
Groups, Fields, and Vector Spaces 
 
Homework #2 (2010-2011), Answers 
 
Q1. Extensions of finite fields 
 
Recall that 2  is the field containing {0,1}, with addition and multiplication defined (mod 2).  
Consider the polynomial 4 1 0x x+ + = .  This has no solutions in 2 , so let’s add a formal 
quantity ξ  for which 4 1 0ξ ξ+ + =  (and which satisfies the associative, commutative, and 
distributive laws for addition and multiplication with itself and with {0,1}), and see whether it 
generates a field. 
 
A.  Using 4 1 0ξ ξ+ + = , express rξ  in terms of 1, ξ , 2ξ , and 3ξ  for 1,...,15r = . 
 
Since field operations are “mod 2”, we can replace 1−  by +1, and 0 by 2.  So, for example,  

4 1 0ξ ξ+ + =  implies 4 1ξ ξ= + .  Using the field properties (distributive law), 
5 4 2( 1)ξ ξ ξ ξ ξ ξ ξ= ⋅ = + = + ; 
6 5 2 3 2( )ξ ξ ξ ξ ξ ξ ξ ξ= ⋅ = + = + ; 
7 6 3 2 4 3 3( ) 1ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= ⋅ = + = + = + +   (Here, we had to use 4 1ξ ξ= +  in the last step.) 

 
Working similarly, the table of coefficients is: 

3 2 1 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 1
0 1 1 0
1 1 0 0
1 0 1 1
0 1 0 1
1 0 1 0
0 1 1 1
1 1 1 0
1 1 1 1
1 1 0 1
1 0 0 1
0 0 0 1

ξ ξ ξ ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

 



Note that every combination of 0’s and 1’s occurs in some row, except for 0,0,0,0. (Why does 
this have to be?) Note also that 15 0 1ξ ξ= = . 
 
Comment 1:  The constant term in the expansion of each rξ  (i.e., the last column in the above 
table) is an “m-sequence,” a sequence of 0’s and 1’s that (a) contains all quadruples of 0’s and 
1’s exactly once, except for 0,0,0,0, and (b) is orthogonal (see later) to any shift of itself.  This 
and other properties of m-sequences are neatly derived from the field properties.  M-sequences 
are a kind of “shift register sequences”, a term whose appropriateness should be apparent from 
the above construction. 
 
Comment 2:  The above comment applies to the coefficient of the ξ -term, the 2ξ -term, etc. 
 
 
B.  Using part A, show that the powers of ξ  generate a field of size 16.  This is (2,4)GF . 
 
Since 0, 1, and ξ  obey the associative, commutative, and distributive laws, we only have to 
show that these operations are closed under addition and multiplication, and that we can find 
multiplicative inverses for every element except 0. 
 
To add two field elements aξ  and bξ , we use the above table to represent each as a sum of 1, ξ , 

2ξ , and 3ξ , add them, and convert back.  For example, 
4 13 3 2 3 2 11( 1) ( 1)ξ ξ ξ ξ ξ ξ ξ ξ ξ+ = + + + + = + + = .  To multiply two field elements aξ  and bξ , 

we have a b a bξ ξ ξ +⋅ = ; if the exponent a b+  exceeds 15, we note that 15a b a bξ ξ+ + −= . 
 
To find inverses, we note that 15 15 0 1a aξ ξ ξ ξ− = = = . 
 
C.  Show that 2( )ϕ ξ ξ=  is an automorphism of (2,4)GF . 
 
Two ways. 
 
First, let 2η ξ= .  We’ll show that η  satisfies the same equation asξ , 4 1 0x x+ + = .  This 
means that η  generates the same field as ξ . To show that 4 1 0η η+ + = :  4 2 4 8( )η ξ ξ= = .  So  

4 8 2 2 2 21 1 ( 1) 1 2 2 0η η ξ ξ ξ ξ ξ+ + = + + = + + + = + = , where we’ve used the table from part 
A at the second step, and the fact that we are adding mod 2 in the second step. 
 
