Linear Systems Theory

Goal: provide a concise way of characterizing

\[s(t) \xrightarrow{F} r(t) \]

so that one can (a) describe it,
(b) test models for it
(c) make guesses as to what's inside
(d) make use of partial knowledge

Examples: electric circuit, physiology

- VOR - rotate head, observe eye movement
- volume homeostasis - apply volume load
- membrane - unmeasured
- apply current, measure voltage
- light to voltage
- neural activity to blood flow

For general \(F \), this is intractable.
So we make two assumptions:
- translation - invariance
- linearity
- (and causality) (Post-processing filters need not be causal.)
Translation: if \[F(s) \] (t) = r(t) \]
and \[s' = D_\gamma (s) \quad (\text{i.e., } s'(t) = s(t+\gamma)) \]
then \[[F(s')] (t) = r(t+\gamma) \]
\text{i.e., } F D_\gamma = D_\gamma F

Linearity: \[[F(s_1+s_2)] (t) = [F(s_1)] (t) + [F(s_2)] (t) \]
and \[(F (2s)) (t) = 2 [F(s)] (t) \]

Linearity is always an approximation.
The theory does not fit to non linear transformable in part.

Linearity allows us to consider \(F \) to be an element of \(\text{Hom}(V, V) \) where \(V \) is the \(\text{V. S. of functions of time.} \)

But if \(F \) is a physical system, then how to interpret \([F(s)] (t)\) for \(s \) complex-valued?

Ans: linearity, \(s(t) = a(t) + i b(t) \)
so \(F(s) (t) = (F(a)) (t) + i [F(b)] (t) \)
Linearity gives us an intuitive way of characterizing F.

$S(t) = \int$ [diagram]

Parcel it into small intervals

Linearity means that we can consider each interval independently.

$S(t) = \int$ [diagram]

Response at time $t = \text{sum of contributions of } S \text{ at all times in past } t$. Say a unit pulse at time 0 leads to a response $f(\tau)$. Equivalently, a unit pulse at time $t-\tau$ leads to a response $f(\tau)$ at time t.

$r(t) = \int_{\tau=0}^{\infty} f(\tau)S(t-\tau)\,d\tau$. f is the "impulse response."
What's the problem with this description?

1. Estimating \(f(\tau) \). You need to work where
 \(\text{infinity is most likely to break down} \).

2. Combining systems. Parallel is easy.

Consider

\[
\begin{aligned}
 s(t) & \xrightarrow{F} q(t) \xrightarrow{G} r(t) \\
 H & \\
\end{aligned}
\]

If you know \(f(\tau) = q(\tau) \), what is \(h(\tau) \)?

Say \(F(s) = q, \quad G(q) = r \). \[r(t) = \int q(\tau) q(t - \tau) d\tau \]

\[q(t) = \int f(\tau') s(t - \tau') d\tau' \]

So \(r(t) = \int \int q(\tau) f(\tau') s(t - \tau - \tau') d\tau' d\tau \)

\[u = \tau + \tau' \]

\[= \int \int q(\tau) f(u - \tau) s(t - u) d\tau' du \]

\[= \int h(u) s(t - u) du \quad \text{for} \quad h(u) = \int g(\tau)f(u - \tau) d\tau. \]
So, for systems in series,

\[h(u) = \int g(\tau) f(u-\tau) d\tau \text{, or } h = f * g \]

It's not so easy to intuit what this means on, say, a given \(h \) and \(f \), to solve for \(g \).

And consider:

\[H = \]

or more complex networks.

What we've done above is to describe \(F \) in terms of the basis set of time functions:

\[\int \]

These are the delta-function.

\(\delta(t,\tau) \)

\(Dp \) permutes them. But we know there is another basis set for which \(Dp \) multiple these, by Euler.

So now let's change basis.

In the new basis set, \(\text{e}^{i\omega t} \), \(F \) must act as a multiple of \(\text{e}^{i\omega t} \).

i.e., for \(s(t) = \text{e}^{i\omega t} \),

then \([F(s)](t) = \text{a multiple of } \text{e}^{i\omega t} \).
Let's find the multiplicative constant \(\hat{f}(\omega) \), the "transfer function" of \(f \).

