Nonlinear System Theory

Now let the $x_k(t)$'s represent inputs at k prior times, spaced by ωt:

$$R(t) = a_0 + \sum_{k} a_k s(t - k\omega t) + \sum_{k} b_k (s(t - k\omega t)^2 - \rho)$$

$$+ \sum_{k < l} c_{kl} s(t - k\omega t) s(t - l\omega t)$$

$$+ \cdots$$

where $\rho = \langle s(t)^2 \rangle$.

The ρ-term in b_{\cdots} comes from the fact that $\langle s(t - k\omega t)^2 \rangle \neq 0$,

so the b-term would otherwise contribute a constant, confounding the a_0-term.

Does this make sense as $\omega t \to 0$?

$s(t)$ gets sampled more and more densely. But expect that the influence of $s(t - k\omega t)$ on $R(t)$ depends on ω, not the lag number. i.e.,

$$\lim_{\omega \to 0} a_k = \omega t A(k \omega t).$$

Think $s(t) = \frac{1}{\omega t}$, resample each $s(t)$.

Similarly, there are $(\omega t)^2$ - a more complex for c_{kl}, so expect that

$$c_{kl} \approx (\omega t)^2 C(k \omega t, l \omega t).$$

$$b_k \approx (\omega t)^2 b(k \omega t)$$

for dimensional correctness.
This notation: \(K_0 = a_0 \)

\(K_1(\gamma) = A(\gamma) \)

\[
K_2(\gamma_1, \gamma_2) = \begin{cases}
\frac{1}{2} c(\gamma_1, \gamma_2) & \gamma_1 < \gamma_2 \\
\frac{1}{2} c(\gamma_2, \gamma_1) & \gamma_1 > \gamma_2 \\
b(\gamma_1) & \gamma_1 = \gamma_2
\end{cases}
\]

\[
R(t) = K_0 + \sum_{k} \left[K_1(k\alpha t) s(t - k\alpha t) \right] \alpha t
\]

\[
+ \sum_{k} K_2(k\alpha t, k\alpha t) \left(s(t - k\alpha t) s(t) - P \right) \alpha t^2 - \sum_{k \neq 1} K_2(k\alpha t, t - k\alpha t) s(t - k\alpha t) s(t - t - k\alpha t) \alpha t^2 + \ldots
\]

\[
= K_0 + \int K_1(\gamma) s(t - \gamma) d\gamma
\]

\[
+ \int K_2(\gamma_1, \gamma_2) s(t - \gamma_1) s(t - \gamma_2) d\gamma, d\gamma_2
\]

\[
- \Delta t \int K_2(\gamma, \gamma) d\gamma
\]

Note what we expected. So we have to think of \(s(t) \) as being a process defined by a constant \(\mu \), i.e., std dev of \(s(t) \) is

\[
\sqrt{\mu t}.
\]

Then we'll get a well-defined limit.

If we keep \(\mu = \mu t \) constant, i.e., \(\mu = \frac{\mu}{t} \) on any realization.
Calculate the a_k's (or the k's).

In general, $a_k = \frac{\langle f(x) \phi_k(x) \rangle}{\langle \phi_k(x)^2 \rangle}$.
[Math units don't consist]

where $\phi_k(x)$ is an orthogonal polynomial.

For p_k, $\phi_k(x)^2 = x_k$, then $a_k = \frac{\langle f(x) x_k \phi_k(x) \rangle}{\langle \phi_k(x)^2 \rangle} = \frac{1}{p} \langle f(x) x_k \phi_k(x) \rangle$

In the continuum case, $\langle \phi_k^2 \rangle = A \cdot p^2 = p$

So, $k<\ell$, $\phi_k(x) = x_k x_\ell$, $a_k = \frac{\langle f(x) x_k x_\ell \phi_k(x) \rangle}{\langle \phi_k(x)^2 \rangle} = \frac{1}{p^2} \langle f(x) x_k x_\ell \phi_k(x) \rangle$

$\langle \phi_k^2 \rangle = (x + p)^2 = p^2$

$k<\ell$, $p^2 = \frac{1}{2} p^2 \langle R(t) \phi_k(x)^2 \phi(k+1) \phi(t-\frac{1}{2}) \rangle$

from $k<\ell$, $k<\ell$.

