tion of B cellswasdramatically reduced.(39) In addition, TRAF6

is required for IL-1- and LPS-induced NF-kB activation and

IL-1-mediated JNK activation.(39)

TRAF6 also appears to mediate the signal transduction of

several pathogens, pathogenic proteins and receptors be-

yond the TNFR and IL-1R/TLR superfamily. In TRAF6-knock-

out fibroblasts, LMP1 signaling to p38 MAP kinase is severely

affected.(59) Additionally, the activation of TRAF6 (andTRAF5)

by LMP1 appears to negatively control the latent replication

origin of EBV through a p38-dependent pathway.(60) Similarly,

TRAF6 appears to participate in NF-kB activation by the

Hepatitis C virus (HCV) core protein,(61) JNK activation by the

equine herpesvirus protein E-10(62) and NF-kB activation in

gastric cancer cells by H. pylori.(63) In addition, it has been

suggested that TRAF6 participates in the signal transduction

of the intracellular protein RIP2,(64) proinflammatory cytokine

IL-17 and the integrin Mac-1.(65,66)

In addition to the well-documented role of TRAF6 in cell

survival and inflammation, targeted deletion of TRAF6 led to

increased frequency of neural-tube-closure failure and ex-

encephaly.(67) This suggests a novel and prominent role of

TRAF6 in the regional control of programmed cell death within

the developing central nervous system, possibly through a

JNK-dependent pathway. Inkeepingwith this hypothesis, it has

been reported that LPS-induced endothelial cell death

is realized through TRAF6-mediated JNK activation.(68)

Mechanisms of TRAF6 downstream signaling

Signal amplification by TRAF6 involves the activation of

multiple kinase cascades including the IkB Kinase (IKK),

MAP kinases, and Src-family tyrosine kinases. TheN-terminal

zinc-binding domain of TRAF6, especially the RING domain,

appears to mediate these downstream signaling events.

Recent studies have provided insights into some potential

molecular mechanisms of these signaling events.

The activation of both IKK and MAP kinases by TRAF6

appears to involve the MAP3K TAK1,(33,69) which is linked to

TRAF6 in the IL-1 and RANK signaling pathways via adapter

proteins such as TAB2(70) (Fig. 2). IRAK, the signaling protein

upstream of TRAF6 in the IL-1 pathway, appears to play an

important role in the assembly of the TAK1 activation complex

bybringingTAB2 from themembrane toTRAF6.(71,72) In IRAK-

deficient cells, TAB2 translocation and its association with

TRAF6 are abolished.(71) A three-step mechanism has been

proposed for this process. First, phosphorylated IRAK recruits

TRAF6 to the receptor complex. IRAK then brings TRAF6 to

the pre-associated complex of TAK1–TAB1–TAB2 on the

membrane to form the complex of IRAK–TRAF6–TAK1–

TAB1–TAB2. This is then followed by the phosphorylation of

TAK1 and TAB2, the dissociation of IRAK, the translocation of

the TRAF6–TAK1–TAB1–TAB2 complex to the cytosol and

the activation of IKK and MAP kinases.(73)

Recent findings have demonstrated the role of polyubiqui-

tination in TRAF6-mediatedTAK1activation and the activation

of IKK and MAP kinases.(32,33) Using in vitro reconstitution,

it was shown that the RING domain protein TRAF6, in con-

junction with ubiquitin-conjugating enzyme Ubc13 and the

Ubc-like protein Uev1A, mediates a novel form of polyubiqui-

tination involving Lys-63 of ubiquitin. This is different from the

well-characterized degradative pathway of polyubiquitination

involving Lys-48 of ubiquitin, which can also be mediated by

RING domain-containing E3 ubiquitin ligases such as Cbl

family proteins.(74) TRAF6-mediated Lys-63-linked polyubi-

quitination does not lead to degradation of target proteins.

Rather, it is indispensable for the activation of TAK1, which in

turn activates IKK in the NF-kB pathway and phosphorylates

MKK6 in the JNK-p38 kinase pathway.

However, there are several unknown aspects of the

mechanism of TRAF6-mediated IKK and MAP kinase activa-

tion. First, some experiments suggest that the function of

RING domains of TRAFs in JNK activation is to induce TRAF

raft localization. For example, in the case of TRAF2, if raft

translocation is artificially induced, theRINGdomain becomes

dispensable for the activation of JNK but not NF-kB.(43)

Induced raft translocation of TRAF3 has also been correlated

with its acquired ability to activate JNK.(75) In contrast, raft

translocation may not be required for TRAF6 signaling, which

is further supported by the observation that TRAF6 forms

cytoplasmic complexes with IRAKs.(72) Second, it was shown

that for IL-1 and LPS signaling pathways, the RING finger and

first zinc finger domains of TRAF6 are likely not required for

NF-kB activation but are required for full activation of MAP

kinases.(76) In addition, it appears that different regions of

IRAK are required for IL-1-induced NF-kB and JNK activation,

suggesting a divergence of these pathways at the level of

IRAK.(77)

