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Information Theory and Data Analysis 
 
These notes include portions of “Entropy and Information” notes from 2003-2004 
 
The odd title is emphasize at the outset that the plan here is not to suggest that information theory 
represents an organizing principle for the brain – but just to present some ideas from information 
theory that are useful in data analysis.  The main points are that “mutual information” is a 
principled, nonparametric measure of whether there is a statistical dependence between two 
variables, and that “maximum entropy” distributions are useful, familiar objects that formalize 
ignorance about what we don’t measure. 

Entropy 
 
We begin with developing a way to measure the richness of a distribution, “entropy.”  More 
precisely, we want to quantify how difficult it is to specify a value that is chosen from the 
distribution – the richer (more varied) the distribution, the more difficult it is to specify a value.   
 

What about the variance, ( )2 2
2 ( )i i iM x x p x x= − = −∑  (where i ix p x=∑ )? 

The problem with using variance is that it is parametric. That is, it depends on the values that are 
associated with each probability (i.e., the values ix , each of which are drawn with probability 

ip ) that are drawn , not just the probabilities themselves.  If we change the units of the values, 
then we change the variance – but we don’t change the difficulty of specifying a value.  Same 

problem if we use a higher moment, such as ( )4
4 iM x x= − .  We could get rid of the 

dimensions by considering instead the kurtosis, 
( )

4
2

2

3M
M

κ= −  (the “3” is because 2
4 2/ 3M M =  

for a Gaussian, more on the privileged role of Gaussians below), but this still depends on the 
values ix .  What about functions f that operate directly on the set of probabilities themselves?  
There are still lots of possibilities – we could use the variance (or higher moments) of the 
probabilities  1, , mp p…   (with 1ip =∑ , and each 0ip ≥ ) to measure how evenly distributed 
they are, etc.  So there are lots of possibilities for f. 

Axiomatic approach 
 
But if we agree on some properties for f, we can essentially narrow down the possibilities to just 
one.  The axioms are intended to codify the notion that f measures how many yes/no questions 
must be asked, on average, to determine the value drawn.  (There are other axiomatic 
approaches; this is one of the simplest.) 
 
The first axiom is that the entropy of independent distributions must add.  Formally: Given a 
distribution X that assigns the probabilities 1, , mp p…  to the symbols {1,..., }m , and a distribution 
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Y  that assigns the probabilities 1, , nq q…  to the symbols{1,..., }n , we can create a new (“direct 
product”) distribution X Y×  that assigns the probability j kp q  to a symbol ( , )j k , with j in 
{1,..., }m  and k in {1,..., }n .  We require that 1 1 1 2 1 1( , , , ) ( , , ) ( , , )j k m nf p q p q p q f p p f q q= +… … … .  
Put another way, the specifying a member of X Y×  is the same as specifying a member of X, 
and then a member of Y. 
 
The second axiom is that if we start with one distribution, and then refine it into a second one, 
we can extend the calculation in the intuitive way.  This is known as the “chain rule”, and it is 
easier to illustrate than to formalize. Here, X is the initial distribution (on m symbols), and the 
first symbol, which occurs with probability 1p , can be refined into n distinguishable symbols, as 
each with probability kq . The kq ’s are conditional probabilities, i.e., they are the probabilities of 
refinement of X’s first symbol into each  of the n symbols of Y, given that this first symbol 
occurs.   So 1iq =∑ , and the probability of each of these refined symbols in X is 1 kp q  
  

Given this setup, the chain rule is formalized by 
 

1 1 1 2 1 2 3 1 1 1( , , , , , , , ) ( , , ) ( , , )n m m nf p q p q p q p p p f p p p f q q= +… … … … . 
 
 
Interestingly, the chain rule axiom implies the additivity axiom. 
 

 
 
 
 
 

 
The way to see this to consider the distribution X as the “unrefined” distribution, and then, 
successively refine each symbol by the distribution Y.  
Refining the first symbol of X, which occurs with probability 1p : 

1 1 1 2 1 2 3 1 1 1( , , , , , , , ) ( , , ) ( , , )n m m nf p q p q p q p p p f p p p f q q= +… … … …  
Refining the second symbol of X, which occurs with probability 2p : 

1 1 1 2 1 2 1 2 2 2 3

1 1 1 2 1 2 3 2 1

1 2 3 1 2 1

( , , , , , , , , , , )
( , , , , , , , ) ( , , )
( , , , ) ( ) ( , , )

n n m

n m n

m n

f p q p q p q p q p q p q p p
f p q p q p q p p p p f q q
f p p p p p p f q q

= +

= + +

… … …
… … …
… …

, 

etc.   Once all the symbols have been refined, we recover the additivity rule: 

p1 ( )f X

( )f Y

1( ) ( ) ( )f Z f X p f Y= +

p1p1p1 ( )f X

( )f Y

1( ) ( ) ( )f Z f X p f Y= +

( )f Y( )f X ( ) ( ) ( )f X Y f X f Y× = +( )f Y( )f X ( ) ( ) ( )f X Y f X f Y× = +
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1 1 1 2 3 1 2 1

1 1

( , , ) ( , , , , ) ( ) ( , , )
( , , ) ( , , )

m n m m n

m n

f p q p q f p p p p p p p f q q
f p p f q q

= + + + +

= +

… … … …
… …

. 