$b_k : \phi_k(x^2) = x_k^2 - p$, $\langle \phi_k^2 \rangle = \langle x_k^4 - 2 p x_k^2 + p^2 \rangle = 2p^2$

$b_k = \frac{1}{2p^2} \langle f(x) \phi_k(x^2) \phi(k-\frac{1}{2}) \rangle$
\[k_2(\tau_1, \tau_2) = \frac{1}{2} \rho^2 \left[R(t) \left(s(t-\tau_1) s(t-\tau_2) - s(\tau_1-\tau_2) \rho \right) \right] \]

Unity \(k_2(\tau, \tau) \) for \(\tau = \tau_1, \tau_2 \) and \(\tau = \tau_2 \).

The derivative with respect to \(\rho \) is
\[
\frac{d}{d\rho} \left(k_2(\tau_1, \tau_2) \right) = \frac{1}{2} \rho \left(R(t) \right) \frac{d}{d\rho} \left(s(t-\tau_1) s(t-\tau_2) - s(\tau_1-\tau_2) \rho \right)
\]

The subprincipal term integrates to \(k_2(\tau_1, \tau_2) \) (it is 0 except near windows at \(\tau \), where it is \(\frac{d}{d\rho} k_2(\tau_1, \tau_2) \)).

So we conclude
\[
k_2(\tau_1, \tau_2) = \frac{1}{2} \rho^2 \left(R(t) \left(s(t-\tau_1) s(t-\tau_2) - s(\tau_1-\tau_2) \rho \right) \right)
\]

At another way, to calculate \(k_2(\tau_1, \tau_2) \), we cross correlate with \(s(t_0-\tau_1) s(t_0-\tau_2) - s(\tau_1-\tau_2) \rho \) for orthogonality.

To reconstitute the input
\[
R(t) = k_0 + \int k_1(\tau) s(t-\tau) d\tau + \int k_2(\tau_1, \tau_2) \left(s(t-\tau_1) s(t-\tau_2) - \rho s(\tau_1-\tau_2) \right) d\tau_1 d\tau_2 + \ldots
\]
The issue is one of a predicted interaction.

Choose DT: \(P = \frac{1}{\alpha} \).

Choose maximum time lag for analysis.

Estimate \(\langle R(s) \cdot s(t-\tau) \rangle \) from finite samples of \(s \).

\[
\langle R(s) \rangle (s(t-\tau) s(t-\tau))
\]

Two main issues: samples of \(s \) may not be typical of the Gaussian noise, and therefore:

the orthogonal factor \(s(t-\tau)^2 \) \(s(t-\tau) s(t-\tau) \) \(s(t-\tau)^2 \) \(- P \),

\(s(t-\tau)^2 - sP s(t-\tau) \), etc.

may not

be orthogonal w.r.t. the sample of noise.

So it is really \(R = \Pi_{\phi, s}(s) \) but

if the estimate \(\langle \Pi_{\phi, s}(s) \Pi_{\phi, s}(s) \rangle \neq 0 \) then

\(R \) will appear to have a component \(\Pi_{\phi, s}(s) \).

So, can we choose specific samples to make the orthogonality as close as possible?

Broaden the issue: choose some other ensemble \(R \) of signals
(not necessarily Gaussian white noise).

\(\phi \) construct one of several formal series
\(\phi \) design input to sample \(R \)
We could do this with a sequence of RE's that approach Gaussian white noise.

And, from a systemic viewpoint, on, from the systemic point of view,

we could even choose R based on a biological motivation - natural scenes, natural sounds.

Reorder to regressions (functional imaging analysis)

We have \(R(t) \) as several variables \(u_1(t), \ldots, u_n(t) \)

and we'd model \(R(t) \) as a sum of "effects",

\[
R(t) = \sum_{k=1}^{n} \sum_{i=1}^{n} \alpha_k(t) v_k(t + \tau_i).
\]

or even \(\sum_{k=1}^{n} \sum_{l=1}^{n} \beta_k(\tau_1, \tau_2) [v_k(t - \tau_1) v_l(t - \tau_2)] \)

\[
= \sum_{h} c_h v_h(t).
\]

We'd to orthogonalize the \(v_h's \) into \(\psi_h's \).

Best if they were orthogonal, but if they are linearly dependent
Two strategies for "a sequence of R's 4th approach GWN"

- M-sequences: "pseudorandom binary sequences"
- Sum of sinusoids: \(\text{Eq. cos}(\omega t + \phi) \)

M-sequences approach GWN from the "system's point of view".

Any real system has a first and fast sum over-time,

\[
\text{turing } s(t) \text{ into } s'(t) = \int f(\tau) s(t - \tau) \, d\tau
\]

So even if \(s(t) \) is only 0's or 1's, \(s'(t) \) is not Gaussian.

