Linear Systems, Black Boxes, and Beyond
Homework \#1 (2010-2011), Answers
Q1: Fourier transforms, derivatives, and integrals
Setup is $\hat{s}(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t$, with $s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) e^{+i \omega t} d \omega$.
A. For $q(t)=\frac{d}{d t} s(t)$, find $\hat{q}(\omega)$.

Using the "synthesis" integral,
$q(t)=\frac{d}{d t} s(t)=\frac{d}{d t}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) e^{+i \omega t} d \omega\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) \frac{d}{d t}\left(e^{+i \omega t}\right) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega)\left(i \omega e^{+i \omega t}\right) d \omega$.
So the coefficient of $e^{i \omega t}$ in $q(t)=\frac{d}{d t} s(t)$ is $\hat{q}(\omega)=i \omega \hat{s}(\omega)$.
B. For $q_{n}(t)=\frac{d^{n}}{d t^{n}} s(t)$, find $\hat{q}_{n}(\omega)$.

Iterating part A: $\hat{q}_{n}(\omega)=i \omega \hat{q}_{n-1}(\omega)$, so $\hat{q}_{n}(\omega)=(i \omega)^{n} \hat{s}(\omega)$.
C. For $z(t)=\int_{-\infty}^{t} s(\tau) d \tau$, find $\hat{z}(\omega)$.

Since $s(t)=\frac{d z}{d t}$, we can use part A: $\hat{s}(\omega)=i \omega \hat{z}(\omega)$, so, except possibly at $\omega=0, \quad \hat{z}(\omega)=\frac{\hat{s}(\omega)}{i \omega}$ D. Apply C to $s(t)=\delta(t)$ to find a function whose Fourier transform, except possibly at 0 , is $\frac{1}{i \omega}$.

Since the Fourier transform of the delta-function is 1 everywhere, the integral of the deltafunction, $h(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$ has the required Fourier transform $\frac{1}{i \omega}$. Since the delta-function is an infinitesimally narrow peak with a unit area, the integral evaluates as $h(t)=\left\{\begin{array}{l}1, t>0 \\ 0, t<0\end{array}\right.$. This is the "Heaviside step function." Its value at zero, which is formally undefined, is irrelevant for most purposes.

Q2: Fourier transforms and moments

Setup is $\hat{s}(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t$, with $s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{s}(\omega) e^{+i \omega t} d \omega$, but now we are thinking of s as a probability distribution.
A. Write the normalization condition $\int_{-\infty}^{\infty} s(t) d t=1$ in terms of $\hat{s}(\omega)$.

Since $e^{i \omega t}=1$ for $\omega=0, \hat{s}(0)=\int_{-\infty}^{\infty} s(t) d t$, so the normalization condition is $\hat{s}(0)=1$.
B. Write the mean (first moment) $\langle t\rangle=\int_{-\infty}^{\infty} t s(t) d t$ in terms of $s^{\prime}(\omega)=\frac{d}{d \omega} \hat{s}(\omega)$.

Since $\hat{s}^{\prime}(\omega)=\int_{-\infty}^{\infty} s(t) \frac{d}{d \omega} e^{-i \omega t} d t=\int_{-\infty}^{\infty} s(t)(-i t) e^{-i \omega t} d t$, it follows that $\hat{s}^{\prime}(0)=\int_{-\infty}^{\infty} s(t)(-i t) d t$ and that $\int_{-\infty}^{\infty} t s(t) d t=i \hat{s}^{\prime}(0)$.
C. Write the variance (second moment) $\left\langle(t-\langle t\rangle)^{2}\right\rangle=\left\langle t^{2}\right\rangle-\langle t\rangle^{2}=\int_{-\infty}^{\infty} t^{2} s(t) d t-\left(\int_{-\infty}^{\infty} t s(t) d t\right)^{2}$ in terms of $s^{\prime}(\omega)=\frac{d}{d \omega} \hat{s}(\omega)$ and $s^{\prime \prime}(\omega)=\frac{d^{2}}{d \omega^{2}} \hat{s}(\omega)$.
As in part B, $\hat{s}^{\prime \prime}(\omega)=\int_{-\infty}^{\infty} s(t) \frac{d^{2}}{d \omega^{2}} e^{-i \omega t} d t=\int_{-\infty}^{\infty} s(t)\left(-t^{2}\right) e^{-i \omega t} d t$, so $\int_{-\infty}^{\infty} t^{2} s(t) d t=-\hat{s}^{\prime \prime}(0)$.
So $\int_{-\infty}^{\infty} t^{2} s(t) d t-\left(\int_{-\infty}^{\infty} t s(t) d t\right)^{2}=-\hat{s}^{\prime \prime}(0)-\left(i \hat{s}^{\prime}(0)\right)^{2}=-\hat{s}^{\prime \prime}(0)+\left(\hat{s}^{\prime}(0)\right)^{2}$.

