Groups, Fields, and Vector Spaces

Homework #3 (2008) for pages 9-16 of notes

Consider a vector space V (with elements v, \ldots) over a field k (with elements a, b, \ldots), and the dual space of V, denoted V^*. That is, $V^* = \text{Hom}(V,k)$, and consists of all the homomorphisms from V to the field k. For example, a typical element of V^* is a linear mapping ϕ from V to k, satisfying $\phi(av + bv) = a\phi(v) + b\phi(v')$. Recall that when V is finite-dimensional, then V^* is also finite-dimensional BUT there is no natural way to set up a mapping from elements of V to elements of V^*. In other words, to express a linear correspondence between V and V^*, one needs to choose coordinates.

The point of these problems is (Q1) to spell out another, somewhat more elaborate, example of this: i.e., a correspondence between vector spaces that depends on the choice of coordinates, and (Q2) to demonstrate the contrasting situation: different vector spaces for which it is possible to set up a natural correspondence, independent of coordinates.

Q1. Coordinate-dependent isomorphisms of vector spaces

Given:
Vector space V (with elements v, \ldots) and a basis set $\{e_1, e_2, \ldots, e_M\}$
Vector space W (with elements w, \ldots) and a basis set $\{f_1, f_2, \ldots, f_N\}$

We'll construct two vector spaces of dimension $M \times N$, $V \otimes W$ and $\text{Hom}(V,W)$. We will then see what happens to the coordinates in these vector spaces when we change basis sets in V and W to new basis sets, $\{e'_1, e'_2, \ldots, e'_M\}$ for V and $\{f'_1, f'_2, \ldots, f'_N\}$ for W. The new and old basis sets are related by $e_i = \sum_{k=1}^M A_{ik} e'_k$ and $f_j = \sum_{l=1}^N B_{jl} f'_l$.

A. As discussed in class (notes pg 16), the vector space $V \otimes W$ has a basis set $\{e_i \otimes f_j, e_2 \otimes f_1, \ldots, e_M \otimes f_N\}$, i.e., any element z of $V \otimes W$ can be written in coordinates as $z = \sum_{i=1, j=1}^{M,N} z_{ij} (e_i \otimes f_j)$, for some $M \times N$ array of scalars z_{ij}.

The exercise is to express $z = \sum_{i=1, j=1}^{M,N} z_{ij} (e_i \otimes f_j)$ in terms of the new basis set for $V \otimes W$, namely as a sum $z = \sum_{k=1, l=1}^{M,N} z'_{kl} (e'_k \otimes f'_l)$. That is, find z'_{kl} in terms of z_{ij}.

B. As discussed in class (notes pg 14), the vector space $\text{Hom}(V,W)$ has a basis set $\{\psi_{u_1}, \psi_{u_2}, \ldots, \psi_{MN}\}$ where ψ_y is the homomorphism for which $\psi_y(e_i) = f_j$ and $\psi_y(e_u) = 0$ for $u \neq i$. With the new basis sets for V and W, $\text{Hom}(V,W)$ has a basis set $\{\psi'_{u_1}, \psi'_{u_2}, \ldots, \psi'_{MN}\}$, with $\psi'_y(e'_i) = f'_j$, and $\psi'_y(e'_u) = 0$ for $u \neq i$. In the original basis set, any ϕ in $\text{Hom}(V,W)$ can be written as $\phi = \sum_{i=1, j=1}^{M,N} \phi_{ij} \psi_y$, for some
$M \times N$ array of scalars φ_{ij}. The exercise is to express $\varphi = \sum_{i,j}^{M,N} \varphi_{ij} \psi_{ij}$ in terms of the new basis set, namely as a sum $\varphi = \sum_{i,j}^{k,l} \varphi'_{kl} \psi_{kl}$. That is, find φ'_{ij} in terms of φ_{ij}.

Q2: Coordinate-independent (natural) isomorphisms of vector spaces.

A. The dual of the dual. Consider $V'' = \text{Hom}(V^*,k) = \text{Hom}(\text{Hom}(V,k),k)$. That is, V'' contains elements Φ that are linear mappings from V^* to k. In other words, for two elements φ_1 and φ_2 of V^*, Φ satisfies $\Phi(a\varphi_1 + b\varphi_2) = a\Phi(\varphi_1) + b\Phi(\varphi_2)$, where addition here is interpreted in V^*.

Construct a homomorphism M from V to V''. That is, for any element w in V, construct an element $\Phi_w = M(w)$ in V''. To do this, you will have to

(i) come up with a rule for how Φ_w acts on elements φ of V^*,
(ii) show that Φ_w is linear on V^*, namely, that $\Phi_w(a\varphi_1 + b\varphi_2) = a\Phi_w(\varphi_1) + b\Phi_w(\varphi_2)$,
(iii) show that the map M from w to Φ_w is linear on V, namely, that $M(qw_1 + rw_2) = qM(w_1) + rM(w_2)$. (Addition on the left is interpreted in V; addition on the right is interpreted in V''. Equivalently, $\Phi_{qw_1 + rw_2} = q\Phi_{w_1} + r\Phi_{w_2}$.

B. Dual homomorphisms. Consider elements Ψ in $\text{Hom}(V,W)$. Construct a homomorphism M from $\text{Hom}(V,W)$ to $\text{Hom}(W^*,V^*)$. That is, given a homomorphism Ψ from V to W, construct a homomorphism $\Psi^* = M(\Psi)$ from W^* to V^*.

C. Find a coordinate-free correspondence between $(V \otimes W)^*$ and $\text{Hom}(V,W^*)$.

D. Find a coordinate free-correspondence between $V \otimes W$ and $\text{Hom}(V^*,W)$.