 
 
The axiom(s) determine f uniquely, up to a multiplicative constant. (Actually, we need to add one 
more axiom, that f depends continuously on its arguments.  This is meant in a strong way -- if we 
consider the argument of f as a vector of probabilities, then the value assigned by f is a 
continuous function of that vector.)  
 
First, considering a “trivial” distribution consisting of only one symbol, we must have (1) 0f = .  
(This is because we can take Y to be this distribution and apply the chain rule:  after this trivial 
“refinement” , Z X= ; since also, 1 (1)Z X p f= + , it follows that (1) 0f = . 
 
Next, we consider the next-least-trivial distribution, an equal bipartite distribution B, 

1 2 1/ 2p p= = , and we arbitrarily assign (1/ 2,1/ 2)f a=  for some constant a.  Applying the 
additivity rule N  times (i.e., creating an N-fold product B B× ×… ) yields (2 , ,2 )N Nf Na− − =… .  
Put another way, 2(1/ , ,1/ ) log ( )f M M a M=−… , provided that M is a power of 2. 
 
We could now take the same approach, beginning with a distribution on K items, for which 

1 1/Kp p K= = =… .  We assign (1/ , ,1/ ) Kf K K a=… .  Iterating the additivity rule yields  

( , , )N N
Kf K K Na− − =… , or, 2

2

log ( )(1/ , ,1/ ) log ( )
log ( )K K K

Mf M M a M a
K
′

′ ′ ′=− =−… , provided 

that M ′   is a power of K. 
 
We’d like to relate Ka  to a. If there were an integer M ′′  that was both a power of 2 and a power 

of K, we could write 2
2

2

log ( ) log ( )
log ( )K

Ma a M
K
′′

′′− =− , from which it would follow that 

2log ( )Ka a K= .  But typically (unless K itself is a power of 2)l there’s no such integer M ′′ . 
Nevertheless, the conclusion that 2log ( )Ka a K=  must hold.  The reason is the following.  We 
can find an integer power of 2 and an integer power of K that are arbitrarily close to each other 
(in a ratio sense).   This allows us to conclude (by the assumption that f is continuous) that the 
ratio between Ka  and 2log ( )a K  is arbitrarily close to 1.  So, it follows that for any K,  

2(1/ , ,1/ ) logf K K a K=… . 
 
Finally, we need to consider the case in which the arguments of f are unequal.  We choose a large 
denominator D, so that the probabilities 1, mp p…  are as close as desired to integer multiples of 
1/ D , i.e., /i ip k D≈ .  We now compute 1( , )mf p p…  by using the “chain rule” in reverse.  That 
is, we calculate 2(1/ , ,1/ ) logf D D a D=… , and then group together the first 1k  arguments to 
make (approximately) 1p , the next 2k  arguments to make (approximately) 2p , etc.  The ith 
refinement has ik  equal arguments, so it contributes 2log ia k .  It follows that 
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1 2 2 2( , ) log log logm i i i
i i

f p p p a k a D a p D+ ≈ =∑ ∑… , or, 

1 2 2 2 2( , ) (log log ) log logm i i i i i
i i ii

Df p p a p D k a p a p p
k

≈ − ≈ =−∑ ∑ ∑… . 

 

Definition of entropy 
 
This shows that, up to a multiplicative constant a, there is a unique definition of f that satisfies 
these very simple axioms, which we call the “entropy.”  Typically, we take 1a = , so that 

(1/ 2,1/ 2) 1f = , yielding the entropy in bits  -- the number of binary yes/no questions required 
to specify, on average, a sample from the distribution.  Thus, the entropy of a discrete 
distribution P is defined by 
 
 2( ) logi i

i

H P p p=−∑ . (1) 

 
Note that the order of the symbols does not matter – they are simply abstract labels. 
 
We also note that we need to show that the quantity defined by eq. (1) satisfies the axioms for 
any distribution P , and not just for the ones needed to determine the definition of entropy.  This 
is straightforward (and one only needs to show that eq. (1)  satisties the chain rule). 
 
While the entropy is not a moment of the distribution of probabilities, it is “almost” a moment.  
This viewpoint is expressed by the following restatement of the above definition: 
 

( )
1

1( )
ln 2 i

i

dH P p
d

α

αα =

=− ∑ . (This is equivalent to eq. (1) because 

( )ln ln ln lnp pd dp e e p p p
d d

α α α α

α α
= = = .) Via L’Hopital’s rule, this has another equivalent 

form: 
( )

1

1
1( ) lim

ln 2 1

i
i

p
H P

α

α α→

−
=

−

∑
.  

