Groups, Fields, and Vector Spaces

Homework #3 (2008) for pages 9-16 of notes-answers

Q1: Coordinate-dependent isomorphisms of vector spaces.

Given:
Vector space V (with elements $v, ...$) and a basis set $\{e_1, e_2, ..., e_M\}
Vector space W (with elements $w, ...$) and a basis set $\{f_1, f_2, ..., f_N\}

We’ll construct two vector spaces of dimension $M \times N$, $V \otimes W$ and $\text{Hom}(V, W)$. We will then see what happens to the coordinates in these vector spaces when we change basis sets in V and W to new basis sets, $\{e'_1, e'_2, ..., e'_M\}$ for V and $\{f'_1, f'_2, ..., f'_N\}$ for W. The new and old basis sets are related by $e_i = \sum_{k=1}^{M} A_{ik} e'_k$ and $f_j = \sum_{i=1}^{N} B_{ij} f'_i$.

A. As discussed in class (notes pg 16), the vector space $V \otimes W$ has a basis set $\{e_i \otimes f_j, ..., e_M \otimes f_N\}$, i.e., any element z of $V \otimes W$ can be written in coordinates as $z = \sum_{i=1,j=1}^{M,N} z_{ij} (e_i \otimes f_j)$, for some $M \times N$ array of scalars z_{ij}.

The exercise is to express $z = \sum_{i=1,j=1}^{M,N} z_{ij} (e_i \otimes f_j)$ in terms of the new basis set for $V \otimes W$, namely as a sum $z = \sum_{k=1,j=1}^{M,N} z'_{kj} (e'_k \otimes f'_j)$. That is, find z'_{kj} in terms of z_{ij}.

From $e_i = \sum_{k=1}^{M} A_{ik} e'_k$, $f_j = \sum_{i=1}^{N} B_{ij} f'_i$, and the linearity of the tensor product, we find

$e_i \otimes f_j = \left(\sum_{k=1}^{M} A_{ik} e'_k \right) \otimes \left(\sum_{i=1}^{N} B_{ij} f'_i \right) = \sum_{k=1}^{M} \sum_{i=1}^{N} A_{ik} B_{ij} (e'_k \otimes f'_i)$. So, $z = \sum_{i=1,j=1}^{M,N} z_{ij} (e_i \otimes f_j)$ implies that $z = \sum_{k=1,j=1}^{M,N} z'_{kj} (e'_k \otimes f'_j)$. Thus, z'_{kj}, which is the coefficient of $e'_k \otimes f'_j$ in z, is $z'_{kj} = \sum_{i=1}^{M} \sum_{j=1}^{N} A_{ik} B_{ij} z_{ij}$.

B. As discussed in class (notes pg 14), the vector space $\text{Hom}(V, W)$ has a basis set $\{\psi_{y_1}, \psi_{y_2}, ..., \psi_{y_M}\}$ where ψ_y is the homomorphism for which $\psi_y(e_i) = f_j$ and $\psi_y(e_u) = 0$ for $u \neq i$.

With the new basis sets for V and W, $\text{Hom}(V, W)$ has a basis set $\{\psi'_{y_1}, \psi'_{y_2}, ..., \psi'_{y_M}\}$, with $\psi'_{y_j}(e'_i) = f'_j$, and $\psi'_{y_j}(e'_u) = 0$ for $u \neq i$. In the original basis set, any ϕ in $\text{Hom}(V, W)$ can be written as $\phi = \sum_{i=1,j=1}^{M,N} \phi_{y_i} \psi_{y_j}$, for some $M \times N$ array of scalars ϕ_{y_i}. The exercise is to express $\phi = \sum_{i=1,j=1}^{M,N} \phi_{y_i} \psi_{y_j}$ in terms of the new basis set, namely as a sum $\phi = \sum_{k=1,j=1}^{M,N} \phi'_{y_j} \psi'_{y_k}$. That is, find ϕ'_{y_k} in terms of ϕ_{y_i}.
From $\varphi = \sum_{k,l}^{M N} \varphi'_{kl} \psi'_{kl}$ and $e_i = \sum_{k=1}^M A_k e'_k$, we find

$$\varphi(e_i) = \sum_{k,l}^{M N} \varphi'_{kl} \psi'_{kl}(\sum_{u=1}^N A_u e'_u) = \sum_{k,l}^{M N} \sum_{u=1}^N A_u \varphi'_{ku} \psi'_{kl}(e'_u) = \sum_{k,l}^{M N} A_k \varphi'_{kl} f'_l.$$

where the final equality uses $\psi'_k(e'_k) = f'_l$ and $\psi'_k(e'_u) = 0$ for $u \neq k$.

