Groups, Fields, Vector Spaces

General Themes
- avoid the appearance of accidents
- avoid coordinates (or find "natural" coordinates)
- use "good" model models for data
- smooth transition back to large x infinite
- smooth transition back to sampled - conditions

Overview:
- groups - one kind of element, one operation
- fields - add a second operation
- vector spaces "over" a field
- transformations from one vector space to itself
- groups can be modeled as these transformations
- characterizing these transformations leads to "natural" bases ("coordinates") in the VS
- Fourier theory is a special case of the above

\[G = \mathbb{Z}_n \text{ (under addition) } \rightarrow \text{ Discrete Fourier Trans.} \]
\[G = \mathbb{R} \text{ (under addition) } \rightarrow \text{ Fourier Trans.} \]
\[G = \text{rotations of a circle } \rightarrow \text{ Fourier Series} \]

\[G = \text{rotation of a sphere } \rightarrow \text{ spheroïd forms.} \]
\[G = \text{permutations of } n \text{ items} \]
\[G = \text{translation of } \mathbb{R}^n \]
\[G = \text{translation + rotation of } \mathbb{R}^n \]
other useful things
Group actions

G1) Associativity: For all a, b, c, \(a \circ (b \circ c) = (a \circ b) \circ c \).

G2) Identity: There is an element \(e \) such that, for all \(a \), \(a \circ e = a \) and \(e \circ a = a \).

G3) Inverses: For all \(a \), there is a corresponding \(a^{-1} \) such that:
\[
\begin{align*}
a \circ a^{-1} &= e, \\
a^{-1} \circ a &= e.
\end{align*}
\]
Not assumed to be commutative ("Abelian")
May be finite or infinite.
May have other properties (e.g., "nearness" - a topology)
(Lie groups)

Examples:
- \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) under addition
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) with \(0 \) omitted under multiplication
- \(m \times n \) matrices under addition
- \(m \times n \) invertible matrices under mult.

group properties

- rotations of an \(n \)-sphere
- rotations of a regular \(k \)-gon
- reflections of a regular \(k \)-gon
- permutations of a set of objects

Which are commutative? Which are finite? Which have a nontrivial topology?
Basic properties of identities and inverses:

- Only one identity element. If \(e\) and \(f\) were both identities, then
 \[e \circ f = e \quad \text{since } f \text{ is an identity} \]
 \[e \circ f = f \]

- Inverse is unique. Say \(a \circ b = e\).
 Then
 \[a \circ (a \circ b) = a \circ e = e \]
 \[(a \circ a) \circ b = a \circ b = e \]
 \[e \circ b = a \]

- No element has a "right" identity. For \(a \circ e = a\),

 \[a \circ (a \circ f) = a \circ a \]
 \[(a \circ a) \circ f = a \circ e \]
 \[f = e \]

- \((a \circ b) \circ b^{-1} = a^{-1} \circ a\)

 \[(a \circ b) \circ (b^{-1} \circ a^{-1}) = ((a \circ b) \circ b^{-1}) \circ a^{-1}
 = (a \circ (b \circ b^{-1})) \circ a^{-1}
 = (a \circ e) \circ a^{-1}
 = a \circ a^{-1}
 = e.\]
Intrinsic properties: the order of an element a is the least (non-zero) integer n for which $a^n = e$. Write $a^n = e$.

i) For finite groups, every element has an order.

Consider $a^0 (= e), a^1, a^2, a^3, \ldots$

Eventually, there must be a repeat.

If $a^h = a^k$ then, ($i \neq j < k$)

(a) $\exists a^h = a^{k-h}$

Order of a must be $\leq k-h$.

b) For finite groups, the order of every element divides the size of the group. (Lagrange's Theorem.)

Let $A = \{ a^0, a^1, a^2, \ldots \}$. Size of A is order of a.

A is a subgroup (i.e., a subset of G, but also a group).

Consider the subgroup H divides 16 for any subgroup H.

Say $H = \{ e, h, h^2, h^3, \ldots \}$. Write $H = \{ h, h^2, h^3, \ldots \}$. Note h is a "cyclic" (not necessarily a subgroup).

