
Linear Systems,  Black  Boxes, and Beyond 
 
Homework #1 (2010-2011), Answers 
 
Q1:  Fourier transforms, derivatives, and integrals 
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Since the Fourier transform of the delta-function is 1 everywhere, the integral of the delta-
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“Heaviside step function.”  Its value at zero, which is formally undefined, is irrelevant for most 
purposes. 
 
 
 



 
Q2:  Fourier transforms and moments 
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Q3: The half-infinite cable (repeating indefinitely to the right) 
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This is to be viewed as a network of resistors and capacitors.  Calculate the impedance of the 
system (input applied across terminals at left) in terms of the impedances ( )F ω , 1( )G ω , and  

2 ( )G ω  for F, 1G , and 2G . 
 
Hint:  Let the composite system be H.  Note the following, and then write an equation for ( )H ω .  

 
 
 
 
 
 

The impedance of the composite system on the left is a series combination of three components: 
G1, the parallel combination of F and H, and G2.  Therefore its impedance is 
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Note concerning the continuum limit:  This corresponds to allowing each subunit to represent 
progressively less and less length.  Then F has units of impedance/cm (and increases as the 
segment shortens), and G has units of impedance-cm (and decreases as the segment shortens).  In 
this limit, ( ) ( ) ( )H F Gω ω ω≈ . This enables one to calculate the “cable length” λ , which is the 
distance required for the transmembrane current to fall by a factor of e.  To do this, note that total 
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Q4.  Boxcar smoothing 
 

Boxcar smoothing refers to convolution with the function ( )s t , where 
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its Fourier transform. What does it look like?  Is this a good way to smoothe? 
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This (the “sinc” function) has a peak of 1 at 0ω= , and descends in an envelope proportional to 
1/ ω  away from zero.  There are zeros at 2 /k Lω π= , for 0k ≠ .  The center lobe (at 0ω= ) is 

positive, but the adjacent lobes ( 2 4
L L
π π

ω< < ) are negative.  So one problem with using this as 

a smoothing function is that it inverts the phase of non-negligible frequency components.  
 

 
>> x=[-8:0.01:8]; 
>> y=sinc(pi*x); 
>> plot(x,y) 
>> hold on; 
>> plot([-8 8],[0 0],'k') 
>> plot([0 0],[-0.5 1],'k') 
>> set(gca,'YLim',[-0.2 1]) 
>> set(gca,'YLim',[-0.25 1]) 
>> xlabel('omega, as a multiple of 2pi/L') 
>> set(gca,'XTick',[-8:8]) 