 
The numerical factor 1/ ln 2  in the above would disappear had we chosen ln 2 log 2ea = = , 
yielding the entropy in “nats”. 
 

Mixing and convexity 
 
Here we’ll demonstrate a basic properties of entropy – that ultimately enable us to turn it into 
“mutual information,” a nonparameteric measure of associaton.  These properties also justify 
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using the term “information” for these measures, and also are the basic reason that entropy is 
tricky to estimate from data.) 
 
Say we mix two distributions, P and Q, taking a proportion z from P and 1 z−  from Q.  The new 
distribution (1 )zR z P zQ= − +  corresponds to drawing from P on a fraction z of the trials, and 
drawing from Q on the remaining 1 z−  of the trials. 
 
We’ll show that ( )zH R  is a concave-down function of z.  That is, ( )zH R  lies at or above the 
line segment that runs from ( )H P  at 0z =  to ( )H Q  at 1z = . 
 
This is straightforward calculus: 
 

(1 )zR z P zQ= − + , so 

( ) ( )1( ) (1 ) ln (1 )
ln 2z i i i i

i

H R z p zq z p zq=− − + − +∑ , 

so 

( )( ) ( )( )1 1( ) ( ) 1 ln (1 ) ( ) ln (1 )
ln 2 ln 2z i i i i i i i i

i i

d H R q p z p zq q p z p zq
dz

=− − + − + =− − − +∑ ∑ , 

(last equality since 1i ip q= =∑ ∑ ), and 
2 2

2

1 ( )( )
ln 2 (1 )

i i
z

i i i

d q pH R
dz z p zq

−
=−

− +∑ .  Since this quantity must be negative, ( )zH R  is a 

concave-down function of z. 
 
For 1/ 2z = , this means that “the entropy of the average is greater than the average of the 
entropies.” 

The downward bias of entropy estimates 
 
The convexity property has an important consequence for the practical issue of how to estimate 
entropy from data. The obvious way to proceed is to estimate the probabilities of each symbol 
from the empirical dataset (e.g., if the symbol i occurs in  times in N  observations, assume that 

/i ip n N= ), and then to plug these probabilities into eq. (1). The convexity property implies that 
this estimator will be downwardly biased.  
 
The reason is the following.  The true values of the probabilities are their values in an ideal, 
infinite ensemble, of which every real-world experiment is a finite sample.  The ideal ensemble 
is, exactly,  the mixture of all of the finite samples.  So, the entropy of the infinite ensemble must 
be greater than the mixture (i.e., average) of the estimates from finite samples. 
 
What is not so obvious is that the size of the error is (asymptotically for large N) given by 
( 1) /( ln 2)K N− , where K  is the number of different letters.  Since this is independent of the 
distribution, it would seem that one can simply correct the naïve estimate by this amount. This 
strategy is predicated  on knowing the number of different letters, rather than estimating it.  And 
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there’s more fine print:  if the number of samples of each symbols is not large, then using the 
debiaser, which is only asymptotically correct, may result in an estimate that is worse than the 
naïve one. 
 
There are more sophisticated ways to deal with this problem – estimators that improve on the 
bias, at the expense of making assumptions about the distribution. The more specific the 
assumptions, the better the estimator (provided that the assumptions are correct.)   
 

 
 

Continuous distributions 
 
The notion of entropy can be extended to continuous distributions, e.g., specified by ( )p x , 

where ( ) 1
X

p x dx =∫ , and ( )p x xΔ  is the probability that a draw from X yields a value within 

some interval (or volume) xΔ  centered at x.  
 
The natural extension of eq. (1) to this scenario is 
 2( ) log ( ( ))

X

H p x p x dx=−∫ .   (2) 

 
There is an important piece of fine print.   If you approximate a continuous distribution by a 
finely spaced discrete distribution and find the entropy of each (using eq. (2) for the continuous 
distribution, and eq. (1) for the discrete approximation, with ( )i ip p x x= Δ ), you will not get the 
same answer: 

2 2 2 2

2

( ) log ( ( )) log ( / ) log ( ) log ( )

log ( )

continuous i i i
i iX

discrete

H p x p x dx p p x p p x

H x

=− ≈− Δ =− + Δ

= + Δ

∑ ∑∫
.   

 
Thus, in the continuous case, there is an arbitrary offset inherent in the definition of eq. (2), 
effectively equal to the log of the volume element.  So in the continuous case, absolute entropies 
are not very interpretable – but differences in entropies (measured with the same units) always 
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make sense.  As a reminder of the distinction between the continuous case and the discrete case, 
the quantity defined by eq. (2) is known as the “differential entropy.” 

Mutual information 
 
Now let’s say we have two sets of symbols, X and Y, that may have some statistical dependence.  
For example, they may represent the input and output of a data channel; if the data channel is a 
good one, there will be strong dependence.  We can consider quantifying the degree of 
dependency between them in three ways: 
 

YQ : To what extent does knowing the symbol y drawn from Y  reduce the number of yes/no 
questions required to determine the symbol x drawn from X? 
 

