Overview:

- General setup as before: $s(t) \rightarrow F \rightarrow r(t)$
- We want a principled way to describe F, but without assuming linearity.
- A more concise description then supplies a list of (s, r)-pairs.
- A description and suggests (or tests) ideals for the internals of F.

In Linear Systems Theory, we assume that if $F(s_1) = r_1, F(s_2) = r_2$, then

$$F(s_1 + s_2) = r_1 + r_2$$

and

$$F(c s) = c r.$$

This allows us to use the vector space structure on V, the space of all signals s, namely, F is in $\text{Hom}(V, V)$.

We then make use of time-translation invariance:

- If $s' = D\tau s$, i.e., $s'(t) = s(t + \tau)$, then

$$D\tau F = F D\tau.$$

This implies that F is diagonal in the Fourier basis of S,

$$F(e^{i\omega t}) = F(\omega) e^{i\omega t}.$$

We're dispensing with linearity of F—but we still have time translation invariance.

(And we still have smoothness, boundedness, finite memory, ...).
A "lower bound" for how hard this can be:

Say \(F_0(s) \) depends only on the current value of \(s \).

\[F_0(s) \] depends only on the current value of \(s \).

\[F_0(s)] \] for some s.t.

\[F_0(s) \] does not depend on \(s \).

These are the "static nonlinearities." At the very least, describing all

\(F \)'s is at least as hard as describing all \(F_0 \)'s.

\[\begin{aligned}
 r(t) \\
 s(t)
\end{aligned} \]

\[\begin{aligned}
 f
\end{aligned} \]

We can, for example, describe \(f \) by its Taylor series

\[f(s) = f_0 + s f_1 + \frac{s^2}{2!} f_2 + \frac{s^3}{3!} f_3 + \cdots \]

where \(f_k = \frac{d^k}{ds^k} f \bigg|_{s=0} \).

Pros: it is universal* and principled (*: for \(f \)'s that have a

Taylor series)

Cons: too hard to measure \(\frac{d^k}{ds^k} f \), because of noise.

* What if \(f \) looks like

\[f \]

i.e., Taylor expansion might be useful only in a

narrow range

(Taylor series requires that \(f(s) \) be analytic, \(f(0) = 1 \) is not.)
An alternative is to express f as an orthogonal expansion

$$f(s) = \sum_{k=0}^{\infty} a_k \psi_k(s), \text{ where } \psi_k(s) \text{ are orthogonal in the sense that } \int_{-\infty}^{\infty} \psi_k(s) \psi_l(s) w(s) ds = \delta_{kl}$$

for some $w(s) > 0$.

Then $$a_k = \frac{1}{\delta_{kk}} \int_{-\infty}^{\infty} f(s) \psi_k(s) w(s) ds.$$

Typical example: $w(s) = \frac{1}{\sqrt{2\pi}} e^{-s^2/2}$ (6.5557).

The ψ's are the Hermite polynomials (s=4):

$$\begin{align*}
\psi_0(s) &= 1, \\
\psi_1(s) &= s, \\
\psi_2(s) &= s^2 - 1, \\
\psi_3(s) &= s^3 - 3s, \\
\psi_4(s) &= s^4 - 6s^2 + 3, \\
&\vdots
\end{align*}$$

A truncated approximation $\sum_{k=0}^{M} a_k \psi_k(s)$ is the best approximation to $f(s)$ among all M-th order polynomials, in the sense that

$$\int_{-\infty}^{\infty} \left(f(s) - \sum_{k=0}^{M} a_k \psi_k(s) \right) w(s) ds$$

is minimized.

This is a reasonable definition of "best" if your inputs are drawn from $w(s)$.
The orthogonal expansion coefficients are more gradual to precise (don't require a limit of $s \to 0$) but they will
either work (i.e., not universal).
The orthogonal expansion does not require the existence of
derivatives of f.

