1. Let \(x(t) \) be a Poisson process with rate \(\lambda \).

Calculate the power spectrum \(P_x(\omega) \) of \(x = x_\lambda - \beta \).

[If \(x \) is subtracted to get \(\xi(t) < x(t) > = 0. \]}

Calculate the bispectrum \(B_x(\omega_1, \omega_2) \).

2. Shot noise:

Let \(y_\lambda(t) \) be the result of passing the above \(x_\lambda(t) \) through a linear filter \(G \),

with impulse response \(C(t) \).

Find the P.S. of \(y = y_\lambda(t) - < y_\lambda(t) > \).

3. Connectivity: Given independent noises \(x(t), y(t), z(t) \):

\[x(t) \xrightarrow{\mathbb{S}} G \rightarrow g(t) \]

\[y(t) \xrightarrow{\mathbb{S}} H \rightarrow h(t) \]

\[z(t) \xrightarrow{\mathbb{S}} \]

\[\text{Find } P_G, P_H, \text{ or } G, H \text{ known.} \]