XQ : To what extent does knowing the symbol x drawn from X reduce the number of yes/no 
questions required to determine the symbol y drawn from Y? 
 

XYQ : To what extent does one need fewer yes/no questions to specify a typical ( , )x y -pair, than 
to separately specify x and y? 
 
It turns out that all of these yield the same quantity, which is known as the mutual information 
between X and Y, denoted ( , )I X Y .  This quantity is necessarily 0 or positive, and it is 0 only 
when X and Y are statistically independent. 
 
We now demonstrate this. 
 
We write ( )p x  as the probability that a symbol x is drawn from X; ( , )p x y  as the probability 
that the pair ( , )x y  is drawn, and ( | )p x y  as the probability that x is drawn from X, given that y 
is drawn from Y (and similarly ( )p y  and ( | )p y x ).  So, for example, ( ) ( , )

y

p x p x y=∑ , and 

( | ) ( , ) / ( )p x y p x y p y= . We also write |X y  as the conditional distribution of X, given a 
particular draw y, and similarly for |Y x .  With these notations, 

( ) ( ) ( | )X
x

Q H Y p x H Y x= −∑ , 

( ) ( ) ( | )Y
y

Q H X p y H X y= −∑ , 

and 
( ) ( ) ( , )XYQ H X H Y H X Y= + − . 

 
It suffices to show that X XYQ Q= , since XYQ  is symmetric in X and Y.  Using the above, 

X XYQ Q=  is equivalent to ( ) ( | ) ( ) ( , )
x

p x H Y x H X H X Y− = −∑ , or, 

( , ) ( ) ( ) ( | )
x

H X Y H X p x H Y x= +∑ .  The latter follows from the chain rule:  we view a symbol 

pair ( , )x y  as the symbol x, refined by learning that this is associated with y. 
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For reference, we rewrite YQ , XQ , and XYQ  (all of which are equal to ( , )I X Y ) in terms of the 
probabilities themselves: 

2 2

2 2
,

( ) log ( ) ( ) ( | ) log ( | )

( ) log ( ) ( , ) log ( | )

Y
x y y

x x y

Q p x p x p y p x y p x y

p x p x p x y p x y

=− +

=− +

∑ ∑ ∑

∑ ∑
, 

 
2 2

2 2
,

( ) log ( ) ( ) ( | ) log ( | )

( ) log ( ) ( , ) log ( | )

X
y x y

y x y

Q p y p y p x p y x p y x

p y p y p x y p y x

=− +

=− +

∑ ∑ ∑

∑ ∑
, 

 
2 2 2

,

( ) log ( ) ( ) log ( ) ( , ) log ( , )XY
x y x y

Q p x p x p y p y p x y p x y=− − +∑ ∑ ∑ . 

 
Note that, as with entropy, the order of the symbols ix  and iy  does not matter – they are simply 
abstract labels. 
 
The “fine print” that arises when entropy is measured for a continuous distribution does not 
apply here – since the “ 2log ( )xΔ ” terms cancel (e.g., in the definition QY).  For QXY, this 
cancellation occurs because ( , )H X Y  has an additive offset of 

2 2 2log ( ) log ( ) log ( )x y x yΔ Δ = Δ + Δ , and each of the individual log-terms on the right cancel 
with the additive offsets of ( )H X  and ( )H Y . 

Nonparametric measure of statistical dependence 
 
An important property of mutual information is that ( , ) 0I X Y =  when X and Y are independent, 
and ( , ) 0I X Y >  otherwise (i.e., they are statistically dependent).  Note that here we’re talking 
about something much more general than “correlation” in the sense of ( )( )x x y y− − :  I 
measures something that is entirely nonparametric, and x and y are simply abstract symbols. 
 
First, note that if X and Y  are independent, then ( , ) ( ) ( )p x y p x p y=  and the additivity property 
immediately implies that 0XYQ = . 
 
Conversely, if X and Y are not independent, we will use the mixing property to show that 

0XQ > .  If X and Y are not independent, then there is at least one pair of symbols 1x  and 2x  for 
which 1 2( | ) ( | )p y x p y x≠ .  Now consider replacing 1( | )p y x  and 2( | )p y x  by their weighted 

sums, 1 1 2 2

1 2

( | ) ( ) ( | ) ( )
( ) ( )

p y x p x p y x p x
p x p x

+
+

.  This is the same as scrambling the symbols symbols 1x  

and 2x ; each still occurs the same number of times but their selective co-occurrences with Y are 
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mixed.  Doing this does not change  the distributions X or Y, but it does change the contribution 
of the terms involving 1x  and 2x  in XQ . In particular, it mixes 1( | )p Y x  and 2( | )p Y x , with 

mixing parameter 2

1 2

( )
( ) ( )

p xz
p x p x

=
+

.  Thus, the contribution 1 1 2 2( ) ( | ) ( ) ( | )p x H Y x p x H Y x+  

increases, and XQ  decreases.  Such mixings can be continued as long as there are any symbols in 
X for which the conditional probabilities differ; each mixing further decreases XQ .  Finally, 
when all conditional probabilities have been equated by mixing, X and Y are independent, and, as 
above, 0X XYQ Q= = . 

