
Noise and Variability 
 
Homework #1 (2008), answers  
 
Q1: Power spectra of some simple noises 
 
A.  Poisson noise.  A Poisson noise ( )n t  is a sequence of delta-function pulses, each 
occurring independently, at some rate r.  (More formally, it is a sum of pulses of width 
τΔ  and height 1/ τΔ , and the probability of a pulse between time t and t t+ Δ  is r tΔ , and 

we consider the limit of 0τΔ →  and 0tΔ → ). Calculate the power spectrum ( )nP ω  of this  
noise. 
 
Solution. 
The straightforward approach is surprisingly difficult because one has to be careful about 
the limits.   
 

Start with the definition 
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we have to remember the “fine print” that we need to subtract a constant value (here, r) 
from n(t) so that its mean is 0. 
 
Take a small tΔ , and approximate the integral by a sum over a large number /N L t= Δ  of 

intervals of length tΔ , i.e., 
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kth interval, and 0kn =  if there is no event.  Each kn  is independent, and the probability 
of 1kn =  is r tΔ . 
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The last quantity is best analyzed according to whether m k=  or not.  For m k= , 

2
k m k kn n n n= =  (since kn  can only be 0 or 1), so the expected value of each term is r tΔ .  

There are /N L t= Δ  values of k, so their contribution to ( )nP ω  is 1 ( )N r t r
L

Δ = . 

 
The harder part is to show, rigorously, that the contribution of the terms in 
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∑  for which m k≠  do not contribute.  Say n m k= − .  There are 

N n−   pairs of m and k in the sum, for which n m k= − .   Since kn  and mn  are 
independent and each has a probability of r tΔ  of being equal to 1, then their product has 
a probability of 2( )r tΔ  of begin equal to 1.  So the portion of the sum for which n m k= −  
has an expected value of 
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the entire range of n (from –N to N)  and letting 0tΔ →  (with /N L t= Δ  and /n t t= Δ ) 
yields 
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Δ − = −∑ ∫ .  This last integral is the Fourier transform of 

the triangle-wave (see Linear Systems Theory homework Q2), so 
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this goes to 0 (as 1/ L ) for sufficiently large L. 
 
For 0ω = , the above expression does not go to 0; in fact, it diverges (as L).  The problem 
is that at 0ω = , it matters that the mean value of the signal n(t) was nonzero – it is r.  We 

can only expect a convergent value for 
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signal of mean 0.  The 0ω = -case for ( )
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is best handled by a special argument. 
 

We want to find ( )
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n t r dt n t dt rL− = −∫ ∫ .  The first term counts the number of Poisson events in a 

segment of length L; rL is the expected mean of this quantity.  

So ( )
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rLP r
L

= = . 

 

Summarizing: For 0ω ≠ , the self-terms of ( )
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and the cross-terms have a limit of 0.  For 0ω = , an argument based on Poisson counting 
statistics shows that (0)nP r= .  So for all ω , ( )nP rω = . 
 
 
Alternative partial solution with a useful insight.   
 



Recognize that (i) a faster Poisson process is also a Poisson process, and (ii) speeding up 
the process is a change of scale of the power spectrum.  Therefore, 
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where we’ve used u ct= , and 
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Poisson process represented by ( / )n u c  has a rate rc (with time measured by u), and thus 
can be regarded as a sum of c independent Poisson processes of rate r.  So the power 
spectrum of the Poisson process ( / )n u c  is c times larger than the power spectrum n(t).  

So ( / )
1( ) ( ) ( )n n u c n

cP c P P
c c

ω ω ω= = , i.e., ( )nP ω  is independent of ω .  But it still takes some 

work to find this value.  For example, let ω →∞ .  Then each nonzero term in the Fourier 
estimate is dephased, and has magnitude 1.  This shows that as ω →∞ , ( )nP ω  is the 
average number of events per unit time, i.e., r. 
 
B.  Shot noise.  A shot noise ( )u t  is a process in which copies of a stereotyped waveform 

( )x t , occurring at random times, are superimposed.  That is, ( ) ( )
i

i
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u t x t t= −∑ , where the 

times it  are determined by a Poisson process of rate r .  The “shots” ( )x t  are typically 
considered to be causal, namely, ( ) 0x t =  for 0t < .   Given the Fourier transform 
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Solution. 
The shot noise process is the result of filtering a Poisson process (of rate r) by the linear 
filter with impulse response ( )x t . By part A, the Poisson process has power spectrum r. 
Filtering a signal by a linear filter with transfer function ( )X ω  multiplies the power 

spectrum by 
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( )X ω .  So 
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C.  Shot noise, variable shot size.  This is a process ( )v t  in which the amplitudes of the 
“shots” vary randomly.  That is,  ( ) ( )
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v t a x t t= −∑ , where the amplitudes ia  are chosen 

 
x(t) u(t)x(t) u(t)u(t)



independently. Given the Fourier transform 
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distribution of the ia , find the power spectrum ( )vP ω of v. 
 
Solution.  We can use the reasoning of part B, but applied to a modified Poisson process  
that has impulses of amplitudes ia .   We calculate the power spectrum of this process by 
the method of part A. Since these amplitudes are independent, every step of part A is 
readily extended, yielding the result that the power spectrum of the modified Poisson 
process is 2r a . So 

22( ) ( )vP r a Xω ω= . 
 
Q2: Input and output noise 
 
Recall the behavior of a linear system with additive noise (pages 16-17 of NAV notes), 
consisting of a linear filter G (characterized by its transfer function ( )g ω : 

 
If the input is 0
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Analyze the situation when there is also some noise added prior to G, diagrammed 
below: 
 

Solution: 
Denote internal signals as follows: 
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Based on the simpler system considered on pages 16-17, signals x(t) are characterized by 
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system consisting of s, y, and x is identical to the one on page 16-17, but with G I= .) 
Fourier components of the signal at u are equal to those at x, multiplied by ( )g ω .  
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Adding an independent noise term z(t) does not change the mean, but adds to the variance 

according to its power spectrum.  So 0
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