How will these ideas (Taylor - orthonal) generalize to
F's that care about history?

$$F(s)(t) = F(s(t), s(t-\alpha t), s(t-2\alpha t), \ldots)$$

so we'd need to consider a multivariate Taylor series

$$F(s)(t) = f_0 + \sum_{\ell} \frac{\partial F}{\partial (s(t-\ell \alpha t))} \bigg|_{s=0} \left(s(t-\ell \alpha t) - s_0 \right)$$

$$+ \frac{1}{2} \sum_{l_1, l_2} \frac{\partial^2 F}{\partial (s(t-l_1 \alpha t)) \partial (s(t-l_2 \alpha t))} \bigg|_{s=0} \left(s(t-l_1 \alpha t) - s_0 \right) \left(s(t-l_2 \alpha t) - s_0 \right)$$

$$+ \frac{1}{3} \sum_{l_1, l_2, l_3} \frac{\partial^3 F}{\partial (s(t-l_1 \alpha t)) \partial (s(t-l_2 \alpha t)) \partial (s(t-l_3 \alpha t))} \bigg|_{s=0} \left(s(t-l_1 \alpha t) - s_0 \right) \left(s(t-l_2 \alpha t) - s_0 \right) \left(s(t-l_3 \alpha t) - s_0 \right)$$

or, a multivariate orthogonal series

$$F(s)(t) = a_0 + \sum_{l} a_{l, t} \Phi_l(s(t-\ell \alpha t))$$

$$+ \sum_{l_1, l_2} a_{l_1, l_2} \Phi_{l_1, l_2}(s(t-l_1 \alpha t), s(t-l_2 \alpha t)) + \ldots$$
Each $\phi_{l_{1}} \ldots \phi_{l_{r}} (x_{1}, \ldots, x_{n})$ is a polynomial with leading term

$$x_{i_{1}} \cdot x_{i_{2}} \ldots \cdot x_{i_{r}};$$

they are orthogonal in the sense

$$\int \phi_{l_{1}} \ldots \phi_{l_{r}} (s_{1}, \ldots, s_{r}) \cdot \phi_{j_{1}} (s_{1}) \ldots \phi_{j_{q}} (s_{r}) W(s) ds = 0$$

unless $r = q$ and $l_{i} = m_{i}, \ldots, l_{r} = m_{r}$.

$W(s)$ is probability of a stimulus s.

Terminals

\[\begin{array}{ccc}
\text{Universality} & \text{Multi-volt (covariances limit)} \\
\text{Taylor} & \rightarrow & \text{Volterra series} \\
\text{orthogonal} & \rightarrow & \text{Wiener series}
\end{array}\]

Relationship between Wiener + Volterra strategy is a red of Taylor orthogonal strategies.

\[\{\begin{array}{ll}
\text{Volterra requires analyticity + limits} & S \rightarrow 0 \\
\text{Wiener does not require analyticity but depends on W(s)}.
\end{array}\]

A truncated Wiener series is best polynomial approx of any order given weighting $W(s)$, the Volterra series is the best local approximation near 0.

A truncated Wiener series is a polynomial -- but it is not the same polynomial as the Volterra series of the same order.

Adding on additional term in the Wiener series results in the Volterra term missing.
Given a function of any order, Volterra & Wiener expansions constitute different bases:

<table>
<thead>
<tr>
<th>Volterra</th>
<th>Wiener ((P = \sigma^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_0 = 1)</td>
<td>(\phi_0 = 1)</td>
</tr>
<tr>
<td>(v_1 = x)</td>
<td>(\phi_1 = x)</td>
</tr>
<tr>
<td>(v_2 = x^2)</td>
<td>(\phi_2 = x^2 - \sigma^2)</td>
</tr>
<tr>
<td>(v_3 = x^3)</td>
<td>(\phi_3 = x^3 - 3 \sigma^2 x)</td>
</tr>
<tr>
<td>(v_4 = x^4)</td>
<td>(\phi_4 = x^4 - 6 \sigma^2 x^2 + 3 \sigma^4)</td>
</tr>
</tbody>
</table>

Bessel,

| \(v_0 = \phi_0 \) |
| \(v_1 = \phi_1 \) |
| \(v_2 = \phi_2 + \sigma^2 \phi_0 \) |
| \(v_3 = \phi_3 + 3 \sigma^2 \phi_1 \) |
| \(v_4 = \phi_4 + 6 \sigma^2 \phi_2 + 3 \sigma^4 \phi_0 \) |

\(\sigma \) not generic (not costs match except for \(\phi_0 \))
Generic problems.