Better way: 
 
This is a special case of something more general.  In any extension field of {0,1}, the mapping 

2( )z zϕ =  is an automorphism.  We need to check that addition and multiplication is preserved.  
For addition: 2 2 2 2 2( ) ( ) 2 ( ) ( )z w z w z zw w z w z wϕ ϕ ϕ+ = + = + + = + = + .  For 
multiplication: 2 2 2( ) ( ) ( ) ( )zw zw zwzw z w z wϕ ϕ ϕ= = = = . 



Comment:  In fact, ϕ  is an isomorphism.  
2 2 4( ) ( ( )) ( )z z z zϕ ϕ ϕ ϕ= = = ; 
3 2 4 8( ) ( ( )) ( )z z z zϕ ϕ ϕ ϕ= = = ; 
4 3 8 16( ) ( ( )) ( )z z z z zϕ ϕ ϕ ϕ= = = = ; 

so 1 3ϕ ϕ− = .  This also generalizes to GF(2,n). 
 
 
Q2. Intrinsic relationships among dual spaces, etc. 
 
A. Find an intrinsic relationship (a.k.a. “canonical homomorphism”) between V and V ∗∗ .  (V ∗∗  
is the dual of V ∗ , i.e., the space of mappings from elements ϕ  of V ∗  to the field.)  That is, find a 
linear mapping Φ  from elements v of V to elements ( )vΦ  of V ∗∗ .   
 
To define ( )vΦ , we need to display ( )vΦ  as a linear map from elements ϕ  of V ∗  to a field 
element.  That is, we need to specify the field element [ ( )]( )v ϕΦ  that ϕ  is mapped to by ( )vΦ .  
(and ensure that everything is linear).  Since ϕ  is in V ∗ , ( )vϕ  is a linear map from V to the field.  
So we choose [ ( )]( ) ( )v vϕ ϕΦ = . 
 
B. Find an intrinsic relationship (a.k.a. “canonical homomorphism”) between ( , )Hom V W  and 

( , )Hom W V∗ ∗ .  That is, find a linear mapping Z from elements ϕ  of  ( , )Hom V W  to elements 
( )Z ϕ  of ( , )Hom W V∗ ∗ . 

 
To define ( )Z ϕ , we need to display ( )Z ϕ  as a linear map from elements ζ  of W ∗  to elements 
[ ( )]( )Z ϕ ζ  in V ∗ .  That is, we need to define how [ ( )]( )Z ϕ ζ  acts on an element v of V.  Since ϕ   
is in ( , )Hom V W , ( )vϕ  is in W, and ζ  acts linearly on it.  So it is natural to define 
( )[ ( )]( ) ( ) ( ( ))Z v vϕ ζ ζ ϕ= .  Everything is linear. 
 
C. Find an intrinsic relationship (a.k.a. “canonical isomorphism”) between ( )V W ∗⊗  and 

( , )Hom V W ∗ .  That is, (a) given an element B of ( )V W ∗⊗ , find a linear mapping Φ  that takes 
elements B of ( )V W ∗⊗  to elements ( )BΦ  of ( , )Hom V W ∗ .  (b) Given an element ξ  of 

( , )Hom V W ∗ , find a linear mapping Ψ  that takes elements ξ  of ( , )Hom V W ∗  to elements ( )ξΨ  
of ( )V W ∗⊗ . (c) Show that Φ  and Ψ  are inverses, i.e., ( ( ))B BΨ Φ =  and ( ( ))ξ ξΦ Ψ = . 
 
 
(a) To define ( )BΦ , we have to show how it maps an element v of V into an element ϕ  of W ∗ .  
That is, [ ( )]( )B vΦ  must be an element of W ∗ , i.e., a linear map from W  to the scalars. SO we 
have to show how [ ( )]( )B vΦ  acts on an arbitrary w in W (and everything has to be linear).  Since 



B is given as an element of ( )V W ∗⊗ , it is a linear map from v w⊗  to the field, just what we 
need.  So ( )BΦ  is defined by ( )[ ( )]( ) ( ) ( )B v w B v wΦ = ⊗ . 
 
