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Why is the field of statistics still an active one? 
 
It’s obvious that one needs statistics: to describe experimental data in a compact way, to 
compare datasets, to ask whether data are consistent with a model.  But why is this a hard 
problem (or at least, why are people still making advances)? 

Toy example: estimating the mean 
 
To set it up: we suppose that there is a collection of possible outcomes (an “ensemble” 
Ω , or a set of possible measurements associated with their probabilities). We would like 
to estimate the true mean of Ω , that is, ( )E xμ = . 
 

( )E x  means the expected value of x , which we may also write as x
Ω

, to emphasize 

the dependence on the ensemble Ω .  For discrete ensembles, ( )
x

x xp x
Ω

∈Ω

= ∑ , where 

( )p x  is the probability of drawing x  from Ω .  For continuous ensembles, 
( )x xp x dx

Ω
Ω

= ∫ , where ( )p x xΔ  is the probability of drawing a value between x  and 

x x+ Δ  from Ω . 
 
We now draw N  values from Ω , say 1x , …, Nx .  Our problem is, to craft an “estimator” 
function, say, 1ˆ ˆ ( ,..., )Nx xμ μ= , to provide an estimate of μ .  The obvious choice is the 

sample mean.  This is also known as the  “plug-in” estimator, 
1

1ˆ
N

plugin i
i

x
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μ
=

= ∑ , since it is 

“plugging in” the measured values into the formula for the mean.  But it is not the only 
choice. 
 
There are some clearly silly choices: (a) a fixed, a priori guess, independent of the data 
(b) throw out the even-numbered measurements, and take the sample mean of the rest,  
(c) take the sample mean, and add a fixed number (say, 7), (d) take the sample mean, and 
add a number that depends on N , say, 1/ N , (e) choose one value from the data. 
 
Why do we know that these choices are silly? Conversely, what properties do we want an 
estimator to have? 

Desirable properties of an estimator 
 
A good estimator should be unbiased (i.e., it should not systematically over- or under-
estimate), and should converge to the correct value as one has more and more data.   That 
is, as N  grows, we would like the expected value of the estimator. ˆ( )E μ  to converge to 
the correct answer, μ .  This has two components:  “bias” and “consistency.” 
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An unbiased estimator gives the correct value, on average, when applied to a finite 
dataset.  That is, the bias is the difference between the expected value of the estimator for 
a sample size N , and the true value, ( )ˆE μ μ− , where the expectation is taken over all 
datasets of size N .  
 
A consistent estimator is one that eventually converges to the correct answer.  One way to 
formalize this is ( )( )2ˆlim ( ) 0

N
E E μ μ

→∞
− = : i.e., the mean-squared scatter of the estimator 

around the correct value eventually goes to 0 as more data are accumulated.  
 
Both the lack-of-bias and the consistency conditions can be phrased in stricter forms, in 
which the speed of approach to 0 is specified, typically /K N  for some constant K .  
More efficient estimators converge more rapidly, i.e., have a smaller K. One can’t 
typically expect to do better than this.  
 
Occasionally, one is interested in alternative definitions of consistency – for example, 
bounding the largest possible error, rather than bounding the expected mean-squared 
error. 
 
How can one evaluate (theoretically) the performance of a statistic?  One does a thought 
experiment in which one draws multiple sets of N  values from Ω , calculates the 
estimator of interest, and compares it with the true value. At a second level, one could 
postulate a family of ensembles, say ( )βΩ , one for each value of an unknown parameter 
β  (or, more typically, a set of parameters kβ ), and then see how sensitive the above 
analysis is to knowing β .  That is, how strongly does the merit of the statistic depend on 
knowing, precisely, the form of the distribution? Best if one can do this analytically! 
 

Back to the toy example 
 
For Gaussian ensembles, the plug-in estimator for the mean is unbiased, and consistent, 
and it is the most efficient estimator ( K  is as small as possible.)  But the Gaussian 
ensemble is the only ensemble for which this is true.  For ensembles that are not 
Gaussian, there is always a more efficient estimator of the mean, i.e., one for which the 
convergence to the true value is faster or more certain.  The plug-in estimator remains 
useful because (a) it is unbiased, (b) it is consistent, (c) it is simple, (d) its properties are 
simple to calculate, (e) often the improvements conferred by other estimators are fragile, 
i.e., they are highly sensitive to the assumed shape of the distribution Ω . 
 
Here is an important, practical example of a situation in which the plug-in estimator for 
the mean can be improved on: 
 
Say the ensemble Ω  is known to have the following structure:  most of the values come 
from a Gaussian distribution (mean and variance unknown), but a small fraction, say ε , 
of the values are corrupted by a large measurement error.  That is, ε  of the values consist 
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of samples from the underlying Gaussian, to which a large quantity M  is either added or 
subtracted – or even, that the data are replaced by a large quantity M± . (Think of this as 
modeling a typographical error.) Now, construct an estimator in two steps. First, throw 
out some fraction f ε>  of the extreme values. Then, take the mean of the remaining 
values.   This is known as a “trimmed mean” estimator. 
 
Since the first step gets rid of much of the variability, the resulting estimator converges 
faster than the plug-in estimator. If, say, we choose 2f ε= , then nearly all of the time, 
all outliers will have been eliminated. The trimmed mean is an example of a “robust” 
estimator (one that is relatively insensitive to outliers).  The median is the limiting case of 
the trimmed mean (discard all but one of the measurements as extreme). 
 