Consider two cosets $Hb = Hc$. They are either identical or disjoint. If not disjoint, say $Hb = Hc$.

Then $b = h^{-1} c$.

$h^o b = h^o \cdot h^{-1} \cdot c$.

So every element in Hb is in Hc. And vice versa.
Adhomorphism: \(f : G \rightarrow G \)

Adhomorphism is into \(H \) if it is injective, i.e., \(f \) is 1-1.

\[f(x) = x \lor (x \lor y) = y \]

Therefore, \(f \) is a homomorphism.

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]

\[f(1) = 1 \lor 0 = 1 \]

\[f(0) = 0 \lor 0 = 0 \]
Examples

\[\log : \text{a homomorphism from } (\mathbb{R}^+; \text{multiplication}) \]
\[\text{to } (\mathbb{R}; \text{addition}) \]

\[\text{id}_n : \mathbb{Z}_n \rightarrow \mathbb{Z}_n \text{ a homomorphism from } (\mathbb{Z}_n; \text{addition}) \]
\[\text{to } (\mathbb{Z}_n; \text{addition}) \]

\[x \rightarrow -x \]

\[\mathbb{Z} \rightarrow \mathbb{E}^\mathbb{Z} \text{ from } (\mathbb{Z}; \text{addition}) \]
\[\text{to } (\mathbb{E}; \text{sof}; \text{multiplication}) \]

Parity of a permutation from any permutation group is \([-1; 1]\) under multiplication.

Which are onto? Which are isomorphisms? Which are automorphisms?

The kernel of a homomorphism \(\varphi : G \rightarrow H \)
is the set of elements \(g \) for which \(\varphi(g) = e \) in \(H \).

The kernel is a subgroup. Need to show that (a) \(\varphi(e) = e \)
and (b) \(\varphi(g) = e \) then \(\varphi(g^{-1}) = e \).

(a) \(\varphi(e) = \varphi(e \cdot e) = \varphi(e) \cdot \varphi(e) \) so \(\varphi(e) \) is the identity for \(\varphi(e) \) in \(H \), so \(\varphi(e) \) is in \(\text{ker } \varphi \).

(b) \(\varphi(g) \cdot \varphi(g^{-1}) = \varphi(g \cdot g^{-1}) = \varphi(e) = e \)
\[e = \varphi(g) \cdot \varphi(g^{-1}) \]
Objects playing several roles.

The automorphisms form a group, $G(\mathbb{C})$.

Say ψ_1, ψ_2 are both automorphisms.

Define $(\psi_1 \circ \psi_2)(g) = \psi_1(\psi_2(g))$.

[We use \circ for the group op in $G(\mathbb{C})$ write $g h$ within G]

Need to show $\psi_1 \circ \psi_2$ is an automorphism

$$(\psi_1 \circ \psi_2)(gh) = \psi_1(\psi_2(gh)) = \psi_1(\psi_2(g)\psi_2(h)) = \psi_1(\psi_2(g)) \psi_1(\psi_2(h)) = (\psi_1 \circ \psi_2)(g) \cdot (\psi_1 \circ \psi_2)(h).$$

Since automorphisms by def. are invertible, there is a ϕ^{-1}
end, with the definition for \circ, $\phi \circ \phi^{-1} = e$.

There are special automorphisms - the "inner" automorphisms.

For each group element a m G,

let $\phi_a(g) = ag a^{-1}$.

Note $\phi_a(gh) = ag h a^{-1} = a g a^{-1} \cdot h a^{-1} = \phi_a(g) \phi_a(h)$ and $\phi_a(a) = 1_a^-$, so ϕ_a is invertible.

A model for "change of coordinates".
Next we have a natural map (a homomorphism)

\[\text{Adj}: G \rightarrow A(G) \]

\[\text{Adj}(g) = g^{-1} \]

"adjoint"

What is its kernel?

\[\text{ker Adj} \]

\[\text{ker Adj} \] means

\[g^{-1}g = e \text{ for all } g \in G \]

So, the kernel of the adjoint is the subset of G that commutes with all of G ("the center")

\[\text{ker Adj} \] is trivial if G is commutative.

\[\text{ker Adj} \] is nontrivial for non-commutative G.

