Groups, Fields, and Vector Spaces
Homework #2 (2008) for pages 4-9 of notes -- answers

Q1: Automorphisms. Let G = the group of real 2x2 matrices , nonzero determinant, under
multiplication.

A. Consider the mapping T, defined by T(M)=MT, where M is the transpose of M (recall: the

transpose exchanges rows and columns.) Is T an automorphism? Whatis T*? Isiit
automorphism?

T is not an automorphism, since T(MN)=(MN)" =N"M T =T(N)T(M) (the crucial step is the
second equality: the transpose of a product of matrices is the product of the transpose in reverse
order).

T’(M)=T(M")=(MT)" =M, so T? is the identity transformation (and, trivially, an
automorphism).

B. Consider the mapping V, defined by V(M) =M, where M is the matrix inverse of M. Is V
an automorphism? What is V>? Is it an automorphism?

V is not an automorphism, for exactly the same reason as in Q1A. (the crucial step is the second
equality: the inverse of a product of matrices is the product of the inverses in reverse order). And,

as in Q1A, V? is the identity transformation (and, trivially, an automorphism).

C. Consider w =TV . Is y an automorphism? Is y? an automorphism?

Combining Q1A and Q1B,

w(MN)=TV(MN) =T(V(MN)) =TV (N)V(M)) =TV(M)TV(N) = w(M)y(N)

So, w is an automorphism. Since the automorphisms form a group, so is . (Also, you can show
that i is the identity.)

D. An “inner”” automorphism is an automorphism which can be written as ¢, (M) = AMA™, for

some A. Which of the above automorphisms are ““inner”? Hint: recall a basic property of the
determinant: det(XY) =det(X)det(Y). (Thatis, det isa homomorphism from G onto the reals,

under multiplication.) Calculate det(¢,(M)). Calculate det(y(M)).

T and V are not automorphisms.
w isnot “inner”. For an inner automorphism ¢,

det(p,(M)) = det(AMA™) = det(A) det(M ) det(A™) = det(A) det(M ) (det(A)) " = det(M).

a 0 1/a 0
But det(y(M)) = det(M) ; take for example M :(O b]’ V/(M)z( 0 1/bj,for which

detM =ab and det(y(M)) =1/(ab).



Q2: Centers. The “center” of a group G is the subset of elements « of G for g = g, for all
group elements g. (For example, the center of a commutative group is the whole group.)

A. Show that the center of a group is a subgroup.
First, we need to show that if ¢ and £ is in the center, then so is ¢f . Assume « and g

commute with all of G. Then, (af)g = a(£9) = a(9f) = (a9)f = (ga) S = g(af) , which shows
that of commutes with all of G. Trivially, the identity for G commutes with all of G, so it serves
as the identity for the center. Last, we need to show that if « is in the center, thensois a™*. To
see this: a'g=(g"'a) " =(ag™) ™" = ga . (Middle equality because o commutes with every
g, other equalities because the inverse of a product is the product of the inverses in reverse
order.

B. Show that the center is the kernel of the map from G into the inner automorphism group of G.
That is, show that if « is in the center of G, then ¢, is the identity map on G, and conversely, that

if ¢_ is the identity map on G, then « is in the center of G.
¢,(9) =aga =gaa™ =g, so ¢, is the identity automorphism.

C. Find the center of the group of 2x2 matrices in Q1.

a by. . 1 x
Say a = IS in the center, and g = .
c d 01

a ax+b a+cx b+dx o
ag = and ga = . g , S0 ag =g forall ximpliesc=0and a=d .
1

a o0
Same idea for g' yields b=0. So a must be of the form {0 a):aﬂo

0
1]. Since thisis a

multiple of the identity, it commutes with all of G.

Q3. Finite fields.
Display the addition and multiplication tables for a finite field k with 4 elements.

Hint: Recall that the additive structure of k must be a group of size 4. There are two different
ones: [, (the cyclic group of size 4), and [J, @[] ,, the direct sum of two groups of size 2. Show

that the additive group cannot be [1 ,, by the following approach. From 1+1=2, use the

distributive law to show 2 x2 =0, which cannot happen in a field — since this means that 2 has no
multiplicative inverse. Then you only need to find a self-consistent multiplication table, to go
along with the additive structure of L , @0 ,.

Carrying out the hint:
If the additive group is [1 ,, then 2x2=(1+1)x2=(1x2)+(1x2)=2+2=0. Then 2 would not

have a multiplicative inverse. So the additive group cannot be [I,.



So the additive structure must be [1, @01 ,. We’ll label the field elements O (the additive identity),

1 (the multiplicative identity), and two more abstract elements x and y. Since the additive structure
is,®0,, x+x=0 and similarly for y. So the addition table is

< X » O +
< X B O o
X < O - =
P O < x X
O P X < <

For multiplication: multiplication by 0 must yield 0. 1 is the multiplicative identity. Recall that
the non-0 elements must form a group under multiplication. This is a group of size 3 ({1, x, y}),

and the ONLY group of size 3 is the cyclic group (of rotations of a triangle), so it follows that
XXX=Y.

Another way to see that we must have x x x =y is that, alternatively, if xxx =1, then
Xxy=Xx(X+1)=(xxXx)+(xx1) =1+ x =y, which would imply that x would be a “private”
multiplicative identity for y, which is a contradiction.

So the multiplication table is

< X B O X
O O ©o O o
< X PP O B
P < X o X
X P < o<

Q4. (Bonus): How large is the automorphism group of [1 , ®[1,? How large is the automorphism
group of U, ®L , @], ? Are they commutative?

We can regard the group [, @[], as containing the elements {0,a,b,c}, with each of a, b, and ¢ of

order 2, and also, the product of any two different elements of {a,b,c} equaling the third element.
That is, the three elements are all, abstractly, identical. So any permutation of them is an
automorphism. There are 6 permutations on 3 elements. This is not commutative.

0,®0,@0,: There are 7 nonzero elements, and each is of order 2. Demonstrate that an
automorphism ¢ can map one of these elements, say, a, either to itself, or to any of the other 7
elements. Having fixed ¢(a), next show that ¢ can map any other element, say, b, to anything not
equal to ¢(a). With ¢(a) and ¢(b) fixed, then so is ¢(ab). There are 4 elements whose fate is
now determined: 0, a, b, and ab. Finally, show that ¢ can map one of the remaining elements, c, to
anything that is not 0, ¢(a), #(b), or ¢(ab). This determines ¢, since the entire group consists of



0, a, b, ab, c, ac, bc, and abc. So there are 7 possibilities for a, 6 for b, and 4 for c, i.e. 168=7.6.4
automorphisms. It is not commutative (it contains the automorphism group of [, @01 ,).