Basic idea (break M-sequences)

Say we have 3 time lags: 8 possible stimuli histories

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We could do 8 experiments, present each one several times (fusing)

Or,

\[
\text{0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 ...}
\]

Note that past histories contain each of the 3-bit inputs, but we gained 3^x in efficiency.

Basic idea is to choose a sequence of 0's and 1's for which the 1's are nearly orthogonal.
We will construct a sequence of length $2^n - 1$ which

(a) contains all n-tuples except $(0 \ldots 0)$ exactly once

(b) is n-shift-orthogonal, i.e., $<d(k) \sigma(k-1)> = \frac{1}{2^n - 1}$

(c) will allow for measurement of high-order kernels at short lags

Recipe: We will create a finite field of size 2^n, and write a table of algorithms with $n = 4$.

Consider the finite field $\mathbb{F}_2 = \{0, 1\}$, and let's choose a polynomial

of degree n that does not factor in \mathbb{F}_2 (other conditions too).

$p(x) = x^4 + x + 1$. This construct a finite field as follows: Set $p(x) = 0$, multiply!

\[
\begin{align*}
 x^0 & = 1 \\
 x^1 & = x \\
 x^2 & = x^2 \\
 x^3 & = x^3 \\
 x^4 & = x^4 + x \\
 x^5 & = x^5 + x^2 + x \\
 x^6 & = x^6 + x^3 + x^2 \\
 x^7 & = x^7 + x^3 + x^4 + 1 \\
 x^8 & = x^8 + x^2 + 1 \\
 x^9 & = x^9 + x \\
 x^{10} & = x^{10} + x + 1 \\
 x^{11} & = x^{11} + x^3 + x^2 + x \\
 x^{12} & = x^{12} + x^3 + x^2 + 1 \\
 x^{13} & = x^{13} + x^3 + x^2 + 1 \\
 x^{14} & = x^{14} + x^3 + 1 \\
 x^{15} & = x^{15} + 1
\end{align*}
\]

Then any column is the n-sequence.
A recurrence rule holds within a column:

\[p(x) = x^n + g(x) \]

\[x^k, x^n = x^k \cdot g(x) \]

\[x^{k+n} = \sum_{r=0}^{n-1} b_r x^{k+r} \]

Here, \(b_0 = 1, b_1, b_2 = b_3 = 0 \)

So, for example:

\[\begin{array}{c|c|c}
 k & b \neq 0 & x^5 = x^2 + x \\
 \hline
 k=5 & b=0 & x^5 = x^3 x^2 \\
 k=6 & b=1 & x^6 = x^3 + x + 1 \\
 k=7 & b=2 & x^7 = x^3 + x + 1 \\
 k=8 & b=3 & x^8 = x^3 + x \\
 k=9 & b=4 & x^9 = x^6 + x^5 \\
\end{array} \]

"Shift register" generation rule is the original rule, equivalent to this recursion.

If the sequence has its maximum length, then no \(n \)-tuples can repeat. (Otherwise it would close early.
And no \(0 \)-tuple.
So all \(n \)-tuples appear once.

What about shift- or Pseudorandomness?

\[a \neq 0: \quad x^k + x^k a = \begin{cases} 0 & \text{if match} \\ \text{if mismatch} & \end{cases} \]

So \(x^k + x^k a \) is cross correlat of \(\delta_k \) and \(\delta_k a \).

\[x^k + x^k a = x^k (1 + x^a) = x^k x^{2a} \]

because \(1 + x^a \) must be some \(\delta_k \).

\[x^k x^{2a} = x^{k+2a} \]
The above shows that an m-sequence XOR'd with a shift of itself is just another shift of the same m-sequence.

So \(X^k \) and \(X^k + a \) are equal to \(\frac{1}{2} \) ones and zeros, so \(X^k - X^k + a \) are independent.

The drawback is that high-order registers (polynomials) overlay with low-order ones:

\[
\langle r(t), \sigma(t - \gamma), \sigma(t - \gamma_2) \rangle
\]

must be equal to

\[
\langle r(t), \sigma(t - \gamma), \sigma(t - \gamma_2) \rangle
\]

since \(\sigma(t - \gamma), \sigma(t - \gamma_2) = \sigma(t - \gamma_2(t, \gamma_2)) \)

by above argument.

What can we do? Choose \(p(x) \) so \(f(\gamma, \gamma_2) = (\gamma, \gamma) \).

Or, let \(R \) contain \(\delta_{\text{inc}} \) or \(\delta_{\text{incr}} \).

So that now, \(\sigma(t - \gamma) \) o \(\sigma(t - \gamma), \sigma(t - \gamma_2) \)

are orthogonal over \(R \).

("must repeat" method)