What is the center of ker Adj?
Fields

Field axioms:

1. \mathbb{K}: Commutative group under $+$, identity element denoted 0
2. $\mathbb{K} - 0 \triangleleft \mathbb{K}$: $\forall \alpha, \beta \in \mathbb{K}, \alpha \cdot \beta \in \mathbb{K}$, identity element denoted 1

Identity

Relationship $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$

\mathbb{R}, \mathbb{C}, \mathbb{Q} are fields, \mathbb{Z} is not (why?)

$\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ (interpret mod n)

May be a field

Need to be sure there are multiplicative inverses.

If $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$, then n is prime. Conversely, if n is composite, and α shares a factor ≥ 1 within, then there is no solution.

This gives us finite fields of size \mathbb{F}_p, any prime.

Can also make finite fields of prime p^k (Galois fields), but this is slightly trickier.
R is "ordered" - a notion of size (<).

C is "algebraically closed": a polynomial \(\sum_{k=0}^{n} a_k x^k \)
always has a root \(\lambda \), with \(\sum_{k=0}^{n} a_k \lambda^k = 0 \).
This will help a lot.

C has an automorphism \(\zeta : i \mapsto -i \), "complex conjugate".

Any \(z \in \mathbb{C} \) can be written as
\[
\begin{align*}
z &= a + bi \\
&= a + b i = \bar{z} \\
&= a - b i.
\end{align*}
\]

\(\pm i + 1 \) are distinguished.

1 is a multiple identity \((\pm i)^2 = 1\).

This idea can be abstracted: generalized.

\(\sum_{k=0}^{n} a_k x^k \) does not have a root and does not factor in \(\mathbb{C} \).
Then an inner sum
\[
\sum_{k=0}^{n} \beta_k x^k \]
form a field.
Vector spaces

(\emptyset = \emptyset, unless stated otherwise)

VS axioms:

- Scalars \(a, b, \ldots\) are elements of a field.
- Vectors \(v, w, \ldots\) which can be added.

- Vectors form a commutative group under addition.

- Scalar multiplication: a rule from \(F \times V \rightarrow V\)

 \[a \cdot (v + w) = a \cdot v + a \cdot w \]

 \[(a + b) \cdot v = a \cdot v + b \cdot v \]

 \[a \cdot (b \cdot v) = (ab) \cdot v \]

 Nothing said about dimension, length, angles, coordinates.

A field can be regarded as a VS over itself

(vector addition = field addition)

scalar mult. = field multiplication.

Ordered \(n\)-tuples of field elements form a VS.

Say \(v = (v_1, v_2, \ldots, v_n)\)

\(w = (w_1, w_2, \ldots, w_n)\)

See \(v + w = (v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n)\)

\(a \cdot v = (a \cdot v_1, a \cdot v_2, \ldots, a \cdot v_n).\)
Functions on a set \(S \subseteq \mathbb{R} \) are anything with vectors form \(\mathbf{v} \in V \):

\[
(f_1 + f_2)(s) = f_1(s) + f_2(s) \\
(\lambda f_1)(s) = \lambda (f_1(s))
\]

"Free Vector Space on \(S \)"

Linear independence: \(v_1, \ldots, v_n \) are "linearly independent" if for all nonzero \(\alpha_1, \ldots, \alpha_n \),

\[
\sum_{k=1}^{n} \alpha_k v_k \neq 0.
\]

Basis: If \(v_1, \ldots, v_n \) are linearly independent and \(v \in V \) can be written as \(v = \sum_{k=1}^{n} \alpha_k v_k \), then \(\{v_1, \ldots, v_n\} \) is a basis for \(V \).

Note that if \(v = \sum_{k=1}^{n} \alpha_k v_k = \sum_{k=1}^{n} \beta_k v_k \)

\[
\sum_{k=1}^{n} (\alpha_k - \beta_k) v_k = 0
\]

\(V \) is then said to be \(n \)-dimensional.

[Alternative bases have the same size.]

Defining a basis makes sense even if \(S, v_1, \ldots, v_n \) not finite.
Unless additional structure is added, no basis set has a privileged role.