Q3: The half-infinite cable (repeating indefinitely to the right)

This is to be viewed as a network of resistors and capacitors. Calculate the impedance of the system (input applied across terminals at left) in terms of the impedances $F(\omega), G_{1}(\omega)$, and $G_{2}(\omega)$ for F, G_{1}, and G_{2}.

Hint: Let the composite system be H. Note the following, and then write an equation for $H(\omega)$.

The impedance of the composite system on the left is a series combination of three components: G_{1}, the parallel combination of F and H, and G_{2}. Therefore its impedance is
$G_{1}(\omega)+\frac{F(\omega) H(\omega)}{F(\omega)+H(\omega)}+G_{2}(\omega)$. Since (as the hint indicates) this is equivalent to the entire halfinfinite cable, $H(\omega)=G_{1}(\omega)+\frac{F(\omega) H(\omega)}{F(\omega)+H(\omega)}+G_{2}(\omega)$. Solving for $H(\omega)$ yields $H(\omega)^{2}-G(\omega) H(\omega)-G(\omega) F(\omega)=0$, where $G(\omega)=G_{1}(\omega)+G_{2}(\omega)$, or,
$H(\omega)=\frac{G(\omega)+\sqrt{G(\omega)^{2}+4 F(\omega) G(\omega)}}{2}$.
Note concerning the continuum limit: This corresponds to allowing each subunit to represent progressively less and less length. Then F has units of impedance/cm (and increases as the segment shortens), and G has units of impedance-cm (and decreases as the segment shortens). In this limit, $H(\omega) \approx \sqrt{F(\omega) G(\omega)}$. This enables one to calculate the "cable length" λ, which is the distance required for the transmembrane current to fall by a factor of e. To do this, note that total transmembrane current $I_{\text {total }}$ is $\int_{0}^{\infty} e^{-x / \lambda} d x=\lambda$ times the current per unit length $I_{\text {peak }}$ at the injection site, but also, $I_{\text {total }} / I_{\text {peak }}$ is inversely proportional to the total cable impedance $H(\omega)$, divided by the impedance per unit length, $F(\omega)$. So $\lambda=\frac{H(\omega)}{F(\omega)}=\sqrt{\frac{G(\omega)}{F(\omega)}}$.

Q4. Boxcar smoothing

Boxcar smoothing refers to convolution with the function $s(t)$, where $s(t)=\left\{\begin{array}{l}\frac{1}{L},|t| \leq L / 2 \\ 0,|t|>L / 2\end{array}\right.$. Find its Fourier transform. What does it look like? Is this a good way to smoothe?
$\hat{s}(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t=\frac{1}{L} \int_{-L / 2}^{L / 2} e^{-i \omega t} d t=\left.\frac{1}{-i \omega L} e^{-i \omega t}\right|_{-L / 2} ^{L / 2}=\frac{e^{i \omega L / 2}-e^{-i \omega L / 2}}{i \omega L}=\frac{\sin (\omega L / 2)}{(\omega L / 2)}$.
This (the "sinc" function) has a peak of 1 at $\omega=0$, and descends in an envelope proportional to $1 /|\omega|$ away from zero. There are zeros at $\omega=2 \pi k / L$, for $k \neq 0$. The center lobe (at $\omega=0$) is positive, but the adjacent lobes $\left(\frac{2 \pi}{L}<|\omega|<\frac{4 \pi}{L}\right)$ are negative. So one problem with using this as a smoothing function is that it inverts the phase of non-negligible frequency components.

$\gg x=[-8: 0.01: 8]$;
>> $y=\operatorname{sinc}(p i * x)$;
$\gg \operatorname{plot}(x, y)$
\gg hold on;
$\gg \operatorname{plot}\left(\left[\begin{array}{ll}-8 & 8\end{array}\right],\left[\begin{array}{ll}0 & 0\end{array}\right],{ }^{\prime} \mathrm{k}^{\prime}\right)$
$\gg \operatorname{plot}\left(\left[\begin{array}{ll}0 & 0\end{array}\right],[-0.51], ' k '\right)$
$\gg \operatorname{set}(g c a, ' Y L i m ',[-0.21])$
>> set(gca,'YLim',[-0.25 1])
>> xlabel('omega, as a multiple of 2pi/L')
>> set(gca,'XTick',[-8:8])