In this example, Ω  has heavy tails (platykurtotic).  You can think of other examples in 
which the heavy tail extends in only one direction (Ω  is  skewed), or has known shape, 
or even, in which Ω  has light tails (leptokurtotic).  These lead to other estimators that all 
do better than the plug-in estimator, each in its own domain.  The trimmed mean 
estimator is worse than the plug-in estimator for a Gaussian, but not much worse.  So it is 
often a good choice.  And one often does it even without thinking (“let’s throw out that 
experiment, it’s an outlier.”) 
 
Note that the above example is extremely simple in that we are only considering 
univariate quantities, and, the plug-in estimator is, in fact,  unbiased and consistent. 
Neither of these are typically the case – for most statistics, even for Gaussian ensembles, 
the plug-in estimator is biased (for example, the sample variance).  For more complex 
statistics, there usually a tradeoff between bias and consistency (i.e., you can optimize the 
estimator for one, or for the other, but not for both.) 
 
In sum, one reason that statistics is not trivial is that for estimators, one does not have 
“one size fits all.” 
 
Another reason is that computational burden is, in fact, relevant.  Prior to computers, 
usable statistics nearly always were those that one could determine confidence limits, etc. 
analytically (Gaussian, Poisson).  Now more computationally-intensive approaches are 
practical.  But computational practicality remains a severe consideration. 

Optional homework 
 
(answers at the end of this document) 
 
Q1. Consider the above “silly” estimators for the mean.  Which are unbiased?  Which are 
consistent? 
 
Q2. Construct a class of distributions for which the following estimator of the mean is 
unbiased, and also more efficient than the plug-in estimator: choose the highest and 
lowest values of the observations ix , and take their mean.  That is, 
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{ } { }( )1ˆ min max
2 i ix xμ = + .  This is a kind of opposite strategy to the trimmed mean.  

Justify your claim (analytically or via simulation). 

A few principles 
 
We want to be able to describe our data in a way that has meaning to others. 
 
Some units are more natural than others (time: seconds rather than bins, space: cm (or 
deg) rather than pixels. 
 
Images are obviously multivariate, but so are time series. 
 
Often the origin is arbitrary (e.g., time). 
 
With multidimensional datasets, it is even more of an issue: what direction should the 
axes point?  Is there a grounded notion of “orthogonal” axes?  Often at first glance there 
might seem to be:  values at each pixel, or samples at each point in time.  But when one 
looks at the biology or physics, one recognizes that each sample (say, at a specific pixel 
or time point) reflects underlying “causes” at nearby locations or times as well  (blur, 
filtering). So there is no strong reason that the obvious coordinates (the samples) are the 
natural coordinates.  Blurring and filtering amount to linear transformations on the data; 
these are inevitable, so we might as well recognize this at the outset. 
 
This leads to notions of: 

• natural coordinates (e.g., Fourier analysis) 
• data-driven coordinates (e.g., principal components analysis) 
• coordinate-free descriptions (e.g., information theory) 

 
And this (especially the notion of natural coordinates) leads us to focus on symmetries of 
the system.  Translation in time is the paradigm. 
 
Symmetries are often only approximate.  But it is usually better to use a principled 
approach that is approximate, than an unprincipled one.  
 

Plans and options 
 
Symmetry in the abstract (group theory) 
Multivariate measurements in the abstract (vector spaces and their symmetries) 
Implications of symmetry of the independent variable (how groups act on vector spaces)  
Natural coordinates 
Fourier analysis 

linear systems, filters  
noise and variability 
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Intrinsic symmetries of a vector space, and data-driven coordinates 
 Principal components analysis 

Independent components analysis 
Entropy, information, and data analysis 
Point processes 
 

Answers to optional homework 
 
Q1. Silly estimators for the mean: which are unbiased, which are consistent? 
 
(a) a fixed, a priori guess, independent of the data: biased,  inconsistent 
(b) throw out even-numbered measurements, and take the sample mean of the rest: 
unbiased, consistent (but inefficient) 
(c) sample mean, plus a fixed number: biased, inconsistent 
(d) sample mean plus 1/ N : biased, consistent (but inefficient) 
(e) choose one value from the data:  unbiased, inconsistent (no improvement as the 
amount of data increases) 
 
Q2. Construct a class of distributions for which the following estimator of the mean is 
unbiased, and also more efficient than the plug-in estimator: choose the highest and 
lowest values of the observations ix , and take their mean.  That is, 

{ } { }( )1ˆ min max
2 i ix xμ = + .  This is a kind of opposite strategy to the trimmed mean.  

Justify your claim (analytically or via simulation). 
 
Answer:  Consider the class of “binary” distributions, i.e., those that contain only two 
values, 0a  and 1a  (with 0 1a a< ), each of which is drawn with a probability of 0.5. So the 

true mean is 0 1

2
a aμ +

= . Most of the time, after a large number of draws N, the sample 

minimum will be 0a  and the sample maximum will be 1a , so the estimator 

{ } { }( )1ˆ min max
2 i ix xμ = +  will be exact. To see how fast this estimator converges to the 

true mean, we note that the sample minimum and maximum will be accurate after N 
except for the fraction of trials in which the same value is drawn on each sample.  This 
happens 12 / 2 1/ 2N N−=  of the time, since it requires that all of the 1N −  draws beyond 
the first draw are matched to the first draw.  So this estimator converges exponentially.  
Note that the mean-squared error of standard “plug-in” estimator decreases only like 
1/ N .  
 
Note also that if we applied this estimator to a distribution with tails, such as a Gaussian, 
it would be inconsistent – and in fact get worse and worse as we collected more data. 