Putting together VS’s:

\[
V \times W \text{ vs } V \oplus W \text{ under } (v, w) \mapsto (v, w)
\]

and operation

\[
(z_1 + z_2) = (V_1 + V_2, w_1 + w_2)
\]

\[
V + W \text{ vs } \text{Hom}(V, W), \text{ space of all homomorphisms, via } \phi \mapsto \phi.
\]

To define the VS operations:

\[
\phi_1 : V \rightarrow W \quad \text{and} \quad \phi_2 : V \rightarrow W
\]

(\(\phi_1 + \phi_2\))(v) = \(\phi_1(v) + \phi_2(v)\)

(\(\lambda \phi_1\))(v) = \(\lambda \phi_1(v)\)

If we have chains \(v_1, \ldots, v_m\) for \(V\) and \(w_1, \ldots, w_n\) for \(W\), then consider

\[
\phi_{ab} (\sum_{k=1}^{m} v_k) = \lambda_{a,b} \cdot w_b.
\]

This is a homomorphism, and the \(\lambda_{a,b}\) form a basis for \(\text{Hom}(V, W)\).
If we were to write \(v = \sum_k w_k \otimes (\cdots) \),

\[
\begin{align*}
\mathbf{w} &= \begin{pmatrix} w_1 \\
& \ddots \\
& & w_k \end{pmatrix} = \begin{pmatrix} \beta_1 \\
& \vdots \\
& & \beta_k \end{pmatrix} \\
\mathbf{\Phi} &= \begin{pmatrix} \mathbf{V} = \mathbf{W} : \text{corr to} \end{pmatrix} \begin{pmatrix} \gamma_1 \\
& \ddots \\
& & \gamma_m \end{pmatrix} = \begin{pmatrix} \beta_1 \\
& \vdots \\
& & \beta_k \end{pmatrix} \\
\mathbf{\Lambda} &= \begin{pmatrix} \delta_{11} \\
& \ddots \\
& & \delta_{nm} \end{pmatrix} = \begin{pmatrix} \gamma_1 \\
& \vdots \\
& & \gamma_m \end{pmatrix} \begin{pmatrix} \beta_1 \\
& \vdots \\
& & \beta_k \end{pmatrix}
\end{align*}
\]

If \(\mathbf{\Phi} = \sum_{a=1}^{n} \sum_{b=1}^{m} \gamma_{ba} \mathbf{F}_{ab} \).

Specific case \(\text{Hom} (V, W) : \mathbf{W} = \mathbf{K} \)

\[
\text{Hom} (V, \mathbf{K}) = \text{"dual" of } V = (V^*)
\]

All linear maps from \(V \) to \(\mathbf{K} \).

Dual \(V \) has same dimension (if \(\dim V \) finite),

But \(V \) vs. \(V^* \) are not the same.

Ex: \(V \) = continuous functions on \(\mathbb{R} \), indistinguishable.

\(V^* \) contains \(f \) so every \(g \) in \(V \), \(f \rightarrow \int_{-\infty}^{\infty} g(x) f(x) \). \(V^* \) also contains \(f \rightarrow f(x_0) \).

\(f(x-x_0) \) is not in \(V \).
Even when V is finite, it is a good idea to keep $V \oplus V^*$ separate.

Lights vs. mechanisms

OT: difference images vs. discriminants

Another special case: $\text{Hom}(V, V)$

[Our special case is to look for mappings from V to $\text{Hom}(V, V)$ that preserve the group structure].

Recall that “order” is an intrinsic property of a group; othm g, $q = |g|$.

There are intrinsic properties of $\varphi \in \text{Hom}(V, V)$, determined by traces.

Note: one more way of putting together a VS: “tensored products.”

V, W vector spaces, then $V \oplus W$ is a VS composed of formal sums of elements $v \oplus w$, with the rules:

\[
V \oplus (W_1 + W_2) = (V \oplus W_1) + (V \oplus W_2)
\]

\[
(V_1 + V_2) \oplus W = (V_1 \oplus W) + (V_2 \oplus W)
\]

\[
2(V \oplus W) = (2V) \oplus W = V \oplus (2W)
\]
If \(v_1, \ldots, v_m \) is a basis for \(V \),
\(w_1, \ldots, w_n \) \(\in \) \(W \) then
\(v_1 \otimes w_1, \ldots, v_m \otimes w_n \) \(\in \) \(\text{a basis for } V \otimes W \).

