Noise and Variability
Homework #1 (2008), answers
Q1: Power spectra of some simple noises

A. Poisson noise. A Poisson noise n(t) is a sequence of delta-function pulses, each

occurring independently, at some rate r. (More formally, it is a sum of pulses of width
At and height 1/ Az, and the probability of a pulse between time t and t + At is rAt, and
we consider the limit of Az -0 and At —0). Calculate the power spectrum P, (@) of this

noise.
Solution.

The straightforward approach is surprisingly difficult because one has to be careful about
the limits.

Start with the definition P, (w) = Eim%<
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j n(t)e “dt
0

2
>. We consider first @ =0 ; for ®=0

we have to remember the “fine print” that we need to subtract a constant value (here, r)
from n(t) so that its mean is 0.

Take a small At, and approximate the integral by a sum over a large number N =L/At of
L ) L/At . . . .

intervals of length At, i.e., jn(t)e"”‘dt ~ Y ne ' where n =1 if there is an even in the
0 k=1

kth interval, and n,_ =0 if there is no event. Each n_ is independent, and the probability
of n, =11s raAt.
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The last quantity is best analyzed according to whether m=k or not. For m=k,
n.n, =n>=n,_(since n_ can only be 0 or 1), so the expected value of each term is raAt.

There are N =L/At values of k, so their contribution to P, (@) is %N(rAt) =r.

The harder part is to show, rigorously, that the contribution of the terms in
N

%[ > nknme“”(k‘m)“} for which m=k do not contribute. Say n=m—k. There are

k,m=1
N —|n| pairs of m and k in the sum, for which n=m-k. Since n_and n are
independent and each has a probability of rAt of being equal to 1, then their product has
a probability of (rat)* of begin equal to 1. So the portion of the sum for which n=m -k
has an expected value of



< ( D nenetetems ]>=%(N —|n))(rat)?e e =r2At(1—%)e“w”m. Summing this over

k—m=n

the entire range of n (from —N to N) and letting At —0 (with N =L/At and n=t/At)
yields

N
lim > rAt- I |)e*'”nAt r j'(l |)e*"”tdt This last integral is the Fourier transform of
- n=-—N

the triangle wave (see Linear Systems Theory homework Q2), so
[sm(a)L/ 2)

r j(l )e"‘”tdt =r Ljf T

(e "dt =r Lft,,ang,e(w) J Provided w =0,

triangle

thls goesto O (as 1/ L) for sufficiently large L.

For =0, the above expression does not go to 0; in fact, it diverges (as L). The problem
is that at =0, it matters that the mean value of the signal n(t) was nonzero —itisr. We

can only expect a convergent value for P, (o) = Eim%<
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[nedt
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> if we start with a

| Z>

[(n()-<n(t)>)e“dt

0

signal of mean 0. The @ =0-case for P,(w)= I|m—<

2>
L L
J'(n(t) —r)dt = jn(t)dt —rL. The first term counts the number of Poisson events in a
0 0

segment of length L; rL is the expected mean of this quantity.

j(n(t)— r)dt

L
So

0

is best handled by a special argument.

L

[(n)-r)at
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We want to find P,(0) = ILim%<

2
> is the variance of a Poisson distribution with mean rL, namely, rL

(The variance of a Poisson distribution is equal to its mean.) So P, (0) =% =r.

Summarizing: For o =0, the self-terms of (Z n.n,e" ™ ] contribute r to P, (w),

k,m=1

and the cross-terms have a limit of 0. For » =0, an argument based on Poisson counting
statistics shows that P,(0)=r. So forall @, P (®)=r.

Alternative partial solution with a useful insight.



Recognize that (i) a faster Poisson process is also a Poisson process, and (ii) speeding up
the process is a change of scale of the power spectrum. Therefore,
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where we’ve used u=ct, and
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Poisson process represented by n(u/c) has a rate rc (with time measured by u), and thus

can be regarded as a sum of ¢ independent Poisson processes of rate r. So the power
spectrum of the Poisson process n(u/c) is c times larger than the power spectrum n(t).

cL

j n(%)e"’”“du j n( Je-duy

2
> where we’ve used M =cL . The

S0 P,(cw)==P, (@)= Pn(a)), i.e., P (w) isindependent of ». But it still takes some

work to find thls value. For example, let @ — o . Then each nonzero term in the Fourier
estimate is dephased, and has magnitude 1. This shows thatas w —«, P,(®) is the

average number of events per unit time, i.e., r.

B. Shot noise. A shot noise u(t) is a process in which copies of a stereotyped waveform
x(t) , occurring at random times, are superimposed. That is, u(t) = ZX(t t.), where the

times t, are determined by a Poisson process of rate r. The “shots” x(t) are typically
considered to be causal, namely, x(t)=0 for t<0. Given the Fourier transform

U(w) = j u(t)e “dt, find the power spectrum P, () of u.
0
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Solution.
The shot noise process is the result of filtering a Poisson process (of rate r) by the linear
filter with impulse response x(t) . By part A, the Poisson process has power spectrum r.

Filtering a signal by a linear filter with transfer function X (») multiplies the power
spectrum by ‘)Z(a))r. S0 P,(o) = r‘)?(a))‘z.

C. Shot noise, variable shot size. This is a process v(t) in which the amplitudes of the
*“shots™ vary randomly. That is, v(t) =Zaix(t—ti) , where the amplitudes a, are chosen

&



independently. Given the Fourier transform G(w) =J'u(t)e“""dt and the moments of the
0

distribution of the a,, find the power spectrum P, (w) of v.

Solution. We can use the reasoning of part B, but applied to a modified Poisson process
that has impulses of amplitudes a,. We calculate the power spectrum of this process by

the method of part A. Since these amplitudes are independent, every step of part A is
readily extended, yielding the result that the power spectrum of the modified Poisson

process is r(a”). So P, (o) = r<a2>‘>2(a))‘2.

Q2: Input and output noise

Recall the behavior of a linear system with additive noise (pages 16-17 of NAV notes),
consisting of a linear filter G (characterized by its transfer function §(w) :

s(t) G

r(t)

>
2(t)—

If the input is s(t) = §(w,)e"" and there is an additive noise z(t) with power spectrum
T
P,(w) , then the quantity TlF(r,a)o,T,O) E%jr(t)e“%tdt , when calculated for data lengths

0
T that are a multiple of the period 27/, , has a mean value §(w,)§(w,) and a variance

1
?Pz (a)o)

Analyze the situation when there is also some noise added prior to G, diagrammed
below:

s(t) )y G 2 r(t)

y(t) — 2(—!

Solution:
Denote internal signals as follows:

s(t) ® el © fogl = ((t)

y(t) = 20—




Based on the simpler system considered on pages 16-17, signals x(t) are characterized by
T

%F(x,wo,T,O) z%jx(t)e“%tdt , which has mean §(w,) and variance Tlpy (@) (The
0

system consisting of s, y, and x is identical to the one on page 16-17, but with G=1.)
Fourier components of the signal at u are equal to those at x, multiplied by §(w) .

.
Therefore, signals at u are characterized by TEF(u,a)O,T,O) E%ju(t)e“‘”o‘dt with a mean
0

§(e,)§(w,) and variance Tle (@]9 (@) -

Adding an independent noise term z(t) does not change the mean, but adds to the variance
T

according to its power spectrum. So TlF(r,a)o,T,O)ETlJ'r(t)e“%tdt has mean §(®,)§(w,)
0

and variance %(Py (@)|a(@,)[ +P, (coo)) .