Data processing inequality 
 
The same kind of reasoning leads to another important property of mutual information, the “data 
processing inequality.”  Informally, it states that if Z is derived from Y, then ( , ) ( , )I X Z I X Y≤ . 
 
We imagine that an observer is trying to reduce the uncertainty (the number of yes/no questions) 
that must be asked to determine a draw from X .  But instead of using ( | )p X y , corresponding to 
the symbol y that emerges from the communication channel, the observer “processes” y  in some 
way (independent of X), to try to do better.  This “processing” could consist of some combination 
of mixing in the probability ( | )p X y′  associated with some other symbol in Y, or relabeling the 
symbols. Relabeling does not change information, and the mixing operation (as above) can only 
decrease it. 
 

Upward bias of mutual information estimates 
 
Just as the “plugin” estimate of entropy is downwardly biased, the “plugin” estimate of 
information is upwardly biased.  This is readily seen from the XYQ -formulation for mutual 

information:  the upward bias of the plugin estimator, asymptotically, is  1
ln 2

XY X YK K K
N

− − + , 

where XK  is the number of different kinds of X-symbols, YK  is the number of different kinds of 
Y-symbols, and XYK  is the number of different ( , )x y -pairings that actually occur.  Debiasing 
strategies for entropy estimates can all be applied to information estimates, and there are other 
possibilities too, based on expressions for mutual information that are not explicit differences in 
entropies. 
 
For linear systems with additive, Gaussian noise, there are classical results (due to Shannon) that 
relate the mutual information to the spectrum of the noise and the shape of the transfer function, 
and to the coherence between input and output. 

Constrained maximum-entropy distributions 
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Many familiar probability distributions are “constrained maximum entropy” distributions – 
distributions that have the greatest possible entropy subject to some constraint, such as their 
mean, their variance, etc.   Such distributions can be thought of as representing  principled 
hypotheses about a statistical ensemble, based on some parametric measurements (e.g., the 
sample mean and variance) – and “constrained maximum entropy” formalizes the idea of finding 
the distribution that is as random as possible, given the measured constraints. 
 
Constrained maximum-entropy distributions also constitute an approach to dimensional 
reduction.  If a limited set of measurements, plus maximum-entropy, suffice to predict the entire 
distribution, then the limited set of measurements is a concise description of the entire 
distribuiton.  See for example Shlens et al., J. Neurosci., 2006, and Nirenberg and Victor, 
Current Opinions in Neurobiology 2007, for a review. 
 
Not surprisingly, this formulation leads to many familiar distributions: Gaussian distributions, 
Poisson distributions, Gaussian noise ensembles, and many others (including von Mises 
distributions for angular data, and Markov processes). 
 
In typical useful cases, the constraints are linear in the probabilities.    For example, given a set 
of numerically-valued symbols ix  that are distributed according to ( )i ip p x= , the mean of a 
distribution is 1 ( )i iM x p x=∑ .  This constraint is linear in each ( )ip x , as each ( )ip x  is 
weighted by ix .    Similarly, any moment is a linear constraint; the kth moment kM  is given by 

( ) ( )k
k i iM x p x=∑ ; each  ( )ip x  is weighted by ( )k

ix .  If the mean 1M  is known or 
constrained, then the variance is also a linear constraint, since the variance of a distribution is 

2
1( ) ( )i iV x M p x= −∑  -- here, each ( )ip x  is weighted by 2

1( )ix M− .   
 
For multivariate distributions, many useful constraints are also linear in the probabilities. The 
constraint that a joint distribution ( , )p x y  has marginals ( ) ( , )

y

p x p x y′ ′=∑  is a set of linear 

constraints:  for the constraint corresponding to each x′ , the coefficient of ( , )p x y  is 1 if x x′=  
and 0 otherwise.  Viewing a time series as a sample of a multivariate distribution, the 
autocovariance, and the power spectrum, are also constraints that are linear in the probabilities 
(for specified mean). 
 
Note that the mixing property guarantees that for linear constraints, the constrained maximum-
entropy distribution is unique.  For if there had been two local maxima, then the entropy along 
the path that joins them ( (1 )zR z P zQ= − + ) could not be convex. 

Lagrange Multipliers 
 
The method of Lagrange Multipliers makes it easy to see how linear constraints determine 
maximum-entropy distributions.  Since this is a generally useful piece of machinery, we take a 
brief detour.  Lagrange Multipliers also play a central role in PCA. 
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Say you have a function of m variables, e.g., 1 2 1( , , , , )m mH p p p p−…  that you want to maximize, 
but that variables ip  must satisfy a constraint, e.g., 1 2( , , )mC p p p b=… .  The straightforward 
way to solve this is to use the constraint equation to write one of the ip ’s in terms of the others, 
e.g., 1 1( , , )m mp f p p −= … , and then to consider 1 2 1 1 2 1( , , , , ( , , , ))m mH p p p f p p p− −… …  as a 
function of 1m−  variables, and then to solve, simultaneously, the system 

 1 2 1 1 2 1( , , , , ( , , , )) 0m m
j

H p p p f p p p
p − −

∂
=

∂
… … , (3) 

for the  1m−  independent variables 1 1, , mp p −… .  
Lagrange multipliers provides an alternative solution, that (a) often is easier, especially if f is 
difficult to write explicitly, (b) does not “single out” one of the variables ip  (and hence preserves 
symmetry), and (c) often provides additional insight. 
 