But \(V \otimes W \) is not the same as \(\text{Hom}(V, W) \),
just like \(V \) is not the same as \(V^* \).

[Note: \(V \otimes W \) is naturally \(\cong \) to \(\text{Hom}(V^*, W) \)]

Consider \(V \otimes^2 = V \otimes V \).

For \(u = \sum v_k \otimes v_k \), we can define \(\sigma(u) = \sum v_k \otimes V_k \).

Also, \(\sigma \) can define \(s(u) = \frac{1}{2} (u + \sigma(u)) \) "symmetrize" \(a(u) = \frac{1}{2} (u - \sigma(u)) \) "antisymmetrize" \(s(a(u)) = a(s(u)) = 0 \)
\(s(\sigma(u)) = 0 \) all follow from \(\sigma(\sigma(u)) = u \).

\(a(s(u)) = s(a(u)) \)

P.q. \(s(\sigma(u)) = s(\frac{1}{2}(u - \sigma(u))) \)
\(= \frac{1}{4} [s(u) - s(\sigma(u))] \)
\(= \frac{1}{4} [\frac{1}{2}(u + \sigma(u)) - \frac{1}{2}(\sigma(u) + \sigma^2(u))] \)
\(= 0 \)

For every pair \(v^{(2)}, v^{(3)} \) of vectors \(v \in V \), we have
\(\text{vector } s(v^{(2)}) \otimes v^{(3)} \) in \(s(V \otimes^2) \)
and \(a(v^{(2)}) \otimes v^{(3)} \) in \(a(V \otimes^2) \).
This generalizes to $V \otimes V \otimes \cdots \otimes V$
r times.

$r = 2$:

$s(u) = \frac{1}{2} \left(V^{(1)} \otimes V^{(2)} + V^{(2)} \otimes V^{(1)} \right)$
$a(u) = \frac{1}{2} \left(V^{(1)} \otimes V^{(2)} - V^{(2)} \otimes V^{(1)} \right)$

General: $u = V^{(1)} \otimes V^{(2)} \otimes \cdots \otimes V^{(r)}$

Set $s_1(u)$ = $\frac{1}{r!} \sum_{\text{permutations}} \delta_{\gamma}(u)$
where $\delta_{\gamma}(u) = V^{\gamma(1)} \otimes \cdots \otimes V^{\gamma(r)}$

For example,

For $\pi = (15)(23)(12)(17)$,

\[
\begin{align*}
1 &\rightarrow 5 \\
2 &\rightarrow 3 \\
3 &\rightarrow 1 \\
4 &\rightarrow 7 \\
5 &\rightarrow 1 \\
6 &\rightarrow 2 \\
7 &\rightarrow 2
\end{align*}
\]

For $\pi = (3526)$,

\[
\begin{align*}
1 &\rightarrow 7 \\
2 &\rightarrow 6 \\
3 &\rightarrow 5 \\
4 &\rightarrow 4 \\
5 &\rightarrow 2 \\
6 &\rightarrow 7 \\
7 &\rightarrow 3
\end{align*}
\]

Every permutation has an "even" or "parity" of r flips.

For example,

Upper: 1 \rightarrow 5
2 \rightarrow 3
3 \rightarrow 1
4 \rightarrow 7
5 \rightarrow 1
6 \rightarrow 2
7 \rightarrow 2

For $\pi = (15)(23)(12)(17)$,

\[\text{sign}(\pi) = +1\]

For $\pi = (3526)$,

\[\text{sign}(\pi) = -1\]
\[
\alpha = \sum_{i=1}^{n} \frac{1}{m_i} \delta_i
\]

[Need to show that \(\Sigma_i (a_i) = 1\) is independent \(\Gamma\) is decomposed.] Consider

\[
P = \prod_{i<j} (\theta_i - \theta_j)
\]

Then \(\prod_{i<j} (\theta_i - \theta_{\gamma(i)}) = \pm \prod_{i<j} (\theta_i - \theta_j)\).]