- Lots of parameters to measure.
 Need to choose a reasonable set: history (length), amplitude (A).

- Polynomials are not likely to be good global approximations.
 Alternative strategy: put together multiple local approximations.

\[f \]

i.e., quasilinear near an operating point.

- Wiener expansion is polynomial in A.

- Try to build a model based on a limited V-W expansion.
 e.g., $e(t) \rightarrow \overline{L_1} \rightarrow \overline{L_2} \rightarrow \text{not polynomial}$

- Composition of subsystems: helpful if the were simple.

We can make headway on the "composition" problem by using
graph-theoretic tools, & also on the # of parameters problem.
We haven't used those tools in variable.
Using time-traveling machines

Rather than focus on the vector space of signals, focus on the vector space of systems, M.

Need to check if vector-space operations in M make sense:

$$(F + G)(s) = F(s) + G(s)$$

$$(\alpha F)(s) = \alpha \cdot F(s)$$

Time-traveling ode on M too:

$$(D_{t} F)(s) (t) = F(s) (t + \tau)$$

So D_{t} is in $\text{Hom}(M, M)$, and commutes with all F.

Can we complexify M?

$$(F + i G)(s) = F(s) + i G(s)$$

Inner product on M?

Generalize $S_{1} \cdot S_{2} = \int_{-\infty}^{\infty} S_{1}(t) S_{2}(t) \, dt$.

$$(F, G) = \left< F(s), \overline{G(s)} \right>$$

So here, the choice of s (and thereby the ensemble \mathcal{E}) needed to postulate $\mathcal{M}_{\mathcal{E}}$ is throughly matter.

Need to postulate $\mathcal{M}_{\mathcal{E}}$ is tracial—meaning, collect

$$\left< F, G \right> = \left< F(s)(0), \overline{G(s)(0)} \right> = \left< F(\mathcal{E})(t), \overline{G(\mathcal{E})(t)} \right> = \left< \mathcal{E} \right>$$
We now have all the familiar machinery available:

\[D \gamma, \text{ a group of } \mathbb{R} \text{ acts on } \text{Hom}(M, \mathbb{R}) \text{ via matrix product} \]

so we can expect that the action of \(D \gamma \) decomposes \(M \) into eigenspaces, one for each irreducible representation of the time-translation group.

I.e., for each \(\omega \), there is a subspace \(M_\omega \) of \(M \):

\[D \gamma, F = e^{i \omega \tau} F, \text{ for } F \in M_\omega. \]

\(M_\omega \) is the space of systems for which translation by \(\tau \) results in multiplication of the output by \(e^{i \omega \tau} \).

\(M_\omega \) contains any system whose output is \(e^{i \omega \tau} \).

For linear systems, we had characterized a system by its impulse response:

\[r(t) = \int L(p) s(t - p) \, dp \]

or equivalently, its transfer function:

\[\tilde{L}(\omega) = \int e^{-i \omega t} L(t) \, dt. \]

Now we want to think of \(L \) as a superposition of systems:

\[L = \sum \tilde{L}_\omega, \text{ where } \tilde{L}_\omega \text{ is in } M_\omega \text{ and its response to } \]

\[s(t) = \tilde{L}_\omega e^{i \omega t}. \]

I.e., \(\tilde{L}_\omega \) is \(L \), followed by a narrow-band filter at the frequency \(\omega \).
But there are other members of \(M \) besides \(L_w \); for example, \(s(t)^2 \) followed by hardpass at \(\omega \)

\[
\frac{s(t) \cdot s(t - \tau)}{[1 + s(t - 3\tau)]^{2/3}}
\]

Assume (see 2003-4 note) that we can construct a basis for \(M \):

"1st order" systems: \(L_w \), coarure.

"2nd order" systems: \(L_w \oplus L_{w_2} \)

\[
\begin{align*}
&L_{w_2} \\
&\times \\
&L_w
\end{align*}
\]

provided \(\omega + \omega_2 = \omega \).