The Lagrange Multiplier recipe is to replace the above constrained minimization problem by the 
unconstrained minimization of 1 2 1 2 1 2( , , , ) ( , , , ) ( , , , )m m mL p p p H p p p C p p pλ= +… … … , and to 
adjust λ  so that the extremum for L satisfies the constraints. λ  is known as a “Lagrange 
Multiplier.”  That is, the system of 1m−  equations (3) is replaced by the system 

 
( )1 2 1 2

1 2

( , , , ) ( , , , ) 0

( , , , )

m m
j

m

H p p p C p p p
p

C p p p b

λ
⎧ ∂⎪⎪ − =⎪⎪∂⎨⎪⎪ =⎪⎪⎩

… …

…
. (4) 

 
In practice, the first set of 1m−  equations yields the unknowns ip  as functions of λ , and 
constraint equation becomes the “hard” part of the problem, which determines λ  implicitly, via 
( )1 2( ), ( ), , ( )mC p p p bλ λ λ =… . 

 
Why does this work? We can think of 1 2( , , , )mH p p p… , without constraints, as defining a 
surface over the domain of the p’s.  At any point on the surface, the slope of the tangent plane in 
any coordinate axis ip  is given by / iH p∂ ∂ ; it is convenient to think of these slopes as a vector, 
the gradient of H:  1 1( / , , / )H H p H p∇ = ∂ ∂ ∂ ∂… . (Actually, H∇  is a member of the dual 
space.)   For a point 1( , )mq q q=

G
…  to be an extremum of the unconstrained problem, it would be 

necessary that any small movement around qG  does not change the value of H . Familiarly, this is 
equivalent to 0H∇ = .  
 
But for the constrained problem, it is OK if a small movement around qG  changes the value of H, 
provided that it also changes the value of the constraint!  That is, for the constrained problem, the 
only movements around qG  that are allowed are the ones that keep the constraint unchanged.  The 
small movements pΔ

G  that keep the constraint C unchanged are the ones that are orthogonal to 
the constraint’s gradient, i.e., the directions for which 0p CΔ ⋅∇ =

G .   So for the constrained 
problem, a point qG  is an extremum if, at this point, any direction that is not orthogonal to H∇   
(the directions in which H will change) are also not orthogonal to C∇  (the directions in which 
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the constraint will change).  If the directions that are not orthogonal to H∇   match those that are 
not orthogonal to C∇ , then the directions that are orthogonal must match as well.  This is the 
first condition of the set  (4).  The second condition of the set (4) is simply that the constraints 
are satisfied. 
 
Lagrange Multipliers also work when there are multiple constraints, 1 2( , , )r m rC p p p b=… . (The 
above argument extends; each constraint gets its own multiplier.)  The conditions for an 
extremum are: 
 

 1 2 1 2

1 2

( , , , ) ( , , , ) 0

( , , , )

m r r m
rj

r m r

H p p p C p p p
p

C p p p b

λ
⎧ ⎛ ⎞⎪ ∂ ⎟⎪ ⎜ − =⎟⎜⎪ ⎟⎪ ⎟⎜∂ ⎝ ⎠⎨⎪⎪⎪ =⎪⎩

∑… …

…
. (5) 

 
 

Finding a maximum-entropy distribution subject to linear constraints 
 
With Lagrange Multipliers, it is straightforward to write a formal solution to the problem of 
finding the maximum entropy distribution subject to linear constraints.  We simply use the 
system (5), with rC  representing the constraints, and 1 2( , , , ) lnm i iH p p p p p=−∑… .  (It 
doesn’t matter which base we use for the logs, since this just changes the entropy by a scale 
factor.)  There’s always an implicit constraint, that the p’s are a probability distribution – and we 
call this the constraint 0C , with 0 1( , )m iC p p p=∑…  and 0 1b = . 
 
Since we are assuming that the constraints are linear, each can be put in the form 

1( , )r m ri i
i

C p p c p=∑… .  Using this and the definition of entropy for H, the first part of the 

system (5)  becomes ln 0i i r ri i
i r ij

p p c p
p

λ
⎛ ⎞∂ ⎟⎜− − =⎟⎜ ⎟⎟⎜∂ ⎝ ⎠∑ ∑ ∑ , or,   1 ln 0j r rj

r

p cλ− − − =∑ . 