Now we need to make use of $f_j = \sum_{i=1}^N B_{ij} f'_j$. In the original basis set, $\varphi(e_i) = \varphi_0 f_j$. So

$$\varphi(e_i) = \sum_{j=1}^N \varphi_0 f_j = \sum_{j=1}^N \sum_{i=1}^N B_{ij} \varphi_0 f'_j.$$

Putting together the two equations for $\varphi(e_i)$ yields $\sum_{k,l}^{M N} A_k \varphi'_{kl} f'_l = \sum_{i=1}^N \varphi_0 B_{ij} f'_j$, or,

$$\sum_{i=1}^N f'_j \left(\sum_{k,l}^{M N} A_k \varphi'_{kl} - \sum_{j=1}^N B_{ij} \varphi_0 \right) = 0.$$

Because the f'_j are a basis for W, they are linearly independent. Therefore the only way that the above equation can be satisfied is if each coefficient of f'_j is zero. That is,

$$\sum_{k,l}^{M N} A_k \varphi'_{kl} = \sum_{j=1}^N B_{ij} \varphi_0,$$

for all l. Note that this is a system of linear equations in the φ'_{kl}. We can solve it if we know the inverse of the matrix A, namely, the quantities A^{-1}_{sk} for which

$$\sum_{i=1}^N A^{-1}_{sk} A_{ik} = \begin{cases} 1, & s = k \\ 0, & s \neq k \end{cases}.$$

(Convince yourself that the existence of A^{-1} is guaranteed if both the e_i and the e'_i are a basis.)

Finally, from $\sum_{k=1}^M A_k \varphi'_{ki} = \sum_{j=1}^N B_{ij} \varphi_0$, we calculate

$$\sum_{i=1}^M \sum_{k=1}^M A^{-1}_{sk} A_{ik} \varphi'_{ki} = \sum_{i=1}^M \sum_{j=1}^N A^{-1}_{sk} B_{ij} \varphi_0$$

and apply $\sum_{i=1}^M A^{-1}_{sk} A_{ik} = \begin{cases} 1, & s = k \\ 0, & s \neq k \end{cases}$ to find

$$\varphi'_{ki} = \sum_{i=1}^M \sum_{j=1}^N A^{-1}_{sk} B_{ij} \varphi_0.$$

The “big-picture” point (compare the circled equations) is that for $\text{Hom}(V, W)$, A^{-1} is applied to the V-component of the basis, while for $V \otimes W$, A is applied to the V-component of the basis. So, a change of basis affects $\text{Hom}(V, W)$ and $V \otimes W$ differently.

There are two interesting special cases.

First, take $W = k$, so $\text{Hom}(V, W) = V^*$ and $V \otimes W = V$ (convince yourself of this!). This exercise thus shows that V^* and V transform differently.
Second, take $W = V$, $f = e$, and $B = A$ (so, also, $f' = e'$) The exercise shows how $Hom(V, V)$ changes when coordinates of V are changed, namely, $\phi'_{ij} = \sum_{i'}^{I} \sum_{j'}^{J} A^{-1}_{ii'} A_{jj'} \phi_{i'j'}$. Or, as standard matrices, $\phi' = A^{-1} \phi A$.

Q2: Coordinate-independent (natural) isomorphisms of vector spaces.

A. The dual of the dual. Consider $V^{**} = Hom(V^*, k) = Hom(Hom(V, k), k)$. That is, V^{**} contains elements Φ that are linear mappings from V^* to k. In other words, for two elements ϕ_1 and ϕ_2 of V^*, $\Phi(a\phi_1 + b\phi_2) = a\Phi(\phi_1) + b\Phi(\phi_2)$, where addition here is interpreted in V^*.