Several other signaling proteins have also been implicated

in inducing and/or modulating TRAF6-mediated NF-kB and

MAP kinase activation. ECSIT, a protein conserved between

Drosophila and mammals, appears to regulate MEKK-1

processing and NF-kB activation in IL-1R/TLR pathways.(78)

Pellino is another evolutionarily conserved protein family

involved in Toll signaling in Drosophila and IL-1 signaling in

mammals by interacting with Pelle and IRAK–IRAK4–TRAF6

complex, respectively.(79,80)Ablation of Pellino 1 or Pellino 2

using either an antisense construct or siRNA showed that

Pellino is crucial for IL-1 or LPS-induced activation of NF-kB
and IL-8 geneexpression.(79,80) TRAF6-mediatedactivation of

NF-kB also appears to be regulated by small G proteins such

as Ras and Rac1, possibly by associating with the IRAK–

TRAF6–TAK1 components.(81)In addition, the cytokine-

inducible zinc finger protein A20 and A20-like proteins inhibit

IL-1 induced NF-kB activation by interacting with TRAF6.(82)

Unlike other TRAFs, TRAF6 can activate the Src family of

tyrosine kinases, leading to activation of the anti-apoptotic
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kinase Akt via a PI3-K-dependent pathway.(34) In osteoclasts,

the activation of c-Src appears to be the mechanism whereby

TRANCE and IL-1 induce membrane ruffling and actin ring

formation necessary for bone resorption.(83) In the absence

of c-Src, activation of osteoclasts is severely impaired.(84) In

addition, c-Src-mediated activation of the survival kinase

Akt serves to prolong the lifespan of activated osteoclasts.(34)

In dendritic cells, although c-Src is activated, the absence of

c-Src does not exhibit a dramatic phenotype, possibly due to

thepresenceof otherSrc familymembers in these cells (J.R.A.

andY.Choi, unpublished data). In nasal fibroblasts, it has been

shown that IL-1-induced chemokine production involves the

association of TRAF6with another Src familymember, Syk.(85)

Interestingly, Cbl family scaffolding proteins, which often

downregulate Src signaling, play a positive regulatory role in

RANK and CD40-mediated Akt activation.(86) The exact

molecular mechanism of TRAF6-mediated Src activation is

not clear but could involve direct TRAF6-Src interaction and/or

colocalization of TRAF6 with Src in membrane rafts.(34,86)

Parallel paradigms between immunity

and bone: TRAF6 and osteoimmunology

There exists an intimate interplay between the bone and the

immune system. Skeletal bone is more than a frame on which

to hang flesh and organs, it is also the source of bonemarrow-

derived hematopoietic cells. Many myeloid lineage hemato-

poietic cells express receptors such as CD40, RANK and

TLRs, which use TRAF6 for signaling and are involved in the

generation of adaptive and innate immunity. Recently, it has

become apparent that the activity of immune cells affects the

balance of bone mineralization and resorption carried out by

the opposing actions of osteoblasts and osteoclasts.(87) For

example, increased bone resorption resulting in lytic bone

lesions and osteoporosis is observed in many inflammatory

and autoimmune diseases, such as rheumatoid arthritis,(88)

periodontal disease(89) andPaget’s disease.(90) Bonedestruction

is also common in many cancers, both those that reside in

the bone like leukemias and multiple myeloma, and those

that metastasize to the bone such as breast and prostate

cancers.(91)

Dendritic cells, cells specialized to present antigens, and

osteoclasts, cells specialized to resorb bone, exhibit parallel

lifecycles (Fig. 3). Dendritic cells arise from multipotent pre-

cursors of the monocyte lineage and are essential organizers

of immune responses. They are highly specialized cells that

capture antigens in peripheral tissues, migrate to lymphoid

organs, and organize T cell responses.(92) Osteoclasts are

derived from the same precursors in response to interactions

Figure 3. Parallel life cycles of dendritic cells (DC) and osteoclasts (OC) and the role of TRAF6 in osteoimmunology. DCs and OCs

differentiate from common myeloid hematopoietic precursors. Factors mediating DC differentiation include GM-CSF, IL-4, and TNF. DC

differentiation is dependent on the combination of the NF-kB subunits p50 and RelA. OC differentiation is dependent onM-CSF, TRANCE,

and the transcription factors c-Fos and the combination of NF-kBsubunits p50 and p52. Thematuration of DCs andOCs are bothmediated

by TRAF6-dependent factors, including LPS, CpG, and IL-1. CD40L also induces DCmaturation, while TRANCE induces OCmaturation.