Note that a linear transformation \(L\) in \(\text{Hom} \ (V, V)\)
extends naturally to \(V^\otimes r\), \(s(V^\otimes r)\), \(a(V^\otimes r)\)
\(\sigma\), \(a(\otimes^r (a(V^\otimes 1) \otimes \cdots \otimes V)) = a(L^{(1)} \otimes \cdots \otimes L^{(r)})\).

Now let's do a dimension count of \(a(V^\otimes r)\), assuming \(\dim V = n\).

\(r=1:\) trivial, \(a(V) = V\).

\(r=2:\)
\[
a(V_1 \otimes V_2) = \frac{1}{2} (V_1 \otimes V_2 - V_2 \otimes V_1)
\]

This is 0 if \(n_1 = n_2\). Also,
\[
a(V_1 \otimes V_2) = -a(V_2 \otimes V_1)
\]
so these are not linearly independent.

Conclude \(\dim a(V^\otimes 2) = \frac{1}{2} n(n-1)\).
\[r \geq 3: \quad a(V_n \circ V_n \circ V_n) = 0 \text{ if} \]
any of \(n_1, n_2, n_3 \) equal. Say \(n_k = n_6 \).

Then the pair-swap \((a, b)\) inverts \(\text{sign}(\tau) \),
but leaves \(a(V_1 \circ \cdots \circ V_n) \) unchanged.

\[\text{sign}(\tau \cdot (ab)) = \text{sign}(\tau) \cdot \text{sign}(ab) = -\text{sign}(\tau) \]

Reordering \(V_n \circ \cdots \circ V_n \) (3! order) yields the same thing.

\[\dim a(V^{\otimes 3}) = \frac{1}{3!} n(n-1)(n-2). \]

Similarly \(\dim a(V^{\otimes n}) = \frac{1}{n!} n(n-1) \cdots (n-r+1). \)

Let \(r = n \). \(\dim a(V^{\otimes n}) = 1. \)

All elements in \(a(V^{\otimes n}) \) can be written
in the form \(\langle z \rangle \) for some \(z \in a(V^{\otimes n}) \).

Now given \(L \in \text{Hom}(V,V) \), \(a(L^{\otimes n})(z) \) must be
some scalar \(\varepsilon \cdot z \). This scalar is the
determinant of \(L \).

* We didn’t use a basis (yet considered) so \(\det(L) \) is
basis-independent, i.e., intrinsic.

* If, for any basis \(v_1, \ldots, v_n \), \(L(v_1), \ldots, L(v_n) \) are
linearly dependent then \(\det(L) = 0. \) And conversely.
\(\det (L) \) describes how much
\(a(v_1, \cdots, v_n) \) expands, for any \(v_1, \cdots, v_n \).

\(\det (LM) \) can be roughly \(L \) acting in \(MV \).

\[\det LM \propto \frac{a(LMv_1, \cdots, LMv_n) a(Mv_2, \cdots, Mv_n)}{a(v_1, \cdots, v_n) a(v_2, \cdots, v_n)}\]

so \(\det LM = \det L \cdot \det M \).

Characteristic Equation: \(L \) in \(\text{Hom} (V, V) \)

\[\lambda \text{ in } k \]

\[I = \text{the identity in } \text{Hom} (V, V) \]

\(L - \lambda I \) is also in \(\text{Hom} (V, V) \).

\[\det (L - \lambda I) = \text{"characteristic equation of } L." \]

This is a polynomial in \(\lambda \), of degree \(n \).

If \(\det (L - \lambda I) = 0 \), \(\lambda \) is an \(\lambda \) of \(L \).

Then \(L - \lambda I \) maps some nonzero vector \(v \) to \(0 \).

\((L - \lambda I)v = 0 \implies Lv = \lambda v \)

\(\lambda \) is an eigenvalue, \(v \) is its eigenvector.
Plan from here: V: functions of time

Inner product
Self-adjoint operator [applying a filter]
Unitary operator [translation in time]

Unitary representations of a group G: translation in time

Decomposes V - a "natural basis"

Coordinates in the natural basis are the Fourier coefficients, transforms.