Construct a homomorphism M from V to V^{**}. That is, for any element w in V, construct an element $\Phi_w = M(w)$ in V^{**}. To do this, you will have to

(i) come up with a rule for how Φ_w acts on elements ϕ of V^*,
(ii) show that Φ_w is linear on V^*, namely, that $\Phi_w(a\phi_1 + b\phi_2) = a\Phi_w(\phi_1) + b\Phi_w(\phi_2)$,
(iii) show that the map M from w to Φ_w is linear on V, namely, that $M(qw_1 + rw_2) = qM(w_1) + rM(w_2)$. (Addition on the left is interpreted in V; addition on the right is interpreted in V^{**}). Equivalently, $\Phi_{qw_1 + rw_2} = q\Phi_{w_1} + r\Phi_{w_2}$.

(i) Define $\Phi_w(\phi) = \phi(w)$. The right-hand side exploits the fact that since ϕ is in V^*, it is a linear map on elements of V.

(ii) As follows:
$\Phi_w(a\phi_1 + b\phi_2) = (a\phi_1 + b\phi_2)(w)$ (because of how Φ_w is defined, right-hand-side ops are in V^*)
$a\phi_1(w) + b\phi_2(w) = a\Phi_w(\phi_1) + b\Phi_w(\phi_2)$ (because of how addition and scalar multiplication are defined in V^*)

(iii) To show $\Phi_{qw_1 + rw_2} = q\Phi_{w_1} + r\Phi_{w_2}$, which is a statement about V^{**}, we must show that for all ϕ is in V^*, that $\Phi_{qw_1 + rw_2}(\phi) = q\Phi_{w_1}(\phi) + r\Phi_{w_2}(\phi)$.

$\Phi_{qw_1 + rw_2}(\phi) = \phi(qw_1 + rw_2) = q\phi(w_1) + r\phi(w_2) = q\Phi_{w_1}(\phi) + r\Phi_{w_2}(\phi)$.

In the above, first and third equalities are the definition of Φ_w; second equality is because ϕ is a homomorphism.

Comment. This means that every element of V can be regarded as an element of V^{**}, and this correspondence does not depend on coordinates.

B. Dual homomorphisms. Consider elements Ψ in $Hom(V, W)$. Construct a homomorphism M from $Hom(V, W)$ to $Hom(W^*, V^*)$. That is, given a homomorphism Ψ from V to W, construct a homomorphism $\Psi' = M(\Psi)$ from W^* to V^*.
Say Ψ is in $\text{Hom}(V,W)$. Say ξ is in W^\ast (so $\xi(w)$ is an element of k). Ψ^\ast has to map ξ to an element of V^\ast, i.e., $\Psi^\ast(\xi)$ needs to be defined by how it maps vectors v of V to field elements. We therefore define $\left(\Psi^\ast(\xi)\right)(v) = \xi(\Psi(v))$. (Note that since Ψ is in $\text{Hom}(V,W)$, then $\Psi(v)$ is an element of W, so ξ can act on it to yield a field element.). Properties (ii) and (iii) are straightforward, and shown in a manner analogous to part A.

Comment. Iterating this argument, one can construct $\Psi^{**} = (\Psi^*)^*$, which is a homomorphism from $\text{Hom}(V,W)$ to $\text{Hom}(V^{**},W^{**})$. In Part A, we saw that every element of V can be regarded as an element of V^{**} (and similarly for W). Given this identification, one can readily show that $\Psi^{**} = \Psi$.

C. Find a coordinate-free correspondence between $(V \otimes W)^\ast$ and $\text{Hom}(V,W^\ast)$.

Say B is an element of $(V \otimes W)^\ast$. The means that $B(v \otimes w)$ is an element of the field k, and this expression is linear in v and w.

We need to find an element U_B of $\text{Hom}(V,W^\ast)$ that we can naturally associate with B. That is, U_B must be a linear map from vectors v to elements in the dual of W. To define $U_B(v)$ in the dual of W, we must define how it carries out a linear map from elements w in W to the field k. So we take $\left(U_B(v)\right)(w) = B(v \otimes w)$.

D. Find a coordinate-free correspondence between $V \otimes W$ and $\text{Hom}(V^\ast,W)$.

Say $v \otimes w$ is in $V \otimes W$. We need to find a linear map from $v \otimes w$ to an element $\Phi = Z(v \otimes w)$ in $\text{Hom}(V^\ast,W)$. To define Φ, we need to show how it maps any φ in V^\ast to elements of W. We therefore define $\Phi = Z(v \otimes w)$ as $\left(Z(v \otimes w)\right)(\varphi) = \varphi(v)w$, which makes use of the fact that since φ is in V^\ast, it maps vectors v to scalars.