Mature, activated DCs andOCs rapidly undergo apoptosis in the absence of survival signals provided by TRANCE and CD40L. TRANCE-

mediated DC survival is dependent on the combination of the NF-kB subunits p50 and c-Rel, while TRANCE-mediated OC survival is

dependent on Akt.
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with osteoblasts and other bone stromal cells. Upon differ-

entiation into mononuclear osteoclasts and subsequent

maturation and fusion into multinucleated cells, osteoclasts

actively resorb bone.(93) A wealth of genetic and biochemical

studies have shown that dendritic cells and osteoclasts

undergo parallel differentiation, maturation/activation, and

survival/death processes. These processes are dependent on

a variety of cytokines, transcription factors, and inflammatory

mediators, many of which use TRAF6 for signaling. The

parallel lifecycles of these myeloid-derived cells has led to

the observation of many molecular and cellular interactions

between the bone and the immune system, which has been

termed osteoimmunology.(94)

TRAF6-deficient mice either completely lack osteoclasts

or exhibit defective osteoclast function.(39,44) Recent studies

have also found that immature dendritic cells derived from

TRAF6�/� mice have defects in cytokine production and cos-

timulatory molecule upregulation in response to CD40L and

microbial products in vitro and in vivo. These defects result

in impaired T cell stimulation (T. Kobayashi and Y. Choi, per-

sonal communications). Given that immature dendritic cells

have been shown to provoke tolerogenic Tcell responses,(95)

targeting TRAF6 in dendritic cells may ultimately be a useful

tool in preventing autoimmunity.

Since TRANCE is expressed on activated T cells, and is

crucial for T cell–dendritic cell communication, one might

expect massive bone resorption under most inflammatory

conditions. Although TRANCE-expressing T cells in chronic

inflammatory conditions such as rheumatoid arthritis can

stimulate osteoclasts leading to bone destruction,(96) the con-

stant activity of Tcells fighting the universe of antigens towhich

we are exposed does not usually cause extensive bone loss.

A crucial counter-regulatory mechanism whereby activated T

cells can inhibit TRANCE-mediated osteoclast development

and activation is through the action of the antiviral cytokine

IFN-g. In mice deficient for the IFN-g receptor, bone destruc-

tion in an autoimmune arthritis model is greatly exacerbated.

While T cells involved in inflammatory responses express

TRANCE, they also secrete IFN-g. IFN-g can block TRANCE-

mediated osteoclastogenesis, possibly through the activation

of the ubiquitin–proteasome pathway leading to TRAF6

degradation.(94,97)

TRAF6 inhibitors

Given the essential roles of TRAF6 in immunity and a diverse

array of biological processes, it is desirable to obtain TRAF6

inhibitors to facilitate the development of therapeutics for

controlling inflammation andawide range of diseases, suchas

osteoporosis and other osteolytic conditions, cystic fibrosis,

periodontitis, connective tissue destruction, bladder outlet

obstruction and viral infections.(98–100) By fusing a TRAF6-

binding sequence to a cell permeable tag sequence, we found

that the peptide inhibited TRAF6 signaling in the context of

RANK-dependent osteoclast differentiation from RAW264.7

cells or mouse primary monocytes.(25) Furthermore, this

‘‘decoy’’ peptide appears to be effective against breast-

cancer-induced osteolytic lesions inmice (B. Darnay, personal

communications). It will be interesting to test this approach

in other TRAF6-dependent disease conditions. In addition to

their potential therapeutic value, TRAF6 inhibitors provide

powerful tools for dissecting the contribution of TRAF6 to

specific biological processes.

Conclusions

Of the six known TRAF proteins, TRAF6 has several unique

features that contribute to its diverse physiological functions.

Evolutionarily, TRAF6 is the most ancient of the mammalian

TRAF proteins and is the most divergent in its TRAF domain.

In parallel to its ancient and modern functionality, it serves as

a molecular bridge between innate and adaptive immunity.

The vital role of TRAF6 in the life cycles of myeloid-derived

cells has revealed many interconnections between the

immune system and the bone, and TRAF6 is the central

player in osteoimmunology. Its roles in dendritic cell and

osteoclast biology have shown it to be a potential therapeutic

target for the treatment of autoimmune and inflammatory

diseases as well as osteoporosis. TRAF6 appears to mediate

kinase activation by non-degradative ubiquitination of both

itself and possibly downstream signaling molecules. It may

also influence signaling by serving as an adapter molecule,

bringing multiple proteins into close proximity, enhancing

their interactions and regulating the activation of multiple

signals, including NF-kB, MAP kinases, and Src-family

kinases. Because TRAF6 is a convergence point for many

diverse signals both upstream and downstream, it will remain

an important focus of investigation for a wide range of biolo-

gical interests.
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