Recognizing the special rule of 0r =  (i.e., that 0 1jc = ), this becomes 

0
1

1 ln 0j r rj
r

p cλ λ
≥

− − − − =∑ .  We write 01Z e λ−=  to obtain a simple formal solution: 

 

 
1

1 exp( )j r rj
r

p c
Z

λ
≥

= −∑ . (6) 

 
We can always eliminate the normalization ( 0)r =  constraint: taking 
 

1

exp( )r rj
j r

Z cλ
≥

= −∑ ∑  (7) 

guarantees that ( ) 1p x =∑ .   
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Now we need to adjust the λ ’s so that the constraints are satisfied.   But even before we do this, 
we can see the form of the solution:  the probability distribution has an exponential form, and the 
constraints enter into the exponent.  Adjusting the λ ’s can be easy, tricky, or even intractable, 
depending on the nature of the linear constraints. 
 
All of the above works fine when the distributions are continuous; the “fine print” concerning the 
log( )xΔ -term doesn’t matter since it just leads to an additive offset on all entropies.  In the 
continuous case, the constraint descriptors and the probabilities depend on a continuous variable 
x rather than a discrete index j, and eq. (6)  becomes 

 
1

1( ) exp( ( ))r r
r

p x c x
Z

λ
≥

= −∑ , (8) 

and Z is determined by 
1

exp( ( )) 1r r
rX

c x dxλ
≥

− =∑∫  

 
A nice feature of this setup (generic to maximum-entropy problems with linear constraints, but 
not to all Lagrange Multiplier problems) is that the constraint equations can be expressed simply 
in terms of derivatives of Z.  Using the discrete formulation (7): 
 

exp( ) exp( )r rj rj r rj rj j r
j r j r jr r

Z c c c Z c p Zbλ λ
λ λ

⎛ ⎞∂ ∂ ⎟⎜ ⎟= − =− − =− =−⎜ ⎟⎜ ⎟⎜∂ ∂ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ , where we’ve 

used eq. (6) for jp .  Since ln 1G G
u G u

∂ ∂
=

∂ ∂
, it follows (both for the discrete formulation and the 

continuous one) that  
 

 ln
r

r

Z b
λ

∂
− =

∂
, (9) 

 
a useful and compact expression of the constraints.   
 
The equations (9) are sometimes called the “conjugate” problem for the original extremization. 
  
One cannot help but mention the connection with statistical mechanics.  The λ ’s correspond to 
energies, and Z is the “partition function”. 

Basic examples 

No constraints 
 
The simplest (possibly trivial) example is to find the maximum entropy distribution on an 
interval 0 1[ , ]a a  without any constraints (other than normalization).  The exponential term in 

eq(8) vanishes, so ( ) 1/p x Z= .  The normalization condition is that 
1

0

1 01 ( )
a

a

a ap x dx
Z
−

= =∫ , so 
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1 0Z a a= − .  Not surprisingly, we see that if there are no other constraints, a maximum-entropy 
distribution is uniform. 

Constrain the mean 
 
The next example is to find a maximum-entropy distribution on the interval [0, ]∞ , for which the 

mean is specified: 
0

( )xp x dx μ
∞

=∫ .  We apply the above machinery, associating this constraint 

with a Lagrange Multiplier 1λ  and 1( )c x x= . Eq. (8) yields 1
1( ) xp x e
Z

λ−= .  Our constraints are  

1

0

11 xe dx
Z

λ
∞

−= ∫  (normalization) and 

1

0 0

1( ) xxp x dx xe dx
Z

λμ
∞ ∞

−= =∫ ∫  (the condition on the mean).  

The definite integrals specified by the constraints are undefined unless 1 0λ > .  Provided that this 
is the case, we find 

1
1

1 100

1 1 1x
x ee dx

Z Z Z

λ
λ

λ λ

∞∞ −
− =− =∫ , which must be equal to 1, and  

1 1
1

2 2
1 1 10 0 0

1 1 1( )
x x

x xe exp x dx xe dx
Z Z Z

λ λ
λ

λ λ λ

∞∞ ∞ − −
−

⎛ ⎞⎟⎜ ⎟= = − − =⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ ∫  which must be equal to μ , The first 

condition (normalization) implies that 11/Z λ= , and second implies that 11/λ μ= .  Thus, 
/( ) xp x e μμ −= . 

 
Note that had we sought to solve this problem on the full line [ , ]−∞ ∞ , the machinery would 
have told us that there is no solution.  This is correct … one can make the entropy as large as 
desired by making the distribution as “thin” as desired (e.g., allow 0a →−∞  and 1a →∞  in the 
previous example). 

Constrain the mean and variance 
 
The next example is to find a maximum-entropy distribution on the interval [ , ]−∞ ∞  which the 

mean is specified, and the variance is too: ( )xp x dx μ
∞

−∞

=∫  and 2( ) ( )x p x dx Vμ
∞

−∞

− =∫ .  This 

yields the formal solution  
 

2
1 2 ( )1( ) x xp x e

Z
λ λ μ− − −= .  The definite integrals specified by the constraints are only defined if 

2 0λ > .  We use eq. (9), so that the only calculus needed is to calculate Z: 
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2

1 2

2
( ) 1

1
2 2

exp
4

x xZ e dxλ λ μ π λ
μλ

λ λ

∞
− − −

−∞

⎛ ⎞⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  (a standard definite integral). 