"3rd order" systems \(L_w \oplus L_{w_2} \oplus L_{w_3} \):

\[
\begin{align*}
&L_{w_3} \\
&\times \\
&L_{w_2} \\
&\times \\
&L_w
\end{align*}
\]

provided \(\omega + \omega_2 + \omega_3 = \omega \).
Why does this work:

We need a larger group, since \(MC \) is too large.

Back to vector spaces of singular \(V \).

Each irreducible group acts on \(V \), \(k \) times on \(V \otimes \cdots \otimes V \).

\[
\begin{align*}
S_k(t) & \rightarrow L_k \\
S_3(t) & \rightarrow L_3 \\
\vdots & \\
S_1(t) & \rightarrow L_1
\end{align*}
\]

The action of \(G \otimes \cdots \otimes G \) on \(V \otimes \cdots \otimes V \) decomposes it into 1-d subspaces, namely, the subspaces of states for which the action by \(T_1, T_2, \ldots, T_k \) is equivalent to multiplication of \(s_1 \otimes \cdots \otimes s_k \) by \(\lambda \), \(\lambda \) is a \(\lambda \)th root of unity.

\[
(L_1 \otimes \cdots \otimes L_k)(s_1 \otimes \cdots \otimes s_k) = L_1(s_1(t)) \cdot L_2(s_2(t)) \cdots L_k(s_k(t))
\]

This is not linear

\[
(s_1 \otimes s_2 \otimes \cdots \otimes s_k) + (s_1' \otimes \cdots \otimes s_k') \neq (s_1 + s_1') \otimes \cdots \otimes (s_k + s_k')
\]

so only add tensor product if all \(k \) one-term match
We've constructed a standard non-linear system \(L_1 \otimes \ldots \otimes L_k \) that acts on \(s(t) \) by

\[
\begin{align*}
 s_1(t) & \rightarrow L_1 \\
 s_2(t) & \rightarrow L_2 \\
 \vdots & \quad \vdots \\
 s_k(t) & \rightarrow L_k \\
\end{align*}
\]

\(s(t) \)

For which transfer of \(s(t) \) by \(T \) results in multiplication of the response by

\[
e^{j\omega_1 t + j\omega_2 t + \ldots + j\omega_k t}
\]

\[
e^{j(\sum \omega_j) t}
\]

provided that each \(L_j \) is narrowband at \(\omega_j \).

How does the decomposition of \(M \) into \(L_1, L_2, \ldots, L_k \) work via the practical case?

\(s(t) \rightarrow G \rightarrow X \rightarrow H \rightarrow \) where \(G \neq H \) one linear.

\[
\begin{align*}
 s(t) & \rightarrow G \\
 \vdots & \quad \vdots \\
 s(t) & \rightarrow G \\
 \vdots & \quad \vdots \\
\end{align*}
\]

\(G \) has t.f. \(G(w) \). \(G \) is a sum of narrow-bd systems \(L_w \), each weighted by \(G(w) \).
\[g = \sum \tilde{G}(\omega) L_\omega \] so there is a contribution \(\otimes \)

For each \(\omega_1, \omega_2 \) of

\[s(t) = \begin{cases} L_{\omega_1} & \text{if } \omega_1 < \omega_2 \\ L_{\omega_2} & \text{if } \omega_2 < \omega_1 \end{cases} \]

weighted by \(\tilde{G}(\omega_1) \tilde{G}(\omega_2) \)

Output above module is \(\tilde{G}(\omega_1) \tilde{G}(\omega_2) e^{i(\omega_1 t + \omega_2 t)} \) for

\[s(t) = e^{i\omega_1 t} + e^{i\omega_2 t} \]

\[\text{So, at least formally, } s(t) \rightarrow \tilde{G}(\omega_1) \tilde{G}(\omega_2) e^{i(\omega_1 t + \omega_2 t)} \]

\[\tilde{H}(\omega_1, \omega_2) \] for

\[\tilde{H}(\omega_1, \omega_2) \]

\[\tilde{G}(\omega_1, \omega_2) \tilde{H}(\omega_1 + \omega_2). \]

\[\text{\textit{at least formally}.} \]

\[\text{\textit{Above } } s \text{ \textit{is complex.}} \]

\[\text{\textit{What about other frequencies?}} \]

\[\text{\textit{What if } } \Delta \text{ \textit{is not } } x^2? \]