Homework \[\text{[[1] to [3] SGF, VS]} \]

1. Let \(K \) be a field.

 Are the \(n \times n \) matrices with entries in \(K \) a field?

2. Let \(K \) be the finite field \(\mathbb{Z}_p \) with \(+ \) and \(\cdot \) interpreted mod \(p \).

 \(\text{Let } p(x) = x^3 + x + 1 \)

 Does \(p(x) \) factor in \(K \)?

 \[
 \text{Consider the formal sum } \beta_0 + \beta_1 x + \beta_2 x^2, \\
 \text{with } \beta_i \text{ in } K, \text{ and } p(\beta) \equiv 0. \\
 \text{How many distinct sums are there?} \\
 \text{Are they closed under } +, \cdot ? \\
 \text{Are they closed under inversion?} \\
 \text{Hint: Write } 1, x, x^2, x^3, x^4, \ldots \\
 \text{and form sums.} \\
 \text{[This is the finite field of size } 2^3] \\
 \]