If \(s(t) = e^{i \omega t} \), then

\[
[P(s)](t) = \int f(\tau) s(t-\tau) d\tau
\]

\[
= \int f(\tau) e^{i \omega (t-\tau)} d\tau
\]

\[
= e^{i \omega t} \int f(\tau) e^{-i \omega \tau} d\tau
\]

So,

\[
\hat{f}(\omega) = \int e^{-i \omega \tau} f(\tau) d\tau.
\]

Interpret \(\hat{f}(\omega) \) in terms of real signals. Say \(f(t) = |f(\omega)| e^{i \phi(\omega)} \).

\[
s(t) = e^{i \omega t} = \cos(\omega t + i \sin(\omega t))
\]

\[
r(t) = |f(\omega)| e^{i \phi(\omega)} s(t)
\]

\[
= |f(\omega)| \left(\cos \phi(\omega) \cos(\omega t) + i \sin \phi(\omega) \sin(\omega t) \right)
\]

\[
= |f(\omega)| \left[\cos(\phi(\omega) \cos(\omega t) - \sin \phi(\omega) \sin(\omega t)) \right] + i \left[\sin \phi(\omega) \cos(\omega t) + \cos \phi(\omega) \sin(\omega t) \right]
\]

\[
= |f(\omega)| \left[\cos(\omega t + \phi(\omega)) + i \sin(\omega t + \phi(\omega)) \right]
\]

Amplitude \(|f(\omega)| \), Phase shift \(\phi(\omega) \).
Does the transfer function help with the "problems" on pg. 4?

@ measurement. Use $\triangle \cos(\omega t)$.

@ composition

$$s(t) \xrightarrow{F} F \xrightarrow{G} G \xrightarrow{r(t)}$$

Put in $e^{i\omega t} = s(t)$. Then $q(t) = F(w) e^{i\omega t}$.

Next, since G is linear, $r(t) = G(w) \left[F(w) e^{i\omega t} \right]$.

$$= G(w) \hat{F}(w) e^{i\omega t}$$

So $\hat{r}(w) = \hat{F}(w) \hat{G}(w)$. "The Convolution Thm."

What if we want to calculate how F responds to arbitrary s, but only have $\hat{F}(w)$? Is there a way to find $F(t)$ from $\hat{F}(w)$?

We need to write $s(t) = \int e^{i\omega t} \hat{S}(\omega) d\omega$

Since, then we could calculate $f(t) = [F(s)](t)$ from its response to $e^{i\omega t}$.
"It turns out" that
\[\hat{F}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega \]

so the response to a \(S \)-factor is
\[f(t) = \left[\hat{F}(t) \right](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega. \]

\[\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt \]
\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{f}(\omega) d\omega \]

Fourier Transform Pairs

A way to see this - pp 4-5 of 2004 notes FAPP.
An example of combining elements in a more complex way: feedback

\[s(t) \rightarrow F \rightarrow r(t) \]

\[a(t) = s(t) + k b(t) \]

\[b(t) = g(\omega) \hat{h}(\omega) e^{j\omega t} \]

\[\hat{h}(\omega) e^{j\omega t} = f(\omega) e^{j\omega t} (1 + k \hat{g}(\omega) \hat{h}(\omega)) \]

\[\hat{h}(\omega) = \frac{f(\omega)}{1 - k \hat{g}(\omega) \hat{h}(\omega)} \]
Apply Ohm's law, measure voltage - in a network of R's - C's.

\[V = IR \]

\[\hat{f}(\omega) = \frac{1}{j\omega R} \]

\[f(t) = \frac{1}{\sqrt{2}} \]

\[Q = CV \]

\[I = \frac{dQ}{dt} = C \frac{dV}{dt} \]

\[\frac{dV}{dt} = \frac{1}{C} I \]

\[I = e^{j\omega t} \]

\[V = \hat{f}(\omega) e^{j\omega t} \]

\[\Rightarrow \frac{dV}{dt} = j\omega e^{j\omega t} \hat{f}(\omega) \]

\[\hat{f}(\omega) j\omega e^{j\omega t} = \frac{1}{C} e^{j\omega t} \]

\[\hat{f}(\omega) = \frac{1}{j\omega C} \]

R's + C's will always lead to algebraic combination & \(R = \frac{1}{j\omega C} \), i.e.,

rational expressions in \(\omega \).