 
Eq. (9) leads to the constraint equations: 
 

1
1

1 2

ln
2

Z bλ
μ

λ λ
∂

− =− + =
∂

 (for the mean) and 
2

1
22

2 2 2

ln 1
2 4

Z bλ
λ λ λ

∂
− = + =

∂
 (for the variance). 

Since our constraints are that 1b μ=  and 2b V= , the constraint equations are satisfied by 1 0λ =  

and 2 1/ 2Vλ = , yielding 2Z Vπ=  and 
 

 
2( ) / 21( )

2
x Vp x e

V
μ

π
− −= . (10) 

 
Eq. (10) says that the maximum entropy distribution with a specified mean and variance is a 
Gaussian.   
 
We’ve derived this important fact in a systematic fashion, but we also could have “solved” the 
Lagrange multiplier problem by guessing that the Gaussian plays this role, and then verifying 
that eq. (10) has the correct form – an exponential of the constraints.  (Convexity guarantees that 
there is only one solution.) The latter approach proves useful in more complex maximum-
entropy problems. 
 
Two brief notes: 
 
The “guess” method provides another way to show that for a multivariate distribution 

( , ,... )p x y z  in which only the marginals are constrained, maximum entropy is achieved for a 
product distribution ( , ,..., ) ( ) ( ) ... ( )p x y z p x p y p z= ⋅ ⋅ , since the latter has the correct 

exponential form: 1( , ,..., ) exp( ... )x y zp x y z
Z

λ λ λ= − − − − . 

 
We also note that once one adds constraints beyond the second moment, closed-form solutions 
are in general not possible. 
 

A more complex example: time series with constrained covariances 
 
A more complex example is to determine the maximum-entropy distribution (ensemble) of time 
series, in which the autocovariance is specified.  (We also specify that the mean is zero.)   Such 
ensembles formalize what one has learned about a process by measuring its autocorrelation (or 
power spectrum), and can therefore be used as a starting point for statistical tests.  
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The strategy here extends with little difficulty to multichannel time series for which the cross-
covariances (or cross-spectra) have been measured. 
 
At first glance, this might seem to be a difficult problem:  each constraint – the value of an 
autocorrelation at a specific lag τ  – is a constraint on a sum such as ( ) ( )

t

s t s t τ+∑ , and there is 

one constraint for each τ .    So, while we could write a formal solution – something like 
1( ) exp ( ) ( )

t

p x s t s t
Z τ

τ

λ τ
⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜ ⎟= − − ⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑ ∑ , it would appear to be very challenging to carry out the 

multidimensional integral for Z or to solve the constraint equations. 
 
Not surprisingly, transforming to the frequency domain simplifies things greatly.  We’ve seen 
previously that specifying the autocovariance is equivalent to specifying the spectrum.  Our 
coordinates are now the Fourier estimates (over some arbitrarily long time interval.) We want to 
constrain the expected magnitude of each Fouirer estimate, but we don’t need to constrain their 
covariances … since for the maximum-entropy distribution, these must be independent.  
 
We can then consider the distribution of each Fourier estimate independently.  Its mean is 
constrained to be 0 (time-translation symmetry), and its variance is determined by the Fourier 
transform of the autocovariance.  So each Fourier estimate is distributed as a Gaussian, of zero 
mean and known variance.  The joint distribution of the Fourier estimates is then the product of 
these distributions.    
 
The resulting process is known as a Gaussian noise.  
 
To see how time samples are distributed, we transform back to the time domain.  Each time point 

is a Fourier integral 1 ˆ( ) ( )
2

i ts t s e dωω ω
π

∞
+

−∞

= ∫ . Since this is a sum of independent Gaussian-

distributed quantities, it is Gaussian-distributed.  Covariances at different time points will (by 
construction) be equal to the constrained values.  Importantly, even if the original constraints did 
not exceed some longest lag mτ , the maximum-entropy process will have correlations at lags 
greater than mτ . 
 
Sometimes “phase-scrambling” is used as a shortcut to generate surrogate datasets that share the 
same spectrum (or autocorrelation) as the data, but are otherwise of maximum-entropy.  That is, 
the data are Fourier-transformed; random values are assigned to the phases of the Fourier 
components, and then the transform is inverted to recover new time series. The reason that this 
works is that each Fourier component (with respect to the entire data length) can be regarded as 
an independent quantity, and adding them up results in a Gaussian quantity (via the central limit 
theorem).  However, one needs to be cautious  -- it is only an approximate construction, and 
Fourier components of the surrogates will (by construction) always have the same amplitude as 
that of the original data; in a true Gaussian ensemble, these would be distributed in a Gaussian 
fashion. 
 