(b) To define ( )ξΨ , we need to produce an element of ( )V W ∗⊗ , i.e., a linear map from tensors 
v w⊗  to the field. Since ξ  is in ( , )Hom V W ∗ , ( )vξ  is in W ∗  and is therefore a map from W to 
the field, and [ ( )]( )v wξ  is linear in v and w. So we can take ([ ( )]( ) [ ( )]( )v w v wξ ξΨ ⊗ = . 
 
(c) To show ( ( ))B BΨ Φ = :  ( )[ ( ( ))]( ) [ ( )]( ) ( ) ( )B v w B v w B v wΨ Φ ⊗ = Φ = ⊗ . (First equality is 
from (b), second is from (a)). To show ( ( ))ξ ξΦ Ψ = : 
( )[ ( ( ))]( ) ( ) ( ( ))( ) [ ( )]( )v w v w v wξ ξ ξΦ Ψ = Ψ ⊗ = . (First equality is from (a), second is from (b)). 
 
Q3.  Parity 
 
A. What is the parity of a cyclic permutation of q elements, i.e., the permutation that puts 2 
where 1 was, puts 3 where 2 was, puts 4 where 3 was, …, puts q where 1q−  was, and puts 1 
where q was? 
 
This permutation can be generated by the following steps:  swap 2 with 1, swap 3 with 1, swap 4 
with 1, …, and swap q with 1.  There are 1q−  such steps, so the parity is ( ) 11 q−

− . 
 
In “permutation notation”, this can be written (123 ) (12)(13)(14) (1 )q q=… … , where ( )abc ef  
means “put b where a was, put c where b was, put f where e was, and put a where f was”  
 
B. Recall the dihedral group:  the symmetry group of a regular n-gon, containing rotations by 
2 /k nπ  radians, and reflections.  (a) It can also be considered a permutation group, because it 
permutes the vertices of the n-gon.  Which group elements correspond to a permutation with an 
even parity, and which to an odd parity? (b) The dihedral group can also be considered a 
permutation group in another way, because it acts on the edges of the n-gon. In this 
representation, which group elements correspond to permutations with even parity, and which 
ones to an odd parity? 
 
(a)  A rotation by 2 / nπ  radians (one “step”) is a cyclic permutation of the n vertices, and its 
parity (as in part A) is therefore 1( 1)n−− .  So a rotation by 2 /k nπ  radians has parity 

( )( 1) ( 1)( 1) ( 1)
kn k n− −− = − , since it is this same permutation applied k times. 

 
The behavior of reflections depends on whether n is even or n is odd. If n is odd, then every 
reflection goes through one vertex, and the other 1n−  vertices are swapped in pairs.  So every 
reflection has a parity of ( 1) / 2( 1) n−− .  If n is even, then there are two kinds of reflections:  those 
whose mirror planes go through the midpoints of opposite edges, and those whose mirror planes 
go through opposite vertices.  The ones whose mirror planes go through the midpoints of 
opposite edges result in swapping the n vertices in pairs, and thus, have a parity of / 2( 1)n− .  The 



ones whose mirror planes go through opposite vertices leave those two vertices unchanged, and 
swap the remaining n-2 vertices in pairs.   They therefore have a parity of ( 2) / 2( 1) n−− . 
 
(b) Rotations can be analyzed just as above; the one-step rotation is a cyclic permutation on the n 
edges. 
 
For reflections: When n is odd, the analysis of part (a) holds, since one can track each edge by 
what happens to the opposite vertex.  When n is even, the mirror planes that go through the 
midpoints of opposite edges have parity ( 2) / 2( 1) n−−  (since they leave two edges unchanged), and 
the ones that go through opposite vertices have parity / 2( 1)n− , since they swap all edges. 
 
Comment: 
 
This shows that parity is not an intrinsic property of the group element, only of how it is 
represented as a permutation group.  (For n even, reflections have opposite parities, depending 
on whether they are considered to act on vertices or on edges.) 
 
Also, it allows us to find some subgroups of the dihedral group:  group elements that have even 
parity are the kernel of the mapping from the group to { 1, 1}+ −  via the parity homomorphism. 